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Critical behavior of the transverse susceptibility in a CuMn spin glass
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Transverse ac susceptibility measurements on CuM~at ~ are used to examine the quantity 5, which is

closely related to the transverse order parameter h~ introduced by Kotliar and Sompolinsky in a recent
Letter. The 8 data scale in the critical-phenomena sense, giving strong support for the existence of a phase

transition in this weakly anisotropic spin glass. %e sho~ that this transition occurs along the Gabay-

Toulouse line, as predicted by mean-field theory.

According to mean-field theory, Ising spin glasses under-
go a phase transition along the de Almeida-Thouless (AT)
line'

.„,= (H/H, )»,
where r = 1 —T/ Ts and Ht = 2ktt Ts/ J3lt, tt Mean. -field
theory for a Heisenberg spin glass shows that the transition
occurs in two stages. '~ The transverse degrees of freedom
(i.e., spin components perpendicular to the applied field)
first freeze along the Gabay-Toulouse (GT) line, given by

ToT = (H/H3) (2)

where Hs=10kttTs/~23lt, tt, followed at lower temperature
by the freezing of the longitudinal spin components along
the AT line. A dynamical study by Fischer' on the
infinite-ranged vector spin-glass model confirms that a
spin-glass phase transition occurs along the GT line but
finds the AT line to represent a dynamical crossover rather
than a phase transition. In real materials such as CuMn,
prominent irreversibilities arise along an AT-like line
whose position depends on the measuring time, '0 " suggest-
ing that it is indeed dynamical in origin. The GT line, on
the other hand, has proven to be very elusive. ' '~ An ex-
planation was given by Sompolinsky, Kotliar, and Zip-
pelius, ' who showed that for an isotropic spin glass, the ir-
reversibility associated with the GT line manifests itself only
in the local susceptibility. The experimentally accessible
uniform susceptibility remains reversible. Recently, Kotliar
and Sompolinsky'9 (KS) extended their work to include ran-
dom anisotropy. They show that the presence of anisotropy
couples the local and uniform response to a magnetic field,
allowing one to observe the local irreversibility through the
uniform response.

In the present Rapid Communication we examine 5,
which is closely related to the irreversible part of the local
transverse susceptibility d, in CuMn4„~ as a function of
the applied longitudinal field and temperature. ~e demon-
strate that 8 scales in the critical-phenomena sense for fields
above 250 Oe. The scaled 8 is a function of x=r/H and
vanishes at a nonzero value of x. The scaling form con-
firms the existence of a critical line given by Eq. (2), albeit
with a characteristic field only 20/0 of the mean-field value.
Our results differ from recent torque measurements in
which a nearly field-independent irreversibility line was
found. O' ' Reasons for this discrepancy are discussed.

As noted above, Kotliar and Sompolinsky'9 extended the

5 —= M/H Xi( T) = hs(1+ HM, /E—) (4)

which is closely related to h~. The equilibrium susceptibility
M/H may be measured directly in a field-cooled magnetiza-
tion experiment, or approximated with the projection hy-
pothesis. 24 The latter states that the magnetization belo~
the spin-glass transition is independent of temperature.
Thus Eq. (5) becomes

5= x, (T,) —x, (T),
where T~ is the spin-glass transition temperature. While the
projection hypothesis is not strictly obeyed in real systems,

dynamical theory of the infinite-ranged Heisenberg spin-
glass model to include a uniform magnetic field and the ran-
dom anisotropic Dzyaloshinsky-Moriya (DM) interaction.
The DM interaction plays a crucial role, coupling the mac-
roscopic response in a uniform magnetic field to the micro-
scopic degrees of freedom. The macroscopic transverse sus-
ceptibility derived by KS for sma11 fields is given by

x, = M//H - Iss(1+ HM, /Z) 1, -

where h~ is the irreversible part of the local transverse sus-
ceptibility (X'+gal —X'fg&), M, is the longitudinal remanent
magnetization, and E is a macroscopic anisotropy constant.
In the limit of vanishing E, the longitudinal susceptibility is
given by the ratio of the longitudinal equilibrium magnetiza-
tion M and the applied field —the susceptibility remains iso-
tropic even in the presence of a nonzero h~. According to
KS the transverse order parameter h~ exhibits at least three
scaling regimes, depending on the magnitude of 0 relative
to the strength of the DM interaction. In the low-field limit
local and macroscopic modes are tightly coupled and the
system behaves in an Ising-like manner; b,~ becomes
nonzero along the AT line in this strong anisotropy region.
At the opposite extreme of large fields relative to the DM
interaction, called the weak-anisotropy region, the phase
transition occurs along the GT line, with a dynamical cross-
over along the AT line. At intermediate values of anisotro-
py and field the phase transition line is relatively insensitive
to the field. The results of the KS theory are expected to
apply to spin glasses such as CuMn, where the DM interac-
tion is known to play an important role. '2 '

