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Edge rnagnetoplasmons in a two-dimensional electron fluid confined to a half-plane
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The magnetoplasma modes of a two-dimensional electron fluid in a half-plane are studied with a
hydrodynamic model. For general screening by parallel grounded planes, the dynamical equations
are reduced to a single integral equation, whose smallest positive or negative eigenvalues correspond
to anomalous edge modes. Numerical solutions are obtained by expanding in a complete set of
Laguerre polynomials.

I. INTRODUCTION

A bounded two-dimensional (2D) electron fluid can
support not only bulk magnetoplasma modes but also an
additional edge or perimeter mode. ' This new and
unanticipated mode is the analog of a surface magneto-
plasmon in a 3D system; it propagates along the boundary
of the system and is localized there, with an amplitude
that decreases rapidly toward the interior.

Theoretical models of this phenomenon have relied on
two geometries: a semi-infinite half-plane2' ' and a finite
disk. ' The former is somewhat simpler conceptually,
since there is no intrinsic length scale apart from the
wavelength of the mode in question. In connection with
electrons on the surface of liquid He, however, the disk
provides a more realistic description, because experiments
rely on electrodes to create a bounded 2D electron fluid.
For both models, the detailed structure of the modes de-

pends significantly on the presence of additional grounded
planes that screen the electrostatic fields.

Previous work on the half-plane has invoked a con-
venient approximation that replaces the problem by one
that is exactly soluble. ' ' This approach is not wholly
satisfactory, however, for it is difficult to estimate its ac-
curacy. As an alternative, in Sec. II of this paper I carry
out an exact reduction of the coupled equations for mag-
netoplasma modes in a half-plane to a single integral
eigenvalue equation for the induced electron density. An
expansion in a complete set of Laguerre polynomials
yields an equivalent matrix problem (Sec. III) and numeri-

cal methods (Sec. IV) then permit a study of the conver-

gence as more and more terms are retained. In Sec. V I
consider a different geometry, in which the dielectric con-
stant has a lateral discontinuity at the edge of the half-

plane.

II. BASIC FORMULATION

The basic system of interest is a 20 electron fluid con-
fined to a semi-infinite half-plane (x &0, z =0) and neu-
tralized by a rigid uniform positive background with areal
charge density eno. In the undamped linearized hydro-
dynamic approximation, the 2D velocity v of the electron
fiuid and the perturbation n in the electron density have a
harmonic time dependence e ' '. These coupled ampli-

l conoe CO~

0'xx =0'yy =
g p ~ &xy = —0'yx = . &xx

ni (to —toe )

In this way, Eq. (2) can be rewritten as

PtlSj=—oV 4—
noe

n (3b)

A combination of Eqs. (1) and (3) then yields a single
dynamical equation relating the induced electron density
n and the potential 4,

'I

icemen =o~Vz 4— n +j„PM
(4)

noe
5(x),

where V2 is the 2D Laplacian and the last term (propor-
tional to the delta function) arises from the step function
implicit in the conductivity tensor.

The presence of this singular tnm means that the elec-
tron density contains an "edge" contribution confined to
the boundary of the half-plane and proportional to the
component of the current fiowing into the boundary, as is
consistent with the equation of continuity. For the
present analysis, it is convenient to make this contribution
explicit, writing the full 2D density as bulk term n plus an
"edge" term '5n( ). xIn this approach, Eq. (4) separates
into two parts, a bulk relation (valid for x & 0}

(to' to', )en =noe'm —'Vz[@—ms'(noe) 'n], -(5a}

and a boundary condition

tudes satisfy the equation of continuity and the Euler
equation

icon—+noV v=o,
itov—+s no 'Vn —em 'V4 —to, 'Rxv=0,

where 4 is the electrostatic potential at the plane of the
charge, to, =eBltnc is the cyclotron frequency for motion
in the applied static magnetic field, s is an effective wave

speed that allows for dispersion in the propagating wave,
and the gradient operators involve only the x and y com-
ponents.

