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Excluded-volume explanation of Archie's law
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The empirical relation between the electrical conductivity and the porosity of rocks is called Archie's law.

Although it has been known for many years, attempts to explain this law are quite recent. These explana-
tions have used effective-medium theories, special percolation models, and fractal pore structures. In this

paper it is shown, contrary to previous suggestions, that ordinary percolation theory can account for the
zero pore-space threshold and may account for the power-law behavior which was derived from the avail-
able experimental data. In this respect simple percolation is more general than the previous explanations.

Because of its importance in soil sciences, the problem of
the relation between the electrical resistivity of a rock and
its pore fluid content has led to intensive research activity. '

The large amount of data2 collected has shown that a simple
empirical formula can describe this relation. This formula,
widely known as Archie's law, can be written as'

pt tt p~d'

~here p, is the electrical resistivity in the bulk of the rock,
p is the resistivity of the conducting water contained in the
pore structure, g is the porosity (the pore volume fraction
of the rock), and a and m are parameters. Typical values of
these parameters are confined' to the interval a=0.62,
m 1.95 for the well-cemented sedimentary rocks, and
a -3.5, m =1.37 for weakly cemented (or highly porous)
rocks. There are, however, observations of m values out-
side the above interval.

Although Archie's relation has been known for forty
years, attempts to explain it have appeared only in the last
few years. 4 ' These attempts were based on capillary tube
models' and effective-medium theories. ~' On the other
hand, percolation theory, s while used (naturally) to describe
rocks, has not been applied to explain Archie's law. Such
an application, if possible, would have the advantage of be-
ing based on universal behavior and of not requiring a priori
assumptions regarding the microstructure of the pores in the
rocks, as other theories do.

By now, the percolation critical exponents of the conduc-
tivity in d dimensions, t~, are well known " (t2= 1.25 and
t3= 1 95) to be in the above range of m. Hence, one can
claim that for the systems for which m = t~ Archie's law is
consistent with percolation theory. The main difficulty with
a percolation model (and probably the reason it has not
been used until now on this problem" ) is that the continu-
um percolation models discussed so far ~ require a critical
(threshold) porosity, P„which is distinctly higher than the
$, -0 porosity implied by Eq. (1). In a very recent paper"
this difficulty was overcome by suggesting a special new per-
colation model, which is in a different universality class
than ordinary percolation. While yielding a $, =0 percola-
tion, this model has the drawback that its corresponding
two- and three-dimensional critical exponents to are not in
the range of the data' 1.95» m ~ 1.37 (if we identify m
with to) as quoted above, but rather in the range to-2.94.
There is little data"' for m in the range m ~ 2.94 and thus,
if applicable at all to the rock problem, this special model
does not describe the bulk of the data. Another more re-

W
1 —@,=(I —~) ' . (2)

cent work, " which was based on finding fractal sandstone
pores, has suggested that Eq. (I) (with a =1) can be
derived by using the conjecture that the conductivity ex-
ponent is related to the geometrical exponents. ' It was ar-
gued then' that for sandstones with 1.5 & m & 2.5, the
practice of representing conductivity data with a zero per-
colation threshold is unfounded, and that one cannot draw
conclusions about the transport properties of one rock from
those of another (if the latter has a different pore
geometry). The difficulties with this approach are that it is
based only on sandstones [while Eq. (1) appears to be
found in many more types of rocks" ], that it is based on a
debated conjecture, ' and most importantly, that it does not
address the main issue (as does Ref. 12), i.e., whether or
not one can get percolation with a diminishing pore space.
Then the question is raised again of whether or not Archie's
law can be explained by ordinary percolation in the continu-
um (i.e., is this theory consistent with the very small critical
porosity qh, and with the observed values of m'?).

The purpose of this paper is to show, by an extremely
simple argument, that this is possible and that the explana-
tion is consistent with our knowledge" concerning the
channel-like or sheet-like pores in sandstones and rocks.
Hence (contrary to the claims of Refs. 12 and 13) "ordinary
percolation provides a realistic model for the pore space in
rocks. "

%e start by considering the recent excluded-volume
theory'5 of percolation thresholds in the continuum, which
dealt with a system of interpenetrating (or "soft-core") ob-
jects. The present problem is mapped onto the system by
the identification of the pores as the soft-core objects and
the stone as the insulating matrix.