%e cannot measure rV directly in an experiment. Howev-
er, by rearranging Eq. (3) we may define the measurable
quantity 8,
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we will demonstrate that it is an accurate approximation for
CuMn in the proper field and temperature regime. %e also
show that 5, calculated with or without the aid of the projec-
tion hypothesis, has a very simple scaling form over a wide
range of 0 and T and, consequently, that it mirrors the crit-
ical behavior of the spin-glass transition. The quantity 5
was first shown to be of importance in an earlier work on
the amorphous spin-glass FeioNi70P2o. "

A sample of CuMn4„~ was prepared for this study from
high purity Cu and Mn. The alloy was fabricated in the
standard fashion: The melt was gradually cooled to 900 K,
annealed there for 24 h, and then slowly cooled to room
temperature. The sample was machined into a cylinder and
etched in 50% nitric acid to remove surface impurities and
surface strains. The measurements were performed with a
unique ac susceptometer whose measuring coils are thermal-
ly isolated from the sample, preventing errors due to tem-
perature variations in the coil resistance. The inductive
mismatch between the coils was balanced using a trimming
coil, driven with active electronics, surrounding the empty
secondary. The measurements were performed at 76 Hz,
with an oscillating transverse probe field of 0.5 Oe. The
longitudinal dc field was provided by an electromagnet. In
zero field a sharp peak in the ac susceptibility occurred at
the freezing temperature T»=19.7 K.

The field-cooled transverse susceptibility of this
CuMn4 „~ sample was measured from 60 to 8 K for 23
fields between 40 and 3400 Oe. Representative susceptibili-
ty data are displayed in Fig. 1. Field-cooled dc susceptibility
data, taken on a commercial superconducting-quanturn-
interference-device- (s(}UtD-) based magnetometer, 26 are
also presented in Fig. 1. Data were taken at cooling rates of
0.075 K/s and 2.5x10 4 K/s to investigate nonequilibrium
effects;" none were detected. Observe that the dc suscepti-
bility is nearly temperature independent below T» for large
fields, suggesting that Eq. (5) represents a good approxima-
tion. Consequences of this approximation will be discussed
in greater detail shortly. Using Eq. (5), the pertinent quan-
tity 5 is calculated and presented in Fig. 2. %e can see that
the various isotherms of 5 behave similarly, decreasing gra-
dually for small values of 0, then rapidly at intermediate
values, and falling off gradually again at higher fields. Ex-
trapolation to zero, as suggested by the dashed lines in Fig.
2, gives an estimate for the critical field. Because the func-
tional form of 5 is not known the extrapolation cannot be
done accurately. However, a scaling analysis, suggested by
the similarity of the 5 vs 0curves, serves as a powerful and
accurate tool in examining the critical region. It will allow
us to use data over a wide range of 0 and T to determine
the functional form of the transition line.

Since 5 is related to a spin-glass order parameter, it
should obey thermodynamic scaling relations if a true phase
transition is present. Ho~ever, the analysis is complicated
by the presence of the term $ —= HM, /E in the denominator
of Eq. (4). If $ is small compared to unity we have g = 5».
If, on the other hand, @ is large then 5= KA~//HM, . Since
both E and h~ vanish at the critical line 5 may still be treat-
ed as an order parameter. At intermediate values of $ the
critical behavior of A~ will still be reflected in 6. %e do not,
at this point, know enough about Q to predict which of the
above situations is applicable in the present experiment.
However, regardless of the magnitude of $, 5 may be used
to obtain the critical line.

According to the KS theory, 5 should vanish along a criti-
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FIG. 1. The transverse ac susceptibility (open symbols) and the
dc susceptibility (solid line) are plotted as a function of temperature
for several fields. The scale for each curve is the same, but the
zeros have been oA'set for clarity. The ac measurements were per-
formed at 76 Hz with an oscillating field of 0.5 Oe.
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FIG. 2. Some representative isotherms of 8 —X ~ ( T»)
—X~(T & T») are shown as a function of the applied longitudinal
field. The isotherms display similar behavior, suggestive of a scal-
ing relation. The fields are in kOe. The lines drawn are guides for
the eye.
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cal line of the form

T/H" = const (6)

Oeo2 0 g

~ O.pl-X:
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FIG, 3. The inset sho~s the scaling of 5 in the range 250
Oe & H ~ 2600 Oe snd 0.09 & r & 0.5. Equation (4) was used to
calculate the open circles, awhile the solid circles were calculated with
Eq. (5). Note the convergence of the two curves near the origin.
Approximately 140 data points are involved in this scaling. The
larger figure is an enlarged view of the critical region. Equation (5}
was used to calculate 5. Arrows indicate the position of a few points
if Eq. (4) were used. Again, note the convergence near the origin.
The solid line is a linear least-squares fit showing the existence of a
critical point. A change in scaling is seen at 3400 Oe, but the critical
point remains the same. The fields are in kOe.