For many purposes it is convenient5 to introduce the
2D surface current j= noev—and the 2D conductivity
tensor tT of the electron fluid
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E(x)=(2n) ' f dke' EC(k), (8a)

(51}

that relates the edge charge density to the boundary value
and slope of the potential and bulk charge density as
x~0

These equations describe how the electrostatic fields act
on the electrons, and Maxwell's equations then character-
ize the electrons as the self-consistent source of the fields.
Specifically, I assume that the electrons are located on the
surface of liquid He with dielectric constant e, and that
two infinite grounded planes are located symmetrically a
distance Ii above and below the x-y plane in the vacuum
and in the helium. Translational invariance along the
boundary of the half-plane allows a traveling-wave solu-
tion of the form e~, where q (which can be positive or
negative according to the direction of the wave) is speci-
Ged externally. It is convenient to measure all distances
in units of

~ q ~

', and all wave vectors in units of
~ q ~

.
In the nonretarded (electrostatic) limit, it is not difficult
to show that the potential 4(x) at the surface of the He is
determined by a nonlocal integral relation involving the
total induced charge. ' I introduce the quantities N(x)
and N' with the dimension of a potential,

4qre tanh(qh}
( )

q(1+a)
4qre tanh(qh)

1+6
The corresponding integral relation then assumes the sim-
ple form

0
4(x)+ f dx'E{x x')N(x')+—l{.(x)N'=0 . (7)

Here, the variables k and x are dimensionless, and the di-
mensionless kernel K is given as a Fourier transform,

c =c sgaq (10b)

will eliminate the need for absolute-value signs.
Equations (7) and (9) constitute a pair of coupled equa-

tions for the potential 4(x) and the density N (x) valid for
any value of the screening parameter qh. These two func-
tions have different domains, however, for N(x) is re-
stricted to x ~0, whereas the potential extends over the
whole x axis. It is clear that 4 is continuous, but the
presence of the edge contribution N' implies a corre-
sponding discontinuity in d4/dx at x =0.

Before proceeding, it is useful to consider the form of
these equations for weak and strong screening. In the
limit qh ~&1, the grounded planes are unimportant, and
the plasma frequency reduces to the familiar expressionq

2

Qq ——z 4rrn0e q
(1 la)

m (1+@}
Correspondingly, the integral kernel in Eq. (8) homes
essentially the Bessel function Eo. In this case, the ap-
proximation of replacing this exact kernel by another one
with the same area and second moment ' '5" has been
shown, in the nondispersive limit (s~0), to yield an ap-
proximate expression for the edge magnetoplasma modes
as the roots of the quadratic equation'2

3' —2~2')Q, —2Qq ——0 . (1 lb)

The present numerical work provides a basis for assessing
the accuracy of this prediction.

In the opposite limit (qh-+0), the screening planes
predominate. The bulk plasma frequency reduces to a
linear dispersion relations

with the propagation speed

(12a)

Here Qq is the zero-field plasma frequency associated
with a traveling wave e"+' " in an unbounded 2D elec-
tron fluid, '

4qrnoe q tanh(qfi)0 =
m (1+@)

and the additional variable

(8b)
cz [4qrnoe h——/m (I+a)]'~i . (12b)

Gf —1 (Qq@ sq N) = (co —Q, }N, —(9a)

along with the boundary condition

+ (Q 4—s q N) +(coi Q, )N'=0. —
GX CO

Evidently, E(x) is real and even. Since a half-plane has
no intrinsic geometric scale (unlike the finite disk}, the
single dimensionless parameter qh completely character-
izes the screening by the grounded planes.

