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Pairwise-additive models for atom-surface interaction potentials:
An ab initio study of He-LiF
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Ab initio self-consistent-field calculations of the repulsive part of the He-F and He-Li interac-

tion potentials are performed, together with coupled Hartree-Fock calculations of the dispersion

coefficients determining the attractive part. The results are then used to construct an atom-surface

potential for He-LiF, based on pairwise additivity of atom-ion forces. Ions in the crystal are simu-

lated by performing calculations on a cluster consisting of an anion and its shell of nearest-neighbor

cations, embedded in a point-charge lattice. Environments appropriate to ions in the bulk or at the

surface can be constructed. Repulsion potentials between He atoms and in-crystal ions are found to
be significantly weaker than those involving free ions. Anions at the surface are found to be slightly

more polarizable then those in the bulk, but both are much less polarizable than free anions.

Dispersion coefficients involving ions in different environments show similar trends. A model of
the atom-surface potential is proposed, based on pairwise additivity but including corrections for in-

duction energy, nonadditive dispersion forces, and dielectric screening effects. %'ith semiempirical

values of the dispersion coefficients based on the ab initio calculations, the resulting atom-surface

potential has a well depth of 8.11 meV, compared with an experimental value of approximately 8.7
meV.

I. INTRODUCTION

Recent advances in experimental methods for observing
the scattering of atoms from solid surfaces have led to a
need for accurate atom-surface interaction potentials.
There has been considerable interest in pairwise-additive
models for such potentials, in which the atom-surface po-
tential is written in the form

V(r)= g Vt(pt),

where the vector r denotes the position of the adatom
above the surface, and the sum runs over all atoms (or
ions) in the solid. p; is the distance from the adatom to
atom i of the solid, and V;(p;) is the appropriate pair po-
tential. Pairwise-additive models have been applied to the
scattering of He atoms from several surfaces; these in-
clude overlayers of Kr and Xe on substrates such as
graphite and silver, ' graphite itself, and ionic solids
such as LiF.s-io

The formulation (1) is clearly approximate, and may be
viewed in either of two ways. The pair potentials V;(p;)
may be assumed to be the same as the corresponding gas-
phase pair potentials, which are independently known for
systems such as rare-gas pairs; in this ease, the corrections
to Eq. (1) are due to many-body interactions. Alternative-
ly, the V, (p; ) may be regarded as effective pair potentials,
chosen to reproduce the atom-surface potential as well as
possible, but not necessarily related to the gas-phase pair
potentials. This latter viewpoint is certainly more ap-
propriate for ionic solids, since ions in crystals are known
to differ substantially from free ions."'

Celli et aI. ' have applied a pairwise-additive model to
the He-LiF potential. They represented the atom-surface

potential as in Eq. (1), with an induction contribution due
to the polarization of the He atom in the field of the iona

V(r) = g V,(p;)+ V'"'(r) . (2)

using the dispersion damping functions fz„(p)proposed
by Tang and Toennies for gas-phase pair potentials'

25

f2, (p) =1—g [(bp) /k!]exp( —bp) .
k=o

(4)

Celli et al. took repulsive parameters A and b from first-
order self-consistent-field (SCF) calculations on gas-phase
He-Li+ and He-F pairs, ' and truncated the dispersion
series after the first term (2n =6). The He-Li+ Cz coeffi-
cient was taken from Dalgarno and Davison, ' and the
He-F C& coefficient was optimized so that the resulting
potential reproduced the experimental He-LiF bound-state
energies of Derry et al. ' Celli et al. were quite success-
ful in reproducing the existing scattering data with this
potential, but it has certain theoretical drawbacks; its
long-range Cs coefficient is considerably larger than sug-
gested by other considerations, ' ' and the absence of
dispersion coefficients for 2n & 6 is physically implausible.
Celli et al. experimented with such higher-order terms,
but found that they worsened the fit to the bound-state
energies.

The application of pairwise-additive models to ionic
solids raises several questions.

The individual He-ion pair potentials were expressed in
the semiempirical form

V(p) =A exp( bp) g f—i„(p)C—2„p
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(1) How similar are He-ion repulsive potentials for fro:
and in-crystal ions'? Is it reasonable to use repulsive po-
tentials calculated for free ions when constructing atom-
surface potentials?

(2) How similar are He-ion dispersion coefficients for
free and in-crystal ions'? Are surface ions similar to bulk
ions in this respect?

(3) Are the He-ion dispersion forces significantly modi-
fied by dielectric screening effects7 How are such screen-
ing effects related to many-body interactions7

The purpose of the present paper is to describe ab initio
calculations on ions in crystals which enable us to address
these questions. It will be shown that in-crystal ions and
free ions differ very significantly, but that (at least for
LiF) surface ions are quite similar to bulk ions. The ab
initio results will then be used to construct a He-LiF in-
teraction potential, for comparison with the experimental
bound-state energies. 's Future work will deal with the fit-
ting, to molecular-beam scattering data, of a gas-surface
potential obeying the theoretical constraints.

The calculations described below also throw light on
the extent to which the polarizabilities of surface ions
differ from those of bulk and free ions. Enhanced polari-
zabilities at the surface have been proposed in an attempt
to explain surface phonon frequencies'

' and our calcu-
lations provide some support for this.

II. SHORT-RANGE REPULSIVE POTENTIAL

In this section we consider the repulsive part of the in-
teraction potential between He and the ions F and Li+.
The method used is an ab initio supermolecule calculation
at the SCF level, with corrections for basis-set superposi-
tion error (BSSE}and induction energy. Attractive con-
tributions from dispersion forces are, of course, not
present in an SCF calculation.

It is known that anions in crystals are strongly affected
by their environment, ' whereas cations are relatively in-
sensitive to it. Thus the He-F potentials for free and
in-crystal F ions may be expected to differ considerably,
while the corresponding potentials for He-Li+ (for free
and in-crystal Li+ ions) will be quite similar. In order to
study the effect of the environment, the repulsive poten-
tial for He-F has been calculated both for a free F ion
and for an F ion embedded in a simulation of the (100}
face of an LiF crystal.

