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Hydrodynamic-model calculation of second-harxrionic generation at a metal surface
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Using a hydrodynamic model of collective electronic motion we calculate the efficiency of
second-harmonic generation in a simple reflection geometry. The model applies to a smooth, jellium
metal surface, which is treated as having a sequence of steps in the equilibrium electron-density pro-
file. We derive both the equations of motion and additional boundary conditions necessary for our
approach. The final formulas are numerically evaluated for various values of the system's parame-
ters. The results show considerable variation vrith frequency, especially ~hen multipole modes are
present in the linear response. We demonstrate that the general results can be usefully paramet-
rized in terms of bulk optical properties and a pair of complex, frequency-dependent parameters
that summarize the response at the surface.

I. INTRODUCTION

In recent years considerable theoretical work has been
devoted to the linear electrodynamic response of a jellium
surface. ' One has developed a good qualitative under-
standing of the local-field effects due to the vacuum-metal
interface, and detailed calculations have been performed.
Our effort in this paper is directed towards extending this
understanding to nonlinear response, specifically to the
problem of second-harmonic generation in a reflection
geometry.

Although such second-harmonic generation has been
observed for over 20 years, 7' its microscopic description
has remained at a rather qualitative level —see the histori-
cal review in Ref. 9. Rudnick and Stern' "were the first
to point out the need for a more careful analysis of the
surface excitation mechanisms. They parametrized such
effects in terms of two frequency-dependent numbers, a
and b, which they estimated to be of order unity. In 1980
Sipe et al. ' formulated a hydrodynamic theory of the
generation process. Although they did not solve their
equations in detail, they did confirm the estimates of
Rudnick and Stern of the a and b parameters. In particu-
lar they showed that b = —1 well below the bulk plasma
frequency gaia, and suggested that there might be reso-
nance structure in a near ~z.

We have generalized their basic equations in order to
account for ohmic damping and here present a numerical
solution for the second-harmonic generation efficiency
over a wide range of incident frequencies and angles. A
brief derivation is given in Sec. II, which estabhshes our
notation and motivates the additional boundary condi-
tions (ABC' s) necessary to calculate a solution. We also
show hoer the a and b parameters may be defined and ex-
tracted from our model. Then in Sec. III we present our
numerical results, changing various parameters in order to
illustrate their qualitative influence. The results do con-
firm the theoretical suggestions of Sipe et al. '

No comparison with experiment is attempted because
our model is probably too crude and arbitrary for such an

effort to be meaningful. The model treats only the non-
linear response of free electrons at a smooth surface and
further approximates this by hydrodynamic equations. In
its favor it should be noted that the model has been suc-
cessful in linear response problems, ' ' yielding the
same qualitative results as more sophisticated treatments
but requiring much less computation. For the nonlinear
response, its use here allows the first detailed microscopic
treatment of the surface influence on both the induced po-
larization and the resulting radiation.

II. DERIVATION

The hydrodynamic model is based on a postulated
equation of motion for the velocity field v(r, t) of free
electrons. %'e use here

Bv e 1 l 1+(v V)v= —E+—vXB — Vp ——v,
Bf Pl Pl lf 7

where E and B are electric and magnetic fields, respec-
tively, and p is the pressure, which is assumed to depend
only on the electron density n The ch.arge and mass of
each electron are e & 0 and rn, and c is the speed of light.
Equation (1) differs from that used by Sipe et al. '

by
having a term for ohmic damping, parametrized by the
constant scattering rate I /r As they do, .we assume that
the relation between pressure and density is of the form

p(r, t) =g[n (r, r)]'~',

with g constant. The value of g is discussed in Sec. III,
but, like that of 1/r, is irrelevant here.

To determine nonlinear effects, all the variables in (1)
are expanded in a series of orders:

A =Ao+Al+A2+ . . -

with A =v, E, B, or n, and a sequence of equations of
fixed order are generated. Since the Ao terms are equili-
brium values, we assume that both vo and $0 are zero.
Then the expansion yields up through second order
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Next, define a plasma frequency oio and a velocity pa-
rameter Pp by

4$Fll oeo=

o= no m .