In terms of the same dimensionless variables, Eq. (5a)
reduces to an ordinary differential equation,

The kernel in Eq. (7}becomes a delta function, so that the
fully screened problem is local, with 4(x)= N(x)—
—N'5( ).xComparison with the general equation (4}
shows that the edge charge density must vanish in this
fully screened limit; otherwise higher derivatives of the
delta function would be present. My numerical studies
{Sec. IV) confirm the conclusion that N'~0 as qh —+0.
Note that the fully screened hmit is singular, in the sense
that the potential now vanishes for x &0 {in contrast to
its continuous behavior for any nonzero value of qh).
Nevertheless, the limit allows for an interesting and ana-
lytic solution for all the magnetoplasma modes, including
the effect of the background compressibility of the medi-
um (the dispersive corrections of Ref. 8).

To verify this remark, observe that the "density" N
now satisfies the ordinary differential equation
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2
—1 6(x,x')= —5(x —x') (15a}

on the interval —(20 &x,x'&0, and the homogeneous
boundary condition

0,+ 6(x x') (15b)

It is straightforward to see that the proper solution
(bounded for x~—cc ) has the form

6(x,x') = c
y(x,x '}+g(x,x '),

co+c
where the two auxiliary functions are given by

y(x,x') = —,
' e +',

g(x,x'}=—,
'e- ~"-'~ .

(17a)

Use of Green's theorem in one dimension reduces Eq. (9}
to an integral equation (valid for x &0),

Q&4(x) sq N(x)+(co Q—, ) f dx'6(x, x—')N(x')

=6(x,O) + (Q 4 s2q N)—
dx 63

Elimination of the function 4 from Eq. (7) yields a single

d2N Cq +Q co
N, 3

dx Cq
where the effective wave speed is given by
C=(c~+s )'~. Two different types of solutions can
satisfy the boundary condition in Eq. (9b} with N'=0.
One is the edge mode, exponentially attenuated away from
the boundary, with the explicit form N(x)=N(0}e~.
The physical solution with positive A, ( =

~
Q,

~
/C in di-

mensional units) has the field ind-ependent frequency
co= —Cq. As noted in Ref. 3, the characteristic length

' varies inversely with the magnetic field and diverges
in the zero-field limit. Thus there is no zero-field edge
plasmon in the fully screened limit (qh ~0), and the lo-
calization arises solely from the presence of the field. As
indicated below, the situation appears to be different for
finite qh, because the numerical solution (at least for
selected values of qh }yields a zero-field edge mode with a
frequency whose absolute value lies below the bulk value

Qz. In addition, Eq. (13) has wavelike solutions
representing bulk magnetoplasmons with spatial depen-
dence e~' that are incident obliquely on the boundary
and reflected

secularly
with amplitude (i k +Q, c/o)

)& (ik —Q, /ai) . In dimensional units, the correspond-
ing frequency has the expected form'

a)2=C (k +qi)+Q, , (14)

with the squared magnetoplasmon frequency increasing
linearly with the squared cyclotron frequency.

To proceed with the exact solution for general values of
the screeriing pariuneter qh, it is convenient to incorporate
the bound22ry condition (9b} explicitly with a Green's
function 6 (x,x'} that satisfies the differential equation

(still exact) integral equation for the induced electron den-
sity including both the bulk term N and the edge contri-
bution N',

(co —Q, ) f dx'6(x, x')N(x')

—Qq xj:xx x —sqXx
+[(d(P—Q, )G(x,O)]—Q&K(x,O)]N'=0 . (19)

Solutions exist only for certain allowed frequencies, so
that this constitutes an eigenvalue problem. Once N(x}
and N' have been found, substitution back into Eq. (7), in

principle, provides the corresponding potential for all x.