Let us first determine the critical porosity, i.e., the critical
total volume of the pores, @, (or the critical area of all the
punched-out pieces in two dimensions). The system is as-
sumed to be made of interpenetrable, equal-volume pores,
each of which has a volume u (all the volumes here are
given in terms of fractional volumes, i.e., it is assumed that
the system is of a unit volume such as a unit cube").
Hence, the probability that a particular randomly chosen
point lies outside a given pore is 1 —v. At the percolation
threshold there are %, pores and thus the probability of the
particular point being in the matrix, i.e., not in any of the
pores, is (I —v) '. On the other hand, this probability is
also 1 —@, and thus
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In Eq. (2) we may use the identity v = v,„N,v/v, „/i/„where
u,„ is the excluded volume' of a pore of volume v. Hence,

(4)

Indeed, in the well-known" case of spherical pores, c = 2.8,
v,„/v 8, and $, -0.29. Knowing the dependence of e on
the parameters of the system, it is easy to see how the

0 limit can be approached. Since e is known"" to be
a constant of order I, a small v/v, „ratio means a small
value of 4t, .

A small v/v, „ratio can be obtained when the geometrical
shape of the pores is different from the geometrical shape
of their excluded volumes. This is not the case for spherical
pores (or other parallel pores where v/v, „ is always I/g),
but is the case of elongated channels (length L, radius r )
for which it has been shown" that awhile v- mr'L, the ex-
cluded volume is given by v,„=mrL. ' In the latter case the
above ratio can be made as small as the inverse of the as-
pect ratio, L/r. Hence, for a large aspect ratio, Eq. (4) can
be approximated by

d, = er/L (5)

where for this system, which is described by interpenetrable
sticks, ' ' c-1.4. In some recent works the pores were
modeled by randomly aligned thin disks. " For the disks of
radius R and thickness d, v nR2d while"'8 (for R ))d)
v,„n2R' Henc. e, for large R/d ratios

g, - (e/~) (d/R ) (6)

where c has been estimated"'9 to be between 1.4 and 2.7.
The important message of Eqs. (5) and (6) is that the criti-
cal occupied volume can be made diminishingly small if the
"channels" (the grains' separation) or the "cracks" in the
rocks are made sufficiently narrow (in comparison with their
span). In particular, the result (6) is what one would intui-
tively expect for consolidated sandstones, i.e., that the pores
essentially form a "skin" (or an "envelope" ) layer around
the stones, ' and it is this sheet-like surface through which
the water flow takes place. Since e/w = I and d/R can be
of the order of 10 2, for all practical purposes @, may ap-
pear as 0. Further, the precision of the p, vs @ measure-
ments is such' that one cannot distinguish 10 ' from 0 in

In the above discussion we have assumed all the channels
(or the disks) to have the same size. If this is not the case,
one has to introduce the average over the corresponding
geometrical parameters. Equation (5) has to be replaced
the»&is. i6

while Eq. (6) has to be replaced by

@,- (e/ir) &R') &d)/(R')

As was sho~n in Ref. 15, the excluded volume is conserved
under variations in the pore size distributions, and thus we
have the same e factors as for Eqs. (5) and (6). Consider-

qh, = 1 —[I—(N, v,„v/v, „)(I/N, ) ] '

In the limit of an infinite system (v 0, W, ~) v/v, „
and the total excluded volume, c = N, v,„, have been
shown" ' to be constants of the particular system under
consideration. Hence, for the infinite system

ing various distributions one can see, for example, that for
disks (or the "thin-skin" pore model) for which one can as-
sume that the "skin thickness" d has a narro~ distribution
(i.e., &d) = d), the value of $, will be further reduced.
This is due to the distribution in the size of the "sheets, "
i.e., due to the &R )/&R ) term. In particular, the log-
normal pore-size distribution has been previously suggest-
ed. 0 Using the corresponding averages associated with this
distribution'5 (as well as with other distributions) one finds
that & R )/& R ) is smaller than 1/R where R corresponds to
the case [Eq. (6)] where all the disks have the same radius.
Hence, the $, 0 limit is easier to obtain in the realistic
model of "thin skin" pores which have a wide size distribu-
tion.

In the preceding section we have shown that the critical
volume of all pores can be made as small as desired, provid-
ed that a "generalized aspect ratio" (such as L/r or R/d) is
made as large as possible. Hence, this implication of
Archie's law is fulfilled by the excluded volume theory.

The other consequence of Archie's law is the value of m.