—V —,'(vi) +
no

r

7l2 ——
6no

8 1 e 1—+—v2 ———E2+ —viXBi +viX(VXvi)
Bt ~ m c

(10)

Further, introduce the electronic charge density p=eli and
current density j=eliv, which together satisfy order by
order an equation of continuity. The formal solution of
(4a) may then be written as

4m p

2 Vpo
klo

which we use to eliminate Eo from the higher-order equa-
tions. For instance, Eq. (4b) becomes

We again imagine that Ep has been chosen so n p is a se-
quence of steps and require that the other electromagnetic
fields and the normal component of ji be continuous
across each interface. To extract a further ABC from
(10), we use (8) to examine V Xvi.

8 1 Plo Po—+—VXvi ——VX Ei —V ni
Br 'r 41' p ll o

e e=—VXEi=-
m mc dt

a 1 . ~o Po+ ji = Ei —iioV Pi
a~

Now imagine that one has externally manipulated Eo so
that no is a sequence of steps parallel to the surface.
Within each step no is constant and (8) becomes simply

8 1 . o 2—+—ji = Ei —PoVpi .
a~

Across the interface between steps, where np is discon-
tinuous, we impose continuity of the normal component
of ji and of all the first-order electromagnetic fields. If
we further wish that Eq. (8) remain nonsin ular across the
interface, these constraints require that oil i/no be con-
tinuo. is. These assumed continuity conditions provide the
ABC's for the first-order quantities. As discussed else-
where, ' ip the choice of ABC' s, like the form of Eq. (1),
represents an ansatz. Our choice here is the usual one for
electronic problems, but it is not the only possibility. Fur-
ther, our simplification of the equilibrium density profile,
while not absolutely necessary, ' greatly aids the solu-
tion of the model and avoids some of the intrinsic fiaws of
the hydrodynamic approach. ' '

Turning now to the second-order Eq. (4c), we eliminate
both Ep and El to find

Thus, if we assume that vi, vq, E2, and Bi are nonsingu-
lar through an interface, the whole Eq. (10) will be non-
singular if we impose continuity of

2
vo 1 ~i

—,(vi) + n2
6 no1lo

Hence we adopt this constraint, plus that on normal j2, as
our second-order ABC' s.

We remark that the same ABC's can be obtained from
an examination of Poynting's theorem. ' ' Setting
Ep=0, one finds that the energy current through third-
order can be written as

G= [E,XB,+(E,XB,+B,XE,)]

4lrP(). . . , . Pl+ q Pi3i+ Pi32+Pz3& —
6 jr

Q)p po

+ gji (12)

The continuity of the normal component of G is possible
if one imposes the boundary conditions outlined above.
Thus, our choice of ABC's insures that each interface is
neither a sink nor a source of energy as well as not a site
of singular fields (except for Ep) or charge accumulations.
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I.et us now summarize the particular hydrodynamic
model developed here. We need the simultaneous solution
of Maxwell's equations and the equation of motion of the
electrons. Away from the interfaces of our stepped-
density model, (7) is trivial, (8) is replaced by (9), and (10)
may be rewritten as

a 1. ~o2—+—j2—— E2—p()Vp2+ S,
i3t v 4m

(13)

where

2
cooS= (3i XBi)——(3i V)3i

4mpoc po

2
pi o 5~ 1.+ Ei —TpoVP i 3i-
po 2'' 7'

(14)

The driving terms of the second-haimonic signal, Eq. (14),
are consistent with those found by Sipe et al. ,

'2 if one
notes that here no is constant and I/~ nonzero. In addi-
tion to (9) and (13) in the homogeneous regions, we have
across each interface the usual Fresnel boundary condi-
tions and the ABC' s. The problem to be solved has a
plane electromagnetic wave of 3~-polarization incident
from vacuum on the jellium, which lies in x)0. A.ll
fields generated by this perturbation eventually travel
away from the surface.

Our method of solution is that of partial waves, ' '

which has bein amply described before for the first-order
response. After obtaining the first-order quantities, we
find S in (14) and then solve the inhomogeneous second-
order Eq. (13). This last task we do by successively apply-
ing the boundary conditions. In bulk the partial-wave ex-
pansion has two unknowns: the coefficients of the decay-
ing, homogeneous, transverse and longitudinal waves. '

In any other density step there are four unknowns since
the partial waves can propagate there in either direction.
At an internal interface we have four boundary-condition
equations. Call the bulk the zeroth step. The boundary
conditions at its interface with the first step determine the
four first-step unknowns in terms of the two zeroth-step
(bulk) unknowns. Then the boundary conditions between
the first and second step determine the four second-step
unknowns in terms of the first-step unknowns, hence in
terms of the two bulk unknowns. This process is contin-
ued up to the last step and its interface with vacuum.
There we can match on to only a single transverse wave,
which alone can propagate into the vacuum. One has, at
this point, three unknowns —the vacuum reflection ampli-
tude and the two bulk unknowns. Hence, only one ABC
is required, and we require the normal component of the
current to vanish. This is consistent with (12) and avoids
the ambiguity of expressions like n &/no or n2/no in vac-
uum ~here no density exists. Once the second-harmonic
reflection amplitude is found, one can easily compute R
defined as the ratio of the reflected second-harmonic
Poynting fiux to the square of the incident first-harmonic
Poynting flux.