III. MATRIX EiGENVALUE PROBLEM

An integral eigenvalue problem can be attacked in
several different ways, and here it seems simplest to ex-
pand the unknown function N(x) in a complete set of
orthonormal polynomials. Since the allowed domain is

[—(2o, O], it is natural to choose a set orthogonal on that
interval, and the appearance of exponentials in Eq. (17)
suggests the I.aguerre polynomials. ' With the conven-
tional definitions, the appropriate expansion turns out to

N(x) = g cJe'I.i( —2x},
j=O

(20}

where I c& I is a set of coefficients to be determined by sub-
stitution into Eq. (19). These polynomials satisfy the
orthogonality relations

xe L; —2x Lj —2x = —,
' (21)

and standard manipulations lead to an equivalent matrix
eigenvalue problem for the coefficients c& and the con-
stant N',

1

$00 8

whereas g,j is symmetric and tridiagonal,

(24)

g [(ro' —Q,')G,i —Q~Ki ——,
' s'q'5i ]c;

j=0

+ [(L0'—Q, )6; Q~~K, )N' =—0 . (22)

Here, 6; is a real syminetric matrix evaluated with the
Green's unction from Eq. (16),

Ge= f dx e*f dy e"L;( 2x)G(x,y)L, ( —2y), —

(23a)

with a similar definition for the matrix elements of the
kernel K(i. In addition, the vector 6; is defined by

0
G;= f dxe*L;( —2x)G(x,o), (23b)

and similarly for E;.
The evaluation of the integrals involving 6 follows

directly from Eqs. (16), (17), and the recursion relations
for I.aguerre polynomials. ' In particular, it is simplest to
consider separately the two functions in Eq. (17). The
matrix y,z has only the single nonzero element



3720 ALEXANDER L. FEa a P.R 33

1 1

gii 4 ~ gi, t'+], gi + l, i I (25}

Furthermore, the vector G, vanishes except for the single
element

Go= &~(~+Q, ) '. (26)

To treat the matrix E&J, the Fourier representation in
Eq. (8a) allows an explicit evaluation of the spatial in-

tegrals leaving only a single one-dimensional integral,

1
i

KJ +i —— dkE(k)(1+ik)' '(1 ik—)JJ+

K(tan8) =cos8 coth(qh) tanh(qh jcas8) . (28b)

This integral can be evaluated analytically for the two
limiting cases of large and small qh:

—[n(21+1)(21—1)] ' as qh~ao, (29a)

—,'5IO as qh~O. (29b)

A similar calculation shows that

( 1 9 d8g( 8) cos[(21 + 1 )8]
o cos8

(30)

with the limiting values [ir(2j+1)] ' and —, for large and
small qh, respectively. For intermediate values of qh, nu-
merical evaluation of K~ is straightforward, and simple
recursion relations then yield the corresponding matrix

Inspection of Eqs. (16) and (22) shows that the frequen-

cy appears in the combinations (ai2 —Q, ) and (r0 —Q, )2.

This unusual linear and quadratic frequency dependence
in finite magnetic fields means that neither c0 nor a&2 can
be considered the eigenvalue. Fortunately, the following
procedure recasts the equations in the conventional
form. " I.et c denote the column vector of unknown coef-
ficients (including N'). Equation (22) then has the form
(aPP —r0Q —R)c=0, where P, Q, and R are real but
asymmetric matrices. Define the additional column vec-
tor d=(coP —Q)c. It is easy to see that these quantities
lead to a conventional eigenvalue problem in a space with
twice the original dimensions. Specifically, let v be a vec-
tor with elements d and c; simple manipulations then
yield an equation of the form

(31)

@&here A and 8 are block matrices:

0 8,
A=

1 Q, 8= 0
0
p (32)

Neither A nor 8 is symmetric, which refiects the non-
self-adjoint character of the problem in finite magnetic

(27)

The substitutian k =tan8 then yields the final form

( 1)~ e/2
E~ J+~ —— j:tan cos 2, 28a

m'

where

field. Nevertheless, Eq. (31) is a generalized eigenvalue
problem and can be solved by standard methods for vari-

ous finite-dimensional truncations.