Previous work has shown that an anion in a crystal is
smaller, " less polarizable, ' and more strongly bound
than the corresponding free anion. Two physical factors
account for most of this effect electrostatic interaction
with the lattice of ions, and overlap compression by the
charge clouds of the nearest neighbors. A good simula-
tion of the crystalline environment in the bulk can be
achieved by calculations on a cluster where the anion is
surrounded by a shell of nearest-neighbor cations, and
more distant ions are represented by a finite lattice of
point charges. ' ' ' Such calculations give, for example,
excellent agreement with experiment for the static polari-
zability of F in LiF. Charge-transfer effects on the ionic
size and polarizability are small. ' The qualitative picture

which emerges is that an ion deep in the body of a crystal
is effectively confined in a spherical box (or potential well)
due to the presence of the neighboring ions.

For an ion at the surface of a crystal, this picture is
somewhat modified. Such an ion is in an anisotropic ef-
fective potential, subject to an electric field normal to the
surface, and free from overlap compression from above.
We have constructed a simulation of this environment for
an idealized (100) face of LiF by placing a cluster consist-
ing of one F ion and its five nearest-neighbor Li+ ions
in a 7X7X4 lattice of point charges, as shown in Fig. l.
This approach is somewhat similar to that used by Col-
bourn and Mackrodt in studies of the chemisorption of
H2 and CO on MgO. The charges on the faces of the
pointwharge lattice in the interior of the crystal were
scaled to give overall electrical neutrality. An Li-F inter-
nuclear distance of 3.7965ao, appropriate to the bulk, was
retained, so that possible surface relaxation and rum-
pling 'i7 were ignored. As in the calculations on bulk
ions, this model includes all electrostatic effects and
compression of the anion by overlap with the nearest-
neighbor cations, but neglects any effects due to overlap
of different anions; the neglected effects are believed to be
small for LiF, since the calculations on bulk ions gave
good agreement with empirical in-crystal polarizabili-
ties."

The Gaussian basis set used here for the (F )(Li+)z
cluster was taken from Ref. 12. The [12s Sp 5d] F
basis set gives a polarizability near the Hartree-Fock limit
for the free ion, while the highly contracted
(10s 5p)-+[ls lp] Li+ basis set gives a near-Hartree-Fock
energy, polarizability, and charge density for Li, but is
small enough for use in a large cluster calculation. In the
same manner, a basis set for He was chosen by contract-
ing a 10s set and a polarization Sp set (with the six most
diffuse s exponents plus 0.07, 0.035) to [ls lp].

Attain,the energy ( —2.86167' ) and polarizability (1.3219a0) in
this compact basis are of essentially Hartree-Fock quality.

Using this approach, calculations of the total SCF ener-

gy were caiTied out for geometries in which a He atom
lies directly above the F site of the cluster. He-F dis-
tances of p=3.75ao, 4.125ao, and 4.5ao were considered.
Subtracting the energy of the isolated [lsd] He atom
and of the (F }(Li+)5cluster in the lattice from the super-

FIG. 1. Schematic diagram showing an (F }(Ii+)5 cluster
embedded in the surface of a point-charge lattice. The point-
charge lattice used in the actual calculation was 7X7X4, in-
stead of the 5 X5 & 3 lattice shown here.
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TABLE I. Repulsive energy of interaction of a He atom with a surface F ion, calculated at the SCF
level. Units of energy are 10 Eq. The symbols used are explained in the text. The final energies ~'~
were fitted to A exp( —bR) with A =19.258' and b =1.9676ao '.

R /ao

3.75
4.125
4.5

1171.0
560.5
267.8

2.2
2.5
2.3

—33.3
—13.8
—5.7

3.7
1.7
0.8

1202.8
575.0
275.0

molecule energy, the interaction energy &+ ~ is ob-
tained, as shown in Table I.

In addition to the desired He-F repulsion energy,
&R ~ contains three contributions that must be re-
moved. First, it contains basis-set superposition error,
arising from the lowering of the fragment energies in the
larger basis of the supermolecule. This can be removed by
the counterpoise technique, in which the energy of each
subsystem is separately calculated in the supermolecule
basis. This correction is listed in Table I as &&

A second, physical contribution to &&~~ is the at-
tractive induction energy, mainly arising from polariza-
tion of the He atom in the field of the crystal. We remove
this tenn by calculating the energy of a [1s lp) He atom
at a distance p above a complete paint-charge lattice [i.e.,
a lattice where the ions (F )(Li+)z are replaced by point
charges]. The resulting induction contribution is denoted
~E" in Table I.

Finally, the repulsive energy of interaction of the He
atom with the five Li+ ions in the cluster must be sub-
tracted. A repulsive potential was calculated for He and
an Li+ ion embedded in a point-charge lattice (both in the
[ls lp] bases), yielding the results shown in Table II; it
may be noted that the induction energies are somewhat
different from those of Table I. p After subtracting out
the induction contribution, the He-Li potential was fit-
ted to the single exponential form

V(p)=A exp( bp) . — (5)

BSSE corrections for He-Li+ were found to be negligible.
The sum of He-Li+ energies calculated with this function
is listed under 4 8' ' for each cluster geometry in Table
I.

The final energy ~ ' "is found from

~EHe Fg~uncorr+gp-BSSE gEind a@He-Li (6)

and fitted to the functional form (5). It may be noted
that, at least over this range of p, the simple exponential

fit is very good: the geometric mean of the energies for
p=3.75 and 4.5ap is (575X10 ')Es, exactly equal to the
ab initio result for p =4.125ap.