Before describing the numerical results, we compare
our method of solution to that proposed by Sipe et al. '

They modify the analogues of (9) and (13) to account for

—Q P2 ——
6)g

Ez+Sa 8(»+Ss (16)

where Q i=Q(Q+i/~) with Q =2', ops is the bulk plas-
ma frequency, Ss is another driving term to be specified
later, and 8(x)=l for x)0 and zero otherwise. The
driving term Sii is determined by an approximate version
of the long-range piece of the first term in (14)

. 608
Sii ———i Pi XBi,

mc

where P, and Bi are determined not from (9) and its
ABC' s, but instead from

2
COg—co Pi —— Ei 8(x),
4n.

(18)

where co =oi(oi+i/r) and, as in (16), one has neglected
spatial dispersion and used the bulk electron density up to
the vacuum interface at x =0. The Fresnel boundary
conditions suffice to determine these first-order fields.
For our geometry one quickly finds

Sii ———Q ydV(Ei)

where

2
Q)g

y ——
87Tm Q) Q

and

(19)

(20)

d=1. (21)

the different spatial range of longitudinal and transverse
waves before trying to solve these equations. We do not
follow this procedure since it is of no particular advantage
in a numerical solution. Instead, the polarization and re-
flected radiation are simultaneously computed. However,
after this is done, we can extract the a and b parameters
and examine their sense and structure. This is done as
follows.

Begin by introducing the polarization P, where
j=BP/Br and p= —V P. Further, replace all variables by
their complex amplitudes. Since at each order frequency
and surface wave vector are the same, we can write for in-
stance the mth order polarization P as

P (x,r)=2Re[P (x)e ' " ], (15)

where m =1 or 2 and Re denotes "real part of." The
two-dimensional vectors Q and X lie in the surface plane
while x runs along its normal. The incident radiation
from vacuum is at frequency co and g =(co/c)sin8, where
8 is the angle of incidence (and reflection). We use the
same symbol for a physical variable [e.g., P on the left
side of (15)] and its complex amplitude [P~ on the right-
hand side of (15)], since the meaning is clear from the
context. One can easily check that our previous equations
also hold for the complex amphtudes, if one replaces d/dt
by —imago, etc."

With this new notation we can now describe the
prescription for the a, b, and d parameters. One replaces
(13) by
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PL ——

' 1/20 —cog —E g5)

for the second harmonic, with E=2Q. The analogous
transverse quantities are'

Pr= N

C2

2
Ng1—
N

1/2

N
1 — EC—

2 2
(27)

Since in metals Ps is approximately the Fermi velocity,
which in turn is roughly 2 orders of magnitude smaller
than the speed of light, the definition of P2" and di, are
reasonably meaningful if not precise.

The a and b parameters serve to parametrize the D due
to an incident p-polarized wave. We write

Q
x D= ——[x Ei(0+)] y (28)

2

Q.D= —b[& Ei(0+)][9.Ei(0+)] 1'
CO

(29)

The component of D normal to the plane of incidence is
zero. Our definitions reduce to those used before
when 1/x=0. The Ei used here is to be calculated from
(18) and we need the components just inside the metal.

Given a, b, and d, the sources in (16) are completely
specified and one can calculate the resulting radiation.
Before writing out the final result we summarize the ap-
proximations that lie behind it. In Eq. (16) for P2 one ig-
nores density variations near the surface and nonlocal

The y of (20) is the analogue of the same quantity intro-

duced by Sipe and Stegeman. It becomes identical to
theirs when 1/r=O W. e have chosen the definition (20)
so that d is one at all frequencies. Deviations from this
value can arise only if one goes beyond a jellium descrip-
tion of the bulk metal.