IV. NUMEMCAL RESULTS

(33}

The top curve of Fig. 1(b) (labeled 00) displays the field
dependence of this quantity for the unscreened negative-
frequency edge mode. For small fields, most of the

To investigate the convergence of the solution as the
number of ted~is increares, the special and interesting case
of an unscreened half-plane (qh ~ 00) was studied in de-
tail. If the series in Eq. (20) is truncated after p —1

terms, the corresponding matrix equation (31}has dimen-
sion 2p)&2p, with 2p eigenvalues. Since the problem is
not Hermitian, there is no guarantee that these are all real,
although this turns out to be true in all cases considered.
If the magnetic field is zero, the eigenvalues appear in
equa& and opposite pairs. As the field increases from zero
(Q, pO), all the eigenvalues increase in absolute value,
apart from the negative eigenvalue closest to zero, whose
absolute value instead decreases toward zero. This single
mode is identified as the anomalous edge mode af the un-

screened semi-infinite half-plane.
For p=6, 12, and 24 terms, the zero-field ratios

~
ai

~
/Q~ for the pair of modes with frequency closest to

zero have the values 0.9003, 0.9032, and 0.9048, respec-
tively, indicating good convergence with an increasing
number of terms. Since this value is definitely less than
one, the corresponding normal mode is localized near the
boundary, and the characteristic decay length is of order
one in these dimensionless units (and hence comparable to
the wavelength of the traveling wave along the boundary).
With increasing magnetic field, the mode with negative
frequency becomes more localized, so that the series (20}
will require more terms to pravide an accurate descrip-
tion. Thus, for fixed small value of p, the solution even-

tually should warsen as the field increases. In practice,
however, this effect was unimportant for the fields con-
sidered here (Q, lQ& &5.0), and the remaining calcula-
tions were performed with p =12. Figure 1(a) shows the
field dependence of the frequency for these two modes,
which are degenerate in zero field (the lower curves are la-
beled by the value of the parameter qh, but the upper
curves are essentially independent of the screening param-
eter, except for very low fields). For comparison, the pre-
vious approximate quadratic relation [Eq. (11b)] is also
shown (dashed). Its zera-field value of ( —', )'~2=0.816 is

significantly lower than that found here, but it does pro-
vide a good qualitative fit to the overall magnetic field
dependence.

It is interesting to consider how much of the oscillating
charge in this localized edge mode is at the boundary of
the half-plane. The spatial integral of the total electron
density involves both the bulk and edge contributions
n (x) and n', and it is not difficult to show that the por-
tion f, of the total charge associated with the edge singu-
larity is given by

—1

f, =N' g( —1)lc +N'
J
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pares the frequency of the associated lowest normal
modes with those for complete scraming (qh =0) and the
previous unscreened case ( qh ~ ao ). The positive-
frequency mode is scarcely affected by the screening,
apart from a small shift in the zero-field value. In con-
trast, increased screening reduces the field dependence of
the negative-frequency mode; as noted below Eq. (13), the
ratio

~

co
~
/Qs has the constant (field-independent) value 1

in the limit of perfect screening (qh =0), and the present
numerical study confirms this behavior. It is evident in
Fig. 1(b) that the portion f, of charge associated with the
boundary singularity in the localized edge mode also de-
creases with increased screening and vanishes entirely for
perfect screening (qh =0).

In Ref. 4 the approximate quadratic formula in Eq.
(1 lb) was extended to include screening. Comparison of
that formula with the numerical results in Fig. 1(a) shows
that the negative root [Eq. (43b} of Ref. 4] continues to
provide a qualitative fit to the field dependence of the
anomalous edge mode. In contrast, the positive root of
the approximate formula [Eq. (43a) of Ref. 4] implies
much more variation with the scraping parameter qh

than found here, especially at large fields. Thus that ap-
proximation fails to predict the correct field dependence
of the positive-frequency modes, although it does reason-

ably well for the zero-field values. Similar behavior has
becm found for the case of edge modes in a superlattice. s'7