Similar sets of calculations were carried out for the in-
teraction of He with free F and Li+ ions; the results are
shown in Tables III and IV. Again, it may be noted that
the calculated point-charge induction energies are some-
what different for He-F and He-Li+. In addition, the
point-charge model neglects terms arising from the in-
teraction of the induced moments on He with the polari-
zabilities of the ion, which are not negligible for the free-
ion interaction. The leading contribution may be estimat-
ed to be of order a;o„aHe/p', which would add about
(3X10 )Ei, to the calculated He—free F repulsion at
P=3.75ap and about (0.5 X 10 s)Eii at P=4.5ap.

The repulsive potentials for He-F (surface} and He-F
(free) are shown in Tables I and III and Fig. 2, and it may
be seen that they are significantly different (note the loga-
rithm1c scale}. At separations greater than about 3.20ap
(1.70 A), the free F ion is more repulsive, and the repul-
sion has a longer "tail." This is compatible with the dif-
fuse nature of the free anion compared to the more com-
pact in-crystal species. Our free-anion potential is, how-
ever, much less repulsive than the first-order SCF poten-
tial' used in Ref. 10 (also shown in Fig. 2), for which
A= 160.2' aIld b=2.347ap ', at p=3.75ap, the present
potential is almost a factor of 2 weaker. It is known that
the first-order SCF procedure overestimates repulsion, "
because it neglects relaxation of the charge densities of the
interacting systems, and for large polarizable anions such
as F this error will be particularly important. Thus we
believe that our SCF results for the He—free F potential
are closer to the Hartree-Fock limit than those of Ref. 14.
However, it should be noted that correlation increases the
polarizability of free F by 40%%uo or more, ' and there is a
corresponding increase in the ionic size; thus the SCF po-
tential, even at the Hartree-Fock limit, is probably an un-
derestimate of the full repulsive potential for the free

TABLE II. Repulsive energy of interaction of a He atom
with a surface Li+ ion, calculated at the SCF level. Units of en-
ergy are 10 ~Eq. The symbols used are explained in the text.
The final energies ~'~ were fitted to A exp( —bE) with
A =35.905' and b =2.8425co '.

TABLE III. Repulsive energy of interaction of a He atom
with a free F ion, calculated at the SCF level. Units of energy
are 10 Eq. The symbols used are explained in the text. The fi-
nal energies ~~ were fitted to A exp{—bE) with A =9.249'
and b =1.7392go '.

3.25
3.50
3.75
4.50

275.4
129.2
59.7
5.2

—72.3
—42.8
—24.9
—4.7

347.8
172.0
84.6
10.0

R /ao

3.75
4.125
4.5

1042.8
483.0
212.7

0.1

0.1

0.1

—321.2
—221.4
—157.4

1364.1
704.5
370.1
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TABLE IV. Repulsive energy of interaction of a He atom
~ith a free Li+ ion, calculated at the SCF level. Units of energy
are 10 EI, . The symbols used are explained in the text. The fi-
nal energies AE'~ were fitted to A exp( —bR } arit
A =43.909' and b =2.8066ao '.

3.25
3.50
3.75
4.50

—94.7
—193.7
—214.1

—149.4

—566.7
—433.3
—334.2
—163.6

472.0
239.6
120.1

14.2

2-0-

I

38

anion. In contrast, the in-crystal anion has a much small-
er radial correlation, 'z'zz and the SCF results are likely to
give a good estimate of the true repulsion.

The question also arises whether the repulsion due to a
surface F ion is significantly anisotropic. In order to in-
vestigate this, we have performed SCF calculations for a
variety of orientations of the approach of a He atom to a
surface F ion, and the results are listed in Table V.
These calculations use the same basis sets as for the nor-
mal approach, except that the contracted lp functions on
the Li+ ions ~ere omitted. As may be seen by comparing
the 0' calculations of Table V with those of Table I, the
larger and smaller basis sets give very similar repulsion
energies. For 8&20', the SCF repulsion energies due to
the F ion are within 1% of those for 8=0', and the
repulsion anisotropy may thus be neglected. This is in
direct contradiction to the results of Miglio et al. , 2 33

who predicted substantial quadrupolar distortion of sur-
face iona due to the electric field gradient at a surface site.
As will be discussed below, their calculation neglected
both the effect of the crystalline environment on the
quadrupole polarizability and the overlap distortion by
neighboring iona, and both these effects reduce the extent
of the quadrupole distortion.

The repulsive potential for He-Li+ (crystal} is also
weaker than that for He-Li+ (free). In this case the
differences are less important to the He-LiF atom-surface
potential since, even for approach of a He atom directly
over an Li ion, the He-LiF repulsion potential is dom-
inated by He-F interactions.

In summary, therefore, potential parameters appropri-
ate to the scattering of He from LiF can be calculated
only if the effect of the crystalline-environment on the F
ion is included. Repulsion potentials for the free ion are
not only difficult to calculate accurately but are inap-

propriate for use in constructing atom-surface potentials.

III. PROPERTIES OF SURFACE IONS

In this section we consider how the properties of an F
ion at the surface of LiF may be calculated, how they
compare with those of the ion in the bulk, and what they
tell us about the interaction potential for He-LiF. The
properties considered are of two types: first-order proper-
ties such as the dipole and higher moments of the charge
density, and second-order properties such as the
frequency-dependent polarizability a(iso). The attractive
part of the pair potential for He-F involves these proper-
ties since the permanent multipole moments contribute to
the induction energy, and the polarizability at imaginary
frequency determines C6 dispersion coefficients.

As in previous work on ions in the bulk, ' 'z calcula-
tions are performed in two stages in order to separate the
physical factors responsible for the difference between
free and in-crystal iona. In the first stage, denoted XTAL
in Ref. 12, an F ion is placed in a point-charge lattice to
represent the effect of the Coulomb electrostatic interac-
tion between an ion and its neighbors in the lattice. As in
Sec. II, a 7 X7 X4 slab of the lattice of LiF was used, with
F at the center of the top layer. SCF and coupled
Hartree-Fock (CHF) calculations with the [12s8p51]
basis of Ref. 12 gave the results shown in Table VI. The z
direction is the outward normal from the surface, and x
and y lie in the surface plane.