The other driving term in (16) is a 5 function located
just outside the metal surface

Ss = —O'Ds(& +0+) (22)

where

dlD= J (23)
0

Here P~i" is the part of the exact polarization that is
driven by terms that vary rapidly and dr, is a distance
large enough for these fields to have vanished, but small
enough that S~ has negligibly changed. The existence of
dL, depends on the large difference between any Po and c,
which determine the normal component of homogeneous,
longitudinal and transverse waves, respectively. For lon-
itudinal waves in bulk these wave-vector components are

' 1/2
N ~NB ~ 2 (24)

I I

for the first harmonic and

'2
cu

1
2 Qz/2 Qc N'r= e, —1 ao 0

c0
& P„S'+Pr co z

GATI y C

N E

N+2d (31)0
Here a = 1 —cog/cu, (lg' = 1 —co~/0, and czo is the Fresnel
transmission amplitude

&Pe
a0 ——

Pv &+Jr
(32)

The p„and P„ in these equations are the normal com-
ponents of transverse waves in vacuum: cocos8/c and
Qcos8/c, respectively. We show in the next section that
the a, b, and d parameters are in the hydrodynamical
model nearly independent of Q and (except for a) of co.

We also illustrate how well the parametrization scheme of
(30) and (31) for R works.

III. RESULTS AND DISCUSSION

To extract numerical results from our model we must
specify the various parameters it contains: g, 1/r, and
no(x). We use the values that are successful in fitting the
linear surface response of Al. 3 The bulk density is deter-
mined by an r, of 2.07, so faoq ——15.8 eV. The value of g
in (2) is chosen so that Pz ———,ur 0, where ur u is the (local)
anni velocity. We solve the model for two different sur-
face profiles. In the first the equilibrium density drops
from its bulk value to zero in one step, while in the second
an interxuediate step is added. This additional step has a
width iu of a few angstroms and is assigned a density
equal to 0.7 of the bulk density. When iu =4 A, the sur-
face plasmon dispersion predicted by the hydrodynamic
model is in good agreement with experiment. For
iu &1.7 A the hydrodynamic model further predicts the
existence of an extra collective surface mode, ' often
called a multipole surface plasmon. ' A second such
mode appears above m=5. 1 A. For completeness we
have done calculations for 0 & iu & 6 A. The value of 1/~
is such that N~~ ——10 everywhere. This rather large
scattering rate is often necessary in hydrodynamic calcu-
lations because one is trying to restore the Landau damp-
ing omitted by the model. However, since the latter de-
pends significantly on frequency, wave vector, and densi-
ty, while our 1/v is independent of all of these, one has
only a crude representation of the damping.

response. Inside the metal only the extended source polar-

ization, which varies as e, is kept and its amplitude is
approximated by a single-step Fresnel theory. The polmi-
zation produced by the other contributions to S in (14) is
first properly calculated via (13), then lumped into an ef-
fective 5 function source term placed outside the metal.
The radiation due to both of these effective sources is cal-
culated from local optics to yield a second-harmonic gen-
eration efficiency of

See
(30)

Nl NC

where



M. CORVI AND %. L. SCHAICH 33

In Fig. 1 we show the second-harmonic generation effi-
ciency R for the one-step model. For co«ass, R in-

creases quadratically with m vrith a strength that depends
on 8. This growth saturates as co approaches co&/2 and
then R drops quickly with further increases in co. The
largest values of R occur away from either extreme in 8:
at large 8 {or small co) the linear signal does not penetrate
the metal, while at small 8 the induced value of n, is
negligible. There are minor refinements in this descrip-
tion that are easily seen in Fig. 1. At large 8 a ridge in R
extends up through coii, and at small 8 a plateau beyond
the main peak is centered on boa. For intermediate 8 there
is a shallow depression along co=sos/2. The loci of the
ridge and the upper edge of the plateau follow, respective-
ly, the curves Qcos8=coii and cocos8=coa, which in turn
describe roughly when the transverse waves change from
decaying to propagating into the bulk. The structure
along ro=coii/2 is similarly related to when longitudinal
waves at the second harmonic can propagate into the
bulk, although R shows no analogous effect at the first
llariilonic, i.e., aloilg co =cog.

We next consider the parametrization scheme (30) and
(31) with a, b, and d. For our model d =+1 everywhere
and we show in Fig. 2 the frequency dependence of a and
b (Ref. 29) as well as both the exact R and its approxima-
tion via (30) and (31). We have arbitrarily set 8=60' in
drawing this figure since we find that the variation of a
and b with 8 at fixed co is less than a few percent over the
whole range of 8 except for 8« 1'. Similarly, although R
varies with 8 as shown in Fig. 1, the agreement between
the exact and approximate R is as good as shown in Fig. 2
for any 8, except as 8-+0 where both are negligible.
Thus, all the information in Fig. 1 is implicit in Fig. 2
and Eqs. (30) and (31).