FIG. 1. (a) Numerical solution for the frequency of the
smallest positive and negative magnetoplasmon modes in a
half-plane. The lower solid curves describe the edge modes
(with negative frequencies) for different values of the screening
parameter qh. The upper solid curves describe the correspond-
ing positive-frequency modes, which are virtually independent
of the parameter qh. The dashed lines represent the previous
approximation [Eq. (111)]from Refs. 2 and 4 for an unscreened
half-plane (qh~oo). (b) The portion of the total oscillating
charge associated with the edge singularity at x =0 [Eq. (33)].
The upper four curves (labeled with the screening parameter qh)
refer to the edge mode with negative frequency, and the lower
curve refers to the positive-frequency mode for qh ~ ao (the cor-
responding curves for other values of qh are essentially identi-
cal).

charge is in the bulk, but the edge contribution becomes
progressively more important with increasing field. This
result is consistent with the picture that the magnetic field
tends to localize the mode at the boundary. In contrast,
the positive-frequency mode [the bottom curve in Fig.
l(b}] has only a very small edge component, which be-
comes negative (out of phase) and indeptmdent of field for
0, &Qq.

To clarify the role of the edge charge, an additional cal-
culation was performed with n'=0. As seen in Eq. (5b),
this is equivalent to the simpler boundary condition
j ~

=0. The resulting values of
~

co
~
/Qs for the local-

ized edge mode increased slightly, but the dependence on
the external field was very similar to that in Fig. 1(a).

Again with p =12, the matrix E;~ was evaluated nu-
merically for qh =0.5 and O. l„which represent intermedi-
ate values of the screemng parameter. Figure l(a) com-

V. EDGE NODES FOR OTHER GEOMETRIES

In connection with semiconductor superlattices, ' it is
also interesting to consider a different geometrical config-
uration consisting of distinct dielectrics for x &0 and
x &0 with no grounded planes; this arrangement has
translational invariance along s but not x, in contrast to
the preceding case of different dielectrics above and below
the plane z=0 with horizontal grounded planes (and
hence translational invariance along x but not z). The
charge associated with the electron fiuid in the half-plane
is now to be considered "free" charge, and the usual
methods of electrostatic boundary-value problems apply.
Fortunately, the present case is readily treated with the
method of images, and the formulation developed in Sec.
II remains valid with only minor modifications.

Consider two semi-infinite dielectrics, with dielectric
constants ei for x &0 and ez for x &0.' If a point
charge Q is located to the left of the origin, the potential
in the right-hand region is that of a charge Q"
=2ei(@i+@2) 'Q embedded at the same position in an in-
finite medium with dielectric constant ei. Similarly, the
potential in the left-hand region is that of the original
charge Q plus that of an image charge,

Q'=(e'x —e'i)(ei+~2) 'Q,

in an infinite medium with dielectric constant ei. More
generally, in the present case of an electron fluid conflned
to the half-plane x &0 and z =0, the principle of super-
position then yields the solution by direct integration over
the charge density. In practice, it is simplest to use the
three-dimensional Fourier representation of the Coulomb
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potential, and it is necessary to introduce two different

functions to describe the resulting potential in the right
and left half-spaces. For a system containing only a sin-

gle semi-infinite layer, the free-charge density is given by

pf = —e [n (x)8( —x)+n'5(x)]e i)'5(z), (34)

and a straightforward integration shows that the potentjai
for positive x has the form

e~e
'

d» ~k(. -x') exp[ —
I
z

I
(k +q ) ] [ (,) «5(

E) +E2 —oo —oo (k 2+q 2)1/2
(35)

In contrast, the potential 4» for negative x contains two
terms because of the direct and image charges mentioned
above. This latter potential is of more direct interest,
since it provides the self-consistent electrostatic force in

Eq. (2).
It is again convenient to use

l q l

in defining the same
dimensionless units for distance and wave number, and to
introduce the quantities [compare Eq. (6) with qh ~ ao ] X cos[(j —l)28]+

E2 —E(

E'2+ Ei

dielectric constant ez. The only substantial changes are in
the matrix elements of the kernel„and Eqs. (28a) and (30)
become