~here the value of q depends on the anisotropy region be-
ing considered. Equation (6) suggests a scaling relation of
the form

S = H F(r/H ),
or, equivalently,

S=r»G(H/r'«)

If the functions F(x) or G(y) vanish at a nonzero value of
their argument then the critical line given by Eq. (6) exists;
otherwise, 5 vanishes only in the limit 0

We have plotted the quantity 5/H as a function of r/FP
using both Eqs. (4) and (5) to calculate 5. In both instances
the data collapse to a single curve for o.=1.0+0.1 and
q=2.0+0.15. The scaled data are displayed in the inset of
Fig. 3 for 250 Oe & 0~ 2600 Oe and 0.09 ( v & 0.5. Data
for v & 0.009 are not used because experimental uncertain-
ties lead to large errors in this region of small S. %e see
that the scaling of the data calculated with the use of the
projection hypothesis is as good as that incorporating the
true dc susceptibility. Ho~ever, both approaches do not
yield the same curve. Using the true dc susceptibility gives
a lower value of 5 than that obtained using the projection
hypothesis. This difference is greatest at large values of 7

and small values of 8, but vanishes for small 7 and large 8,
as Fig. 3 suggests. Therefore, in the latter region, corre-
sponding to the critical region, the projection hypothesis
may be used as a valid approximation. While it is not
necesssary to use this approximation, it does have some
practical advantages. In particular, the experimental errors

introduced by subtracting the true dc susceptibility from the
transverse susceptibility are eliminated, allotting for a more
accurate examination of the critical region.

Using the projection hypothesis we continue our study of
the critical region. Figure 3 suggests that the scaling func-
tion F(x) is linear for small x and vanishes at a nonzero
value of x. To test the last assertion more fully, we have
made linear least-squares fits to the scaled data for x & 0.4
(kOe) 2. For one ftt, the intercept was free to assume a
nonzero value; for the other it was forced to vanish. Forc-
ing F(x) to pass through the origin dramatically increases
the standard error to fit. %e, therefore, conclude that

5 —H [r/H (13.0—+ 1.7 kOe) ~] (9)

verifying Eq. (2) for the Gabay-Toulouse line, and showing
that we are in the weak-anisotropy region. Again it should
be emphasized that this result does not depend on the pro-
jection hypothesis being precisely obeyed. In Fig. 3 we have
drawn arrows indicating the position of a few points if Eq.
(4) were used instead of Eq. (5). The slope of the line
~ould be slightly diminished, but the intercept, which is the
important quantity, would be the same. Having presented
strong evidence that 5 is a viable spin-glass order parameter,
we can make quantitative comparisons with mean-field
theory. The most striking agreement with theory is, of
course, the existence of a phase transition, as shown by the
presence of a critical point in the scaling behavior of 5. The
nature of the field-dependent transition agrees with the pre-
dictions of Gabay and Toulouse for the traasverse freezing
line. Given this compelling evidence for the GT line, along
with the KS theory and the dynamical calculations of Fisch-
er, one concludes that this is the true spin-glass transition
and that the previously observed AT-like irreversibility lines
are dynamical and not related to a phase transition. It is
also clear that for fields above 250 Oe we are in the weak-
anisotropy region of the KS theory. As can be seen in Fig.
3 a change in scaling occurs at high fields. The origin of
this is not clear, but is most likely the result of a change in

P or a breakdown of Eq. (3) which might be expected in
high fields. Preliminary results on Au-doped samples sug-
gest that the latter is correct. The change in scaling does
not effect the critical line since 5 vanishes for the same
value of r/H

The agreement with mean-field theory is not perfect,
however. The measured characteristic field H3 is smaller
than mean-field predictions. Using the value of 4.4p, ~ per
Mn atom2 we calculate H3=67 kOe, a factor of 5 larger
than observed. The unavoidable presence of ferromagnetic
coupling in CuMn will undoubtedly magnify the applied
field. The molecular fields will then be larger than the
external field by a factor of (1—Jo/J) ', where J and Jo
are, respectively, the width and mean of the distribution of
exchange interactions. From the high-temperature Curie-
%eiss behavior we estimate this factor to be between 2 and
3 for CuMn~„~. While this does not entirely account for
the difference, the failure of mean-field theories to predict
such constants accurately is not uncommon. The exponent
a cannot at this time be compared to mean-field theory
since the magnitude of @ is not known. Careful measure-
ments of M, and E will be necessary to solve this problem.

In summary, we have demonstrated that the transverse
spin-glass order parameter can be obtained experimentally.
The scaling behavior of this order parameter is strong evi-
dence for a true spin-glass phase transition, and that this
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transition occurs along thc Gabay-Toulouse transverse
freezing line. It is thus clear, at least in the vicinity of the
phase transition, that mean-field theory is of quantitative
value. Our results differ from recent torque measurements
sho~ing the existence of a nearly field-independent irrever-
sibility line in CuMni«~Au„alloys. '0" It is conceivable
that the torque measurements were done in the
intermcdiate-anisotropy region, ~here the transition line is

insensitive to the field. Another possible explanation lies in

the interpretation of the torque measurements. It is as-
sumed that the torque experiments are sensitive to the de-
grees of freedom perpendicular to the induced macroscopic
anisotropy. For small fields this is probably true. However,

at high fields rotation of the macroscopic anisotropy wi11 oc-
cur, obscuring the meaning of the torque data. %c are
presently extending these measurements to CuMn4„~Au„
alloys to examine these possibilities, and to further explore
the validity of the KS theory. The present study has provid-
ed a rare occasion in which spin-glass theory and experi-
ment can be compared quantitatively.
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