The reason for this general success of (30) and (31) lies
in the small value of Pa compared to c and in the large
damping 1/~. If we further decrease Pa the agreement
becomes better, while increasing Pii by a factor of 10 leads
to variations in a and b with 8 and a mismatch between
the exact R and that of (30) and (31) all of about 20%.

0.0

FIG. 1. Second-harmonic generation efficiency R versus fre-
quency and angle of incidence for a single-step equilibrium den-
sity profile. %'e plot 8 on a linear scale, and its maximum value
is 1.4X 10 cm /%', which occurs at 8=45 and co/cog ——0.60.

R
0.5

-2-

G.O 04 08 I 2 I 6 20

FIG. 2. Frequency dependence of second-harmonic genera-
tion parameters. In the lower panel the real parts of a and b are
drawn with solid lines, the imaginary parts with dashed lines.
The imaginary part of b is essentially zero. The upper panel
compares the exact E., the solid line, and that calculated from
{30) and (31), the dashed line. Both are in units of 10 2

cm2/W.

Indeed it is the small size of Ps/c that underlies the con-
siderable progress in the analysis of linear properties
(Refs. 2, 4—6, 30, and 31), so one should expect to (and
does) see it simplifying the second-harmonic results. '2

Still the prescription for extracting a and b described in
Sec. II does not seem reasonable above roti/2, since then
some of the contributions which are formally lumped into
a surface 5 function in fact can propagate into the bulk.
However, the period of these oscillations is generally of
the order of angstroms, and even when this fails (near
coa/2 and coq) one still has the damping to help localize
these driving terms.

Now consider the numerical values of the a and 6 pa-
rameters, noting first that b is essentially the constant
—1. This value is held to within a few percent for all co

and (almost) all 8. It is only in the frequency dependence
of a that a significant variation occurs. As shown in Fig.
2, a has a sharp structure near cori /2. This becomes even
sharper when 1/~ is decreased. We have determined that
this structure in a is due to a factor of PL ', which
diverges at co=co~/2 when 1/v=0 No such .singularity
occurs at cori. Further, the sharp peak in a at coii/2 does
not produce a corresponding peak in R due to the com-
pensating factor of I' multiplying a in (31). It is this fac-
tor of 8' that is directly responsible for the local
minimum in R at co&/2 in Fig. 1.

Next we examine a model with two steps in the equili-
brium density profile. In Fig. 3 we show how R at a fixed
angle of incidence develops structure in its frequency
dependence as the width of the intermediate density step
between vacuum and bulk is increased. At a qualitative
level, the structure is due to standing waves in the over-
layer; but, since several wave vectors are involved and be-
cause all of the partial waves can leak out of the overlayer
to some extent, the ridges in Fig. 3 that move downward
in ~ as m increases do not follow simple loci. This is
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FIG. 7. Dependence of R and a on the strength of ohmic
damping. We use either co~~——10 or ~~r=20, with the latter
yielding stronger structure. In the upper panel, the units of R
are 10 ~ cm /% and the off-scale peak rises to 6.8. In the
lower panel the real part of a is denoted by a solid line, and the
imaginary part by a dashed line. We have not shown b since in

both cases it is essentially —1.

-lo-

ratio between the R's has a significant dependence on e.
The additional peaks in R, compared to Fig. 2, are due to
extra structure in a; b remains essentially —1. The am-
plitude of the oscillations in a is growing for to ~ coa, but
that of 2 D in (28} is not. Furthermore, once the frequen-
cy surpasses toa/cose the structure in a is no longer evi-
dent in R. As noted earlier, the new structures arise from
standing waves in the intermediate step although their

precise location is not amenable to a simple expression.
We did check that increasing both Po and to by the same
factor leads to essentially no shift in frequency of the peak
positions in Fig. 6.

Finally we comment on the strength and sharpness of
the structure we have found in R and a. These features
can depend quite sensitively on the value of 1/r used in
the model. This is illustrated in Fig. 7, where we compare
the R and a values for two different choices of 1/r In.

general a decrease in I/~ leads to a sharpening of the
structure, but the influence of I/~ is not the same for all
peaks. Those above to& are all only slightly affected,
while those below toa are extremely sensitive only if they
lie close in frequency to a multipole mode. Still there is
enough dependence on 1/r to remind one that the hydro-
dynamic model can only make qualitative predictions.