In the second stage, overlap effects are simulated by us-

ing "real" Li+ neighbors complete with basis functions
and electrons, the whole cluster being embedded in the
7 X 7 X4 point-charge lattice (see Fig. 1}. A calculation of
this type is denoted CLUS in Ref. 12. For use in
pairwise-additive potential models, the properties of the
cluster must be partitioned into contributions from the
different ions. This was done differently for first-order
and second-order properties. For first-order properties,
moments of the charge density were calculated for a cage
(Li+)5 in the lattice, with a negative point charge replac-
ing the F ion. The moments appropriate to the in-

surface F ion were then obtained by subtraction. BSSE
corrections to this simple procedure were calculated, but
were found to be negligible. For polarizabilities, the six
lowest occupied molecular orbitals were "frozen" in the
CHF calculation, thus allowing the valence electrons of
F but not of Li+ to polarize. This is not the same as the
partitioning used for bulk ions in Ref. 12, where polariza-
bilities, BSSE effects, and dipole —induced-dipole correc-
tions were removed explicitly from the calculated total
polarizability of the cluster.

FIG. 2. Calculated repulsion potentials for He-F: curve a,
SCF He—surface F potential; curve b, SCF He—free F po-
tential; curve c, "first-order" SCF He-F potential of Ref. 14.

A. Static properties

Table VI reports the calculated moments and static po-
larizability of the F ion in five different environments:
the free ion, the electrostatically compressed XTAL ion at
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TABLE V. Repulsive energy of interaction of a He atom with a surface F ion, calculated at the
SCF level, for various directions of approach. The angle 8 is measured in the plane of the F ion and a
nearest-neighbor cation. The basis set is slightly different from that used in Table I (see text), and the
column LE refers to the He-Li+ repulsion in the new basis. Units of energy are 10 'Eq.

8
(deg)

10
20
30

567.4
567.9
571.9
595.6

QE lQd

(a) Angle dependence for E. =4.125ao
2.5 —13,8
3.3 —13.4
5.0 —13.7
6.9 —21.5

gEHe-l. i

2.0
3.3

10.9
51.7

gErep

581.7
581.3
579.6
572.3

0
20

1179.6
1192.3

(b} Angle dependence for R =3.75ao
2.0 —33.3
6.2 —33.6

4.3
20.8

1210.5
1211.4

the surface and in the bulk, and the electrostatically and
overlap compressed CLUS ion at the surface and in the
bulk.

On the surface of the crystal, F occupies a site of C&„
symmetry, which is lower than the symmetry of a site
deep within the crystal (Oq). The surface ion therefore
has ptnmanent dipole and quadrupole moments and an
axially symmetric polarizability tensor. At the purely
electrostatic XTAL level, the dipole moment of F is
0.1127eao, the electric field of the point-charge lattice
would, if uniform, induce a dipole moment of about
0.15eao. The positive sign implies that, on average, the
electrons are pulled below the surface plane by the crystal
field. However, when overlap from nearest-neighbor ca-
tions is included in the calculation, the dipole moment is
reduced to only 0.0241eao, as the overlap compression
from the Li+ directly beneath the F ion pushes electrons
in the opposite direction.

In the point-charge lattice, the surface F ion has a
positive quadrupole moment of 0.1153eao, indicating an
oblate charge cloud where the expectation value
(x )=(y ) is about 2% greater than (z ). As the
second moments Q p show, the surface ion in the XTAL
calculation is smaller than the free ion, and is almost
identical in size to the XTAL ion within the crystal (al-
though the electrons are now anisotropically distributed).
On adding overlap effects, the anisotropy is reduced, this
time because the density is compressed more along the x
and y directions than along the z direction. At this level

of calculation, the ion at the surface has a slightly larger
radius (about 1% in (r ) ) than the bulk ion.

Our calculated quadrupole moments may be compared
with the value e =0.84ea L estimated by Miglio
et al. sz'ss

by using the quadrupole polarizability of the
fice anion to describe the response of the ion to the field
gradient at a surface site. This is a poor approximation
for several reasons. First, the quadrupole polarizability of
the bulk F ion is reduced by a factor of about 4 from the
free-ion value, and our experience with dipole polariza-
bi1ities suggests that this smaller value wi11 be the one ap-
propriate to the surface ion; secondly, a multipole expan-
sion of the field is likely to misrepresent the electrostatic
effects of the first shell of neighbors;s and thirdly, over-
lap effects act to reduce the electrostatically induced mo-
ment. The calculations given in Refs. 32 and 33 thus
drastically overestimate the quadrupolar distortion.

The polarizability behaves much as expected from
(x ), (y ), and (z ). At the XTAL level, we find that
the polarizability normal to the surface is smaller than
that parallel to the surface The f.ield which pulls elec-
trons down into the solid has the effect of restricting
motion along the field direction, so that a is reduced
from the bulk XTAL value. The trace of the polarizabili-
ty tensor is, however, larger at the surface than in the
bulk, because of the greater freedom of the electron densi-
ty above the surface plane.

In the full cluster calculation, the surface ion still has a
greater mean polarizability than its bulk counterpart (by

TABLE VI. Properties of the F ion in different environments, obtained from CHF calculations. p
is the dipole moment, e the quadrupole moment (Ref. 39), and Q the second moment of the charge den-
sity. The z axis is the outboard normal from the surface plane. Atomic units are used throughout.

CLUS

—5.328
—5.328
10.654
10.654

Surface

0.1127
0.1153

—5.092
—4.976

7.833
6.997

Bulk

—5.014
—5.014

7.300
7.300

Surface

0.0241
0.0204

—4.780
—4.760

5.741
5.893

—4.716
—4.716

5.40
5.40



33 AS INITIO STUDY OF He-LiF 3729

about 7%), but now the sign of the anisotropy is reversed,
with a &a, presumably because overlap effects in a
counteract the effect of the electrostatic field and the
outer reaches of the charge density above the surface
plane are less restricted than in the bulk.