We have previously shown ' that the same system which
yielded the above percolation thresholds (or excluded
volumes'5'6) also yielded the universal critical exponents of
ordinary percolation. This means that, for the value of
m = 1.9+0.2, the data for p, = p, (Q) and its presentation by
Archie's law [Eq. (1)] are consistent with ordinary percola-
tion theory. While this consistency exists, the fact that the
continuous range of m values found in the experiments"
(see above) is significantly wider than this "error bar" in-
terval of m appears to indicate a contradiction with ordinary
percolation theory or its universality. Before considering
this problem, we have to consider a more fundamental issue
and that is whether the attempt to correlate m with t& is jus-
tified altogether. This is because the critical exponent t~ has
not been proven to govern the conductivity over the wide
range for which the experimental data" exist. Hence, one
may even expect a crossover to mean-field exponents. In
view of the fact that such a crossover has not been found in
the experimental data, '2 and in view of the theoretical sug-
gestion that the critical behavior in percolating systems is
maintained over a much wider range than in phase transi-
tions, we may assume that m has to do with the conductivity
critical exponent. We note, of course, that the evidence
from percolation experiments ""shows that this is the
case for ($ —$,)/$, ~1, while Archie's law is applicable
over a much ~ider range. It is not impossible then that the
observed e values have to do with effective-medium "ex-
ponents, " but our argument is that if the critical range is
significantly wider than (@—@,)/$, = I, percolation-theory
exponents can account for the data. Let us then consider
sources which may cause m to deviate from the single
universal value given above, but which still yield results in
accordance with ordinary percolation. Below, we suggest
two such sources which can account for the entire m range
found in the experiments.

The first source we consider is a possible macroscopic an-
isotropy in the system. This source which has been realized
to affect the value of m was concluded from the experimen-
tal correlation between the values of m and the deviations
from sphericity of the grains which make the rock. 5 It was
argued then that, in general, a rock made of nonspherical
(i.e., elongated) grains, will have a macroscopic anisotropy.
Using effective-medium theory it has been shown that by
considering the above deviation and the above macroscopic
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anisotropy, one can obtain the above continuous range of
m~1.5 values. 5 Recently, it turned out that macroscopic
anisotropy can also account for a continuous (and even wid-

er, in particular at the low end) range of re values when the
ordinary percolation approach is taken. 2' ' Using computer
simulations we have indeed shown that in a system of non-
spherical pores, which has a macroscopic anisotropy, ap-
parent critical exponents will appear. ~' This is found to be
the case even for data of high accuracy when the data are
presented on a log-log piot of p, vs @—$,. The results of
that study for a three-dimensional system, as well as previ-
ous results for a two-dimensional system, clearly show that
in the direction of anisotropy the apparent critical exponent
of the electrical conductivity is larger than the universal ex-
ponent tq, while perpendicular to this direction the apparent
exponent is smaller than the universal exponent. It follows
then that it is not necessary to invoke a new universality
percolation class to explain the m & 2 values as suggested in
Ref. 12.

Unfortunately, there is as yet no data which correlate the
m values with the macroscopic features of the rock texture. '
It seems worthwhile, however, to carry out such experi-
ments since, if our conjecture is confirmed, one will have a
tool to derive information on the textures from the relative-
ly simple measurement of the electrical resistivity. At
present, we base our coajecture on computer simulations2'

and physical experiments~' which suggest a correlation
between the value of m and the macroscopic anisotropy.

The second source for variable m values can be the distri-
bution of the "neck" sizes in the pores. This distribution
yields a distribution in the values of the resistors which are
associated with the pores. 24 The latter distribution is
known 2 to yield conductivity exponents w'hich are higher
than the universal re. For the observed m & 2 values there
is an additional percolation-theory explanation. This ex-

planation is applicable to rocks which can be described as

having sheet-like pores, all of which are perpendicular to the
same plane. Such a model27 shows that the system essen-

tially presents a two-dimensional percolation problem and

that it can be described by an ensemble of widthless

sticks. '-2 For the latter system, we may think of a crack of
length L, width d, and depth h. The volume of the pore is

Ldh awhile the excluded volume" in this "thin-sheet"
case'»' (L » d) is (2/w)L'h and c is 3.6h. Hence

$,- (n c/2) x (d/L) and in the case of a large aspect ratio

(L » d) it yields a $, value which can be made as small

as desired. The resistivity exponent in an isotropic two-

dimensional system is9 t2 1.25 and the two-dimensional

macroscopic anisotropy may yield (in this case too, 2s see
above) higher and lower m values than this value of r2

Hence, the broad range of observed m values is consistent
with expectations from ordinary percolation theory. If our
conjectures are proved correct, the m value may be telling
us the dimensionality, the neck size distributions, and the

degree of anisotropy of the percolating systems. %e must

point out, however, that we do not claim that this con-

clusion rules out the special cases of fractal structures, " a

special universality class, ' or effective medium behavior in

some rocks. We stress, however, the fact that all the data
can be explained in terms of ordinary percolation theory.

In conclusion, we have shown that in rocks where the

pores have a large aspect ratio the onset of percolation can
be at a very small pore space. In addition to previous ex-

planations, we point out that the pore-space dependence of
the rocks' resistivity may be accounted for by the dimen-

sionality and macroscopic anisotropy of the percolating pore
system. If this relationship is experimentally proved to be
correct, ordinary percolation will become the most general
explanation of Archie's law.
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