To summarize, our calculations suggest that consider-
able structure exists in the frequency dependence of
second-harmonic generation at a metal surface. On the
experimental side, it would be interesting to have data tak-
en on a free-electron-like material in the vicinity of toy ill
order to confirm our predictions and to refine our choice
of parameters. Since the parametrization scheme with a,
b, and d appears to work quite well, the key measurement
is the frequency dependence of a. On the theoretical side,
there is also a need for considerable further work. At the
level of a jellium model, one must learn how to include
consistently the effect of both the Landau damping and
the continuous, smooth, surface density profile. One
needs further to go beyond the jellium model, to develop
tractable estimates of the influence of core polarization
and band structure. These task are easily stated, but their
accomplishment will require considerable work. We hope
that they will be attempted soon.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation through Grant No. DMR-81-15705.
One of us {M.C.) gratefully acknowledges support from
the Galileo Galilei Foundation.

G. Mukhopadhyay and S. Lundqvist, Phys. Scr. 17, 69 (1978).
2P. Apell, Phys. Scr. 24, 795 (1981}.
F. Forstmann and R. R. Gerhardts, Festkorperprobleme: Ad-

vances in Solid State Physics, edited by J. Treush (Vieweg,
Braunschweig, 1982), Vol. XXII, p. 291.

4P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982}.
5P. ApeO, A. Ljungbert, and S. Lundqvist, Phys. Scr. 30, 367

(1984}.
F. Flores and F. Garcia-Moliner, in Surface Excitations, edited

by V. M. Agranovich and P. Loudon (North-Holland, New
York, 1984).

7N. Bloembergen, Nonlinear Optics (Benjamin, New York,
1965).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New
York, 1984).

9J. E. Sipe and G. 1. Stegeman, in Surface Polaritons, edited by
V. M. Agranovich and D. L. Mills (North-Holland, New
York, 1982}.

~oJ. Rudnick and E. A. Stern, Phys. Rev. 8 4, 4274 (1971).
J. Rudmck and E. A. Stern, Polaritons, edited by E. Burstein
and F. DeMartini (Plenum, New York, 1974}.

'2J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, Solid
State Commun. 34, 523 (1980};Phys. Rev. 8 21, 4389 (1980).

3C. Schwartz and %.L. Schaich, J. Phys. C 17, 537 (1984).
' K. Kempa and F. Forstmann, Surf. Sci. 129, 516 (1983}.
~5G. Piazza, D. M. Kolb, K. Kempa, and F. Forstmann, Solid

State Commun. 51, 905 (1984}.
~6C. Schwartz and %.L. Schaich, Phys. Rev. 8 30, 1059 (1984).
I7F. Forstmann, Z. Phys. 8 32, 385 (1979).

W. L. Schaich and C. Schwartz, Phys. Rev. 8 25, 7365 (1982).



33 HYDRODYNAMIC-MODEL CALCULATION OF SECOND-. . .

' C. Schwartz and %'. L. Schaich, Phys. Rev. B 26, 7008 {1982).
zoA. D. Boardman, in Electmmagnetic Surface Modes, edited by

A. D. Boardman (%iley, New York, 1982).
A. J. Bennett, Phys. Rev. B 1, 203 (1970).

22N. D. Lang, in Solid State I'hysies, edited by H. Ehrenreich, F.
Seitz, and D. Turnbull (Academic, New York, 1973), Vol. 28.

23P. Ahlqvist and P. Apell, Phys. Scr. 25, 587 (1982).
~4References 13 and 20 describe the general method, but in fact

use different ABC than those we presently employ.
The 2 in {15)is necessary for this check in (13).

26F. Forstmann and H. Stenschke, Phys. Rev. 8 17, 1489 (1978).
27A. Eguiluz, S. C. Ying, and J. J. Quinn, Phys. Rev. 8 11, 2118

(1975).
2sA. Eguiluz and J.J. Quinn, Phys. Rev. 8 14, 1347(1976).

iPT'x
29For the partial wave in the bulk that varies as e we use

d& ——m+2 A in (23), while for all other partial waves we set

dl. = oo ~

30J. E. Sipe, Surf. Sci. 84, 75 {1979).
3~J. E. Sipe, Phys. Rev. 8 22, 1589 (1980).