Both bulk and surface ions have polarizabilities almost
a factor of 2 smaller than the free ion, ' even at the CHF
level. It is known that correlation effects enhance the po-
larizability of the free F ion by at least 40%,' but that
they contribute inuch less for in-crystal ions; for the bulk
(CLUS} F ion in LiF, for example, the correlation con-
tribution is only about 15%.2 The difference between the
true polarizabilities of free and in-crystal (bulk and sur-
face) F ions will thus be even greater than shown in
Table VI.

Overall, the surface F ion is similar in properties to
the bulk ion. It is slightly larger, a few percent more po-
larizable, and is slightly anisotropic. The small per-
manent moments modify the field experienced by an ap-
proaching atom only very slightly, and do not contribute
significantly to the atom-surface induction energy. Be-
cause of its small polarizability and general insensitivity
to the crystalline environment, an Li+ ion on the surface
is expected to be even more similar to a bulk ion than is
the case for F

Cs(A, B)=(15/n ) f [a„(ito)Cg(ia))

+C„(ice)att(iso)]dto, (8)

B. Dispersion coefficients

In addition to the static properties detailed in Table VI,
the frequency-dependent polarizability of the surface F
ion was calculated at 16 imaginary frequencies it0 These.
quantities have already ban calculated for the free F
ion, XTAL and CLUS bulk F ions, and the Li+ ion, 3

using the same basis sets as in the present work. The po-
larizability of He was calculated in the full uncontracted
(10s8p} basis at the same frequencies. All calculations
were at the CHF level, and followed Ref. 37 in detail.

The importance of the quantities a(ice) lies in their re-
lation to dispersion coefficients. The dispersion coeffi-
cient C6 between two species A and B is given by

C6{A,B)=(3/rr) f az(ito)att(ice)dto. (7)

In the present work, a(ice) was calculated at 16 imaginary
frequencies, and the integrals were evaluated using
transformed Gauss-Legendre quadrature as described in
Ref. 38, with a scaling parameter coo 0.2Et„the resu——lts
for C6(He-Li ) and C6(He-F ) in various environments
are given in the "CHF" column of Table VII. Because of
the anisotropy of the surface F ion, there are two in-
dependent components of the corresponding C6(He-F )

coefficient, but these differ by only 0.5%. As expected
from the static polarizabilities, C6(He-F ) is larger for a
surface ion than for one in the bulk, but both values are
very much smaller than for a free F ion.

The second term in the dispersion series, the dipole-
quadrupole coefficient Cs, may also be evaluated from
CHF calculations. It is given by

where the fourth r-ank tensor C is the quadrupole polari-
zability. The dynamic C tensor has been evaluated for
Li+ and in-crystal (bulk CLUS) F ions by Fowler and
Pyper, 3s and yields coefficients Cs(He-Li+)=1.98 a.u.
and Cs(He-F ) =71.7 a.u. ; it may be noted that these are
in quite good agreclnent eath estimates using the approxi-
mate expression of Starkschall and Gordon, ~

&r")g
Cs(A, B)= —,

'
C6(A,B) + i, (9)

which yields 1.96 and 64.8 a.u. for the He-Li+ and He-F
Cs coefficients, respectively, using the CHF values of the
corresponding C6 coefficients.

IU. CONSTRUCTION OF A POTENTIAL MODEL

A. Pairwise summation

When performing scattering calculations, the atom-
surface potential is usually represented as a Fourier series

V(r) = g VG(z)exp(iG R),
G

(10)

where G is a two-dimensional reciprocal-lattice vector in
the surface plane, and R is the projection of r onto the
plane. In the present work, the surface unit cell for LiF is
taken to be a square of side a, with four F ions at the
corners and an Li+ ion at the center. The Li-F nearest-
neighbor distance and the interplanar separation normal
to the surface are thus a/v 2. For pairwise-additive po-
tentials, Steele ' has shown that a summation over a layer
of atoms may be rewritten as an integral over the surface
plane, and that the Fourier components may be written

VG(z) =(21r/A) f V(p, 8)Jo(gt)t dt, (11)

where A =a is the area of the surface unit cell; Jo is the
Bessel function of order 0; g =

~
G ~; and the coordinates

p, 8, and t are as shown in Fig. 3(a). Steele's treatment is
valid provided the pair potential can be written as a func-
tion of p and 8 only.

For inverse power potentials, V(p, 8)= —Cz~ ", Eq.
(11) may be integrated analytically. ' This remains true
even for anisotropic potentials, if the anisotropy is of the
form cos2 8. The general result for V(p, 8)

Czm —2II 2ltl8

—mC2„2m

Voo(z) = (12)
A (n +m —1 )z "

2m 2m2~ Ci.z -g
VG(z) = E„+~ i(gz)

A n+m —I ! 2z

n+m —1

for G&0, {13)

where E„is a modified spherical Bessel function of the
second kind. Thus an anisotropic pair potential yields a
longer-range corrugation than an isotropic potential, but
contributes to the same inverse power term in the
surface-averaged potential. For an anisotropic C6 term of
the type discussed above for the surface layer, it may be
noted that the effective isotropic coefficient [which gives
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TABLE VII. Calculated dispersion coefficients for He-LiF. The SCF coefficients involving F ions
are from CLUS calculations at the CHF level, and the semiempirical values use the model of Ref. 19.
Values within parentheses in the CHF column are obtained by scaling, rather than by direct calculation.
All values are in atomic units.