( 1))+i s'/2
E tan

N(x)= n(x), N'= n' . (36)
Xcos[(j+l + 1)28]

With these definitions, the integral relation corresponding
to Eq. (7) has the form

0
(p~'»(x)+ f dx'K~'»(x, x')N(»')

+E~' «(x,0)N' =0, (37)

where the superscript » or ~ refers to the sign of the
coordinate x. The only new feature is the detailed form
of the kernel; it can still be written in the form of a
Fourier integral, but the loss of translational invariance in
the x direction means that it depends separately on x and

2ez f ik(x —x')g(k)
E)+E2 oo 2%

I(. «(x x') = e"'dk
27K

Eg —E) eik(x+x') g(k)
E2+ E)

(38b)

Here, for a single layer, the function E(k) is given by
[compare Eq. (8) for qh ~Do ]

(39)

Because of the image charge, I(: «contains a term involv-

ing the sum variable x +x'.
The remaining analysis is essentially the same as in

Secs. II and III, with E~ appearing throughout. In addi-
tion, Eq. (11a) is replaced by

2 2mn0e qQ2 (40)

This quantity now characterizes the bulk 2D plasmons of
a single layer in an infinite homogeneous medium with

(4 la)

( —18 f /'d8g cos[(2j+1)8]
e I +e2 ir 0 cos8

(41b)

where K(tan8)=cos8 for the case of a single layer. As
noted in Sec. III, these integrals can be evaluated analyti-
cally.

To investigate the effect of the altered dielectric con-
stants, the frequency of the smallest positive and negative
modes was determined numerically for the reahstic case '

e2 ——13.6 and ei ——1. Using p =12, I found the zero-field
ratio

l
c0

l jQ& ——0.998, with the corresponding value

f, =—0.011 for the portion of charge in the edge singu-
larity. As the field increased, the frequency of the posi-
tive mode was virtually indistinguishable from that in Fig.
1(a), and the associated f, remained small and negative,
attaining the constant value —0.038. In contrast, the field
dependence of the negative-frequency edge mode was very
similar to that labeled 0.5 in Figs. 1(a) and 1(b). Thus the
presence of a large contrast in dielectric constants inhibits
the formation of the edge mode but does not suppress it
entirely. These conclusions confirm an independent cal-
culation of Wu et al. '

One additional extension of this model is the case of a
superlattice of semi-infinite planes spaced a distance a
apart along the z axis. The presence of the neighboring
charged planes produces a band of magnetoplasmons as-
sociated with different wave numbers q, perpendicular to
the planes. ' ' It is convenient to introduce the function

S(u, U) =(sinhu)(coshu —cosu)

that characterizes the screening. The quantities in Eqs.
(36) and (40) acquire an extra factor S(qa, q,a), and the
Fourier kernel in Eq. (39) is multiplied by
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S(qa (k +1)'~,q,a)IS(qa, q,a) .

Detailed study of this system requires considerable com-
putation because the matrix elements in Eq. (41) must
now be evaluated numerically. Since several specific ex-
amples have been considered in Refs. 5 and 7, this prob-
lem mll not be treated here.

The present approach of using a complete set of poly-
nomials to represent the unknown induced electron densi-

ty in a half-plane appears to be efficient, especially be-
cause the resulting eigenvalue problem can be solved with
standard numerical techniques. This relative simplicity
should be contrasted with the (in principle) analytic solu-
tion based on the Wiener-Hopf technique, " which re-

quires a displacement kernel (dtyending only on x —x'),

and presumably involves a formidable numerical analysis
to obtain an explicit solution for the field and screening
dependence of the anomalous edge mode. The same pro-
cedure of expanding in a suitable set of polynomials also
has proved effective for studying the magnetoplasmons of
a 2D electron fluid confined to a disk on the surface of
liquid He (Ref. 6), and it is likely to apply to other related
problems.
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