C6(He, free F )

C6(He, Li+)
Cs(He, Li+)
C,{He, bulk F-)
Cs(He, bulk F-)
C6 (He, surface F )

Cs {He, surface F )

C, {He, surface F-)
Cs(He, surface F )

C3(He, LiF}
C',"(He, I.iF)
I.
C~{He, I.i+)
C~s(He, Li+}
Cq {He, bulk F )

C~s(He, bulk F-)
v(He, surface F, surface F )

v(He, surface F Li+)
v(He, Li+, Li+)
C,2(He, LiF, surface F )

C,2(He, LiF, Li+)

CHF

7.176
0.291
1.98
5.160

71.7
5.350

(74.3)
5.368

(74.6}
0.02428
0.02608
0.9310
(0.271)
(1.84)
(4.804)

(66.8)
21.4
0.93
0.047
0.268
0.0108

Semiempirical

0.295
2.01
5.773

80.2
6.036

83.9
6.151

85.5
0.02675
0.02903
0.9215
0.272
1.85
5.320

73.9
28.2

1.09
0.049
0.384
0.0139

the correct long-range term in Voo(z)] is

C',"=—,'(C~ 2C~).

This is not the usual isotropic average of the C6 tensor,
because the integral (11)emphasizes the contribution from
values of 8 close to zero. Equations (12) and (13) do not
hold exactly when the dispersion forces include damping
corrections, but they remain qualitatively useful.

S. Nanadditivity and dielectric screening

The dispersion forces between an atom and an ionic
solid are not strictly pairwise additive. The fluctuating
dipoles on different ions in the solid interfere with one
another, and this interference modifies the dispersion in-
teraction. This might, in principle, be treated by sum-
ming an n-body series

V(r) = g V~(p )+ g V,
" '(p;,p;; )+

sphere the summation run over all the ions in the solid.
However, in practice, not enough is known about the n

body potentials, and the nonadditive terms are very expen-
sive to evaluate, since they involve multiple summations
over a three-dimensional lattice.

An alternative approach, which is equivalent at long
range, is to treat the solid as a macroscopic polarizable
dielectric. ' For a solid mth a cubic crystal structure, the
dielectric constant is given by the Clausius-Mossotti equa-
tion

e—1 4n.

@+2 3V ~
where the index a runs over the ions in a (three-
dimensional) unit cell of volume V, and a, is an effective
ionic polarizability. The factor e+ 2 in the denominator
arises from the Lorentz correction to the local field, and
takes account of the field at a central ion due to dipolar
polarization of all other ions in the solid. The long-range
atom-surface dispersion coefficient Cs may be expressed
in terms of e(iso) using the Lifshitz formula

T

C3= cE leo . dN .1 ~ . F(i co) 1—
o EEL +1

FIG. 3. Coordinate systems used for atom-surface systems:
{a) for pairwise-additive terms; (b) for surface-mediated disper-
sion forces; {c)for the Axilrod-Teller triple-dipole term.

Thus the Cs coefficient may be evaluated directly from
a(iso) functions for the adatom and for the ions in the
solid. Note that it is the polarizabilities of bulk ions, not
surface ions, which contribute to the Cs coefficient; a
modification of the polarizabilities at the surface can have
important effects on the potential, but it appears as a term
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where

L=C /C' '. (20)

This modification has little effect on the corrugation,
which is almost entirely due to the surface layer.

For the surface layer itself, such an ad hoc scaling of
the many-body forces is both less justified and more
dangerous, and a more-detailed treatment is desirable.
Many-body forces involving the surface layer may be di-
vided into two categories:

(1) Terms in which all the ions involved are in the sur-
face layer.

(2) Terms in which one or more of the ions involved is
in the bulk.

These two contributions may be treated separately The.
nonadditive terms within the surface layer may be approx-
imated by the Axilrod-Teller triple-dipole expression

(3) 1 +3 cospf Gospel cosggg
Vg, (p;,pg, p;; )=v( A, i,i ')

(pipi'pu )' (21)

where the summation now runs over the ions in the sur-

face layer only, the lengths and angles are as shown in

Fig. 3(c), and

v(A, i,i') =(3/m) az(ice)a;(iso)a; (ice)dco .
0

(22)

Nonadditive terms involving ions beneath the surface
layer may conveniently be taken into account using
McLachlan's theory of surface-mediated dispersion forces
between adatoms, treating the surface layer as a layer of
adatoms and taking the "bulk" solid to start at the
second layer. For two atoms A and D above the surface
of a dielectric, McLachlan showed that the leading terms
in the dispersion energy are

V"~(P,8)= —C6(p)-'

+C, i[2—3 cos(28) —3 cos(28')](pp'}

—C,z(p')

of the form C4z and does not contribute to the C&

coefficient. The value of Ci obtained from Eq. (17) is not

the same as that obtained assuming pairvrise additivity,
which is

C',"=(~/6V) g C,(A,a) . (18)

The difference arises because the Clausius-Mossotti equa-
tion implicitly takes account of n-body effo:ts (dielectric
screening effects), which are neglected in the pairwise
SUHl.

The Lorentz local-field correction is strictly valid only
for ions deep inside the crystal. It is difficult to see how
to generalize this approach to ions near the surface. How-

ever, when constructing a pairwise-additive model for the
atom-surface potential, it seetns reasonable to modify the
dispersion coefficients for all iona beneath the surface
layer to reproduce the correct limiting behavior. Thus we
model the screening by writing

Cg„(A,a) =LCz„(A,a), (19)

'2
(24)

C,z(A, BC,D)= —ag(ice) . aii(iso)da) .3 ~ . e(ia)) 1—
e(i ai)+ 1

(25)

The summation of this expression over a complete layer
of surface ions D may be performed analytically using
Steele's method, ' as described in the Appendix. For the
surface-average potential Voo(z}, it turns out that the con-
tribution from the C, i term is identically zero, while the
C,z term contributes an attractive term of the form

—(n /2A )Cgzl(z +2d) (26)

where d is the distance of the surface ions from the image
plane, which may reasonably be taken to be half the inter-
planar separation. The contributions of the nonadditive
terms to the corrugation of the potential are very small,
and have been neglected in the present work.

C. Form of atom-surface potential

The final expression obtained for the atom-surface po-
tential is thus

V( r) = g Vi(pr )+ g VJ' (PJ )+ g ViI~'(pg, p;,p;r )

J l, l

(n/2A)C, 2/—(z+a lv 2) + V" (r) . (27)

The first term in Eq. (27) is a sum over (anisotropic) pair
potentials for the surface layer, performed by integrating
Eq. (11) using Gauss-rational quadrature. For He-LiF,
the anisotropy of the Cs dispersion coefficients has no
significant effect, but this may not be the case for other
systems.

The second term is a sum over isotropic pair potentials
for all ions except the surface layer, again performed using
Steele's method. The calculated C6 dispersion coefficients
for bulk ions are scaled by the factor L, calculated from
Eq. (20) to reproduce the correct limiting long-range
behavior for He-LiF. The repulsion parameters and
damping functions for bulk ions are taken to be the same
as for surface ions, although for He-LiF their contribution
is insignificant. The corrugation contribution from bulk
ions is also negligible, although it was included in the
present pvork.

The third term is a sum of Axilrod-Teller potentials for
pairs of ions in the surface layer. Its surface-averaged
component was evaluated by using Steele's method to sum
over the index i, performing an explicit summation over i'
for a 17X 17 grid around each atom i The sum must .be
performed separately for the cases where i and i' are the
same or different types of ion. The use of Steele's method
for the Wdlrod-Teller term is an approximation, since the
sum over i ' varies slightly with the orientation of p; in the

where the coordinates p, p', 8, and 8' are defined in Fig.
3(b). The coefficients C, i and C, 2 are given by

T

3 ~ . e(Eco) —1
C, i(A, BC,D)= — ag(ice) . ag)(iso)da),

e(in) )+1
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surface plane. However, since the three-body term is
small, this approximation is adequate. The corrugation of
the three-body term was not included, and no attempt was
made to include repulsive three-body forces, higher-order
terms in the three-body dispersion series, or damping of
the many-body dispersion series.

The fourth term, involving the McLachlan C, 2 coeffi-
cient, takes account of the modification of the dispersion
forces involving the surface layer due to the presence of
the bulk. As described above, the corresponding teiui in-
volving C, i vanishes when summed over the surface layer.
The corrugation terms arising from the McLachlan terms
are very small, and were not included.

The final term is the induction energy due to polariza-
tion of the adatom in the field of the lattice. This was
evaluated as described by Steele, ' and its Fourier com-
ponents are

Voo (z) = —aH,
ind 8n'

exp( 4rtz—la ),
A [1+exp( — 2m )]

Vi"i (z)= —,
'

Voo (z) . (29)

The coefficients Cs, C3, v, and C,z needed in Eq. (27)
may all be evaluated from a(i to) functions for the adatom
and for the iona in the solid, using the Clausius-Mossotti
equation for e(ito) where necessary. The results obtained
from the CHF values of a(iso) are listed in the first
column of Table VII. It may be noted that the terms in-
volving F are dominant for all the dispersion coeffi-
cients.

Two approaches to constructing a He-LiF potential
based on the ab initio results may be envisaged. Either the
CHF values may be used as they stand, complete with any
systematic errors, or the physical insight gained from the
ab initio calculations may be employed to estimate the
true values of the parameters, together with reasonable es-
timates of additional parameters such as higher-order
dispersion coefficients Cs, Ciu, etc. Both these ap-
proaches will be followed here, although only the latter
may reasonably be expected to give agreement with exper-
iment; it is nevertheless interesting to see how far a pure
ab i nitio calculation, without correlation, can go in
predicting the atom-surface potential.

It is known that CHF calculations underestimate the
static polarizability of the bulk F ion by about 15%,'

because of the lack of corrdation, and it may be expected
that the dispersion coefficients will be similarly underes-
timated. %'e have recently proposed a sernierapirical
model which allows the dispersion coefficients to be cal-
culated from empirical ionic polarizabilities and rare-gas
effective electron numbers for He-lip, this model yields
C3 —108 meV A . For atom-ion C& coefficients, the
model consists simply of using the Sister-Kirkwood ap-
proximation, with the effective electron number for the
ion taken to be the same as for the isoelectronic rare-gas
atom. The necessary static polarizabilities for surface
ions were obtained by scaling the CHF values by the ratio
required to bring the CHF and empirical values for bulk
ions into agreement. Cs coefficients were obtained from

30-

20

10

-10
3

z(A)

FIG. 4. Contributions to the surface-averaged component of
the SE potential, Voo{z}. The contributions illustrated corre-
spond to the sucamsive terms in Eq. (27}: curve a, pairwise sum
over ions in the surface layer; curve b, pairwise sum over ions
beneath the surface layer; curve c, Axilrod-Teller term summed
over all pairs of ions in the surface layer; curve d, McLachlan
substrate-mediated dispersion term; curve e, induction energy.

C& coefficients assuming that the Cs/C& ratio was un-

changed from the CHF value for bulk ions. The resulting
dispersion coefficients are given in the second column of
Table VII.

In the following discussion, two He-LiF potentials
based on these calculations will be considered, both of the
form of Eq. (27). The first, designated V~", is defined
by the CHF coefficients of Table VII, without any disper-
sion coefficients beyond Cs. The second, designated VsE,

is defined by the semiempirical coefficients of Table VII,
with higher-order dispersion coefficients up to Ci4 de-
fined using the recursion relationships given in Eqs. (7),
(8), and (9) of Ref. 45. For both potentials, the repulsive
parts of the atom-ion potentials are given by the single ex-
ponential fits described in Tables I and II. The CHF po-
tential has a well depth of 6.69 meV with the minimum at
z= 3.05 A, while the SE potential has a well depth of 8.11
meV with the minimum at z=2.98 A. The well depth re-
quired to reproduce the experimental bound-state ener-
gies'6 is approximately 8.7 meV.

The different contributions to the surface-averaged
component Voo(z) of the SE potential are illustrated in
Fig. 4. It may be seen that the potential in the region of
the minimum is quite strongly dominated by the surface-
layer sum; the contributions from the bulk and from the
surface layer three-body term are of similar magnitude
but opposite sign. The contribution from the McLachlan
term is very small, and the induction contribution does
not become important until z ~ 2.5 A.

The Fourier components of the SE potential are com-
pared with those of the potential of Celli, Eichenauer,
Kaufhold, and Toennies' (CEKT potential) in Fig. 5. It
may be seen that the present potential is shifted to smaller
z by about 0.06 A (because of the weaker SCF repulsion)
and that the corrugation terms are significantly softer.
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30
TABLE VIII. Comparison of calcuLated and experimental

bound-state energies for He-LiF. Units of energy are meV.

20

10
3He

'From Ref. 10.
From Ref. 16.

CEKT'

—5.95
—2.46
—0.86
—0.23

—5.59
—1.96

—5.52
—2.15
—0.64
—0.13

—5.18
—1.67

Experimentb

—5.90(6)
—2.46(5)
—0.78(4)
—0.21(2)

—5.59{8)
—2.00(6)

-10

z(A)

30

20

l0

-10

FIG. 5. Fourier components of the Hc-LiF potential: (a) SE
potential (present work); (1) CEKT potential (Ref. 10).

The peak-to-peak corrugation of the SE potential is 0.53
A at zero energy, decreasing to OA6 A at 100 meV; how-
ever, it should be noted that the peak-to-peak corrugation
is quite strongly affected if the surface layers of Li+ and
F ions do not 1ie in the same plane. The we11 depth, by
contrast, is only weakly influenced by such relaxation ef-
ects.

The bound states of the SE potential are compared with
those of the CEKT potential and with the experimental
values of Table VIII. The agreement for the present po-
tential is of course poorer than for CEKT, since Celli
et al. fitted to the bound-state energies and we did not.
However, within the framework of the present model, it is
possible to fit the bound states by making relatively small
changes in the potential parameters, and without intro-
ducing unphysical long-range behavior as for the CEKT
potential. Such a procedure requires detailed close-
coupling calculations and comparisons with experimental
diffractive scattering intensities, and is outside the scope
of the present paper, but will be the subject of future
work.

V. CONCLUSIONS

We have performed calculations of both the repulsive
and the attractive parts of the He-LiF interaction poten-
tial, based on a pairwise-additive model of the interaction.
Repulsion potentials involving ions in a crystalline envi-
ronment were found to be considerably weaker than those
involving free ions, because of the compression effects of
the electrostatic field of the neighboring ions and the ef-
fects of overlap compression. Comparisons with first-
order calculations of repulsion potentials show that the
latter considerably overestimate the repulsion. Despite
the fact that ions at a surface are in an anisotropic envi-
ronment, the repulsion potential between a surface F ion
and a He atom is not significantly anisotropic.

Dipole and quadrupole moments and static polarizabili-
ties of surface F ions have been calculated, and com-
pared with the corresponding properties of bulk and sur-
face ions. The permanent moments of surface ions are
too small to make a significant contribution to induction
energies. Surface ions are a few percent more polarizable
than bulk ions, but both are much less polarizable than
free ions. This again reflects the compression of in-
crystal ions by electrostatic and overlap effects.

Dispersion coefficients between He atoms and in-crystal
(bulk and surface) ions have been calculated from coupled
Hartree-Fock calculations, and show trends similar to
those for static polarizabilities.

We have proposed a model for atom-surface interaction
potentials involving ionic solids, based on pairwise addi-
tivity but including corrections for induction energy,
nonadditive dispersion forces, and dielectric screening ef-
fects. Surface ions are treated differently from bulk iona,
in that the pair potentials for surface ions have different
dispersion coefficients from bulk ions, and may be aniso-
tropic. The CHF values of the dispersion coefficients
neglect intramolecular correlation effects, and are thus ex-
pected to be underestimates of the true coefficients. A
semiempirical scheme was therefore used to estimate the
true coefficients, using static polarizabilities scaled from
the CHF results for ions in different environments. The
resulting He-LiF atom-surface potential has a well depth
of 8.11 meV, compared with an experimental value of ap;
proximately 8.7 meV.

There are various ways in which the present potential
can be modified to bring the well depth into agreement
with experiment. The calculated dispersion coefficients
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may be in error by up to 10%, and such variations yield
well depths which easily encompass the experimental
value. There are also uncertainties in the form of the
three-body potentials, and in the most appropriate way to
damp the dispersion forces in atom-surface problems.
The question of nonadditivity of the repulsive forces is
also important, and has not yet been investigated. Future
work will attempt to fit an interaction potential to
molecular-beam scattering data for He-LiF, while still
conforming to the theoretical constraints imposed by the
present ca1culations.¹teadded. A FoRTRAN subroutine for evaluating the
potentials proposed in the present paper is available on re-
quest from J.M.H. It performs the necessary summations,
and returns the Fourier components of the atom-surface
potential.
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Substituting for p, p', 8, and 8' in terms of z and t yields

VM, i(z)=(2n/A) f VM,L(p, 8)tdt . (A3)

As may be verified by differentiation, the indefinite in-
tegral of this is

C, i t 4t'+ [zz+ (z +2d)2]tz —2z2(z+ 2d)i j
VM.i.(p 8)=

3 I(t'+z') [t'+(z+2d)'] j
'~'
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Steele's treatment ' now allows the summation over the
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surface-averaged potential, the integral of Eq. (11} be-
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APPENDIX: SUMMATION
OF THE McLACHLAN POTENTIAL

OVER A LAYER OP SURFACE ATOMS

For the geometry shown in Fig. 3(b), McLachlan i gave
an expression for the surface-mediated dispersion interac-

4

2 —3 cos(28) —3 cos(28') Csz
Mi p 1

6(PP P

(Al)

VM, i (z) = —(ir/2A)C, 2/(z+2d) (A5)

Klein et al. have obtained the same result, but gave a
rather different derivation.

The first term may be seen to vanish at both t=0 and
t =oo, and so makes no contribution to the surface-
averaged potential. The second term makes a small at-
tractive contribution given by
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