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Nuclear-spin relaxation near the metal-insulator transition
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A novel mechanism of nuclear-spin relaxation in doped semiconductors due to singlet pairs of local mo-
ment is introduced. It is argued that this mechanism, together with a Korringa-type relaxation, operates on
both sides of the metal-insulator transition, Our picture explains the anomalous temperature and magnetic
field dependence observed experimentally.

In a recent Letter' the spin-lattice relaxation time of 2 Si
nuclei in Si:P was measured closer to the metal-insulator
transition and down to much lo~er temperature than in pre-
vious work. ' The new measurements bring out even more
clearly the anomalous magnetic field and temperature
dependence of 1/Tt and its large deviation from the Korrin-
ga behavior even on the metallic side of the metal-insulator
transition. In Ref. 1, I/Tt was found to be inversely pro-
portional to the magnetic field 8 and the temperature
dependence was fitted to a power law. A prominent feature
of the data is that T~

' appears to change smoothly through
the metal-insulator transition. In this paper, we propose
that the relaxation rate actually consists of two contribu-
tions: (i) a Korringa-type process due to electrons near the
Fermi energy, which operates even when the states are lo-
calized, provided the localization length is sufficiently long
and (ii) a new relaxation process due to pairs of exchange-
coupled localized spins deep below the Fermi energy. These
local moments clearly exist in insulators and we argue that
they persist smoothly into the metallic side. In process (i),
T~

' is proportional to T but independent of B; whereas
process (ii) is independent of T and proportional to B ' to a
good approximation. In Fig. 1 the data from Ref. 1 are re-
plotted to show that the temperature dependence belo~ 100
mK is well accounted for by our model.

%e take a highly simplified view of the electronic states
near the metal-insulator transition (see Kamimura3 and
Takemori and Kamimura4). We assume the existence of
one-electron states with energy E and a mobility edge at
E,. The interaction between the electrons are accounted for

only by an intrastate repulsion U so that the energy of a
doubly occupied state e is 2E + U . %e assume that
U -0 for extended states (E )E, ) and U increases
monotonically with decreasing localization length g for local-
ized states. In the presence of a magnetic field B, the boun-
dary E& between singly and doubly occupied states is given
by the condition

H=x J pS Sp
a, P

(2)

where J & between the states n and P separated by a dis-
tance R is given approximately by

e2 R 2RJ &= 1.636 exp-' Qg Qg aq
(3)

~~+9 B=~F—Ez

Schematically the solution of Eq. (1) is shown in Fig. 2.
The states between the Fermi energy and E~(I) for insula-
tors and E&(M) =p, B fo, r metals are singly occupied.
Below that, we have a band of doubly occupied states. At
even lower energy, below Es(I) and Eq(M), the states are
singly occupied again. These singly occupied states can be
thought of as isolated bound impurity states and carry a lo-
cal moment. In this picture it is clear that such isolated im-

purity states ~ould persist into the metallic side.
It is well known that the local moments of these isolated

impurity states interact via an antiferromagnetic exchange
coupling -'
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FIG. 1. Nuclear-spin relaxation rate data from Ref. 1 plotted vs
temperature. Open and closed diamonds correspond to n/n, =0.9
and 1.03, respectively. Data were taken in a magnetic field of 0.844
T. Straight lines are guides to the eye. The present theoretical
model predicts straight lines with slopes and intercepts which are of
the right order of magnitude.
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FIG. 2. Schematic solution of Eq. (1). In a metal, states are dou-
bly occupied between E„(M) and E&(M} and singly occupied oth-
erwise and similarly in an insulator.
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where aq is the Bohr radius of the impurity state. Bhatt and
Lee6 have used a scaling procedure to analyze Eq. (2). The
essential point is that J ~ is very broadly distributed as a
result of its exponential dependence on R. Thus the spins
can be organized naturally into pairs according to the size of
J and pairs that are most strongly coupled are frozen into a
singlet state. The singlets weakly renormalize the exchange
coupling between the remaining spins which in turn form
singlet pairs. Thus we can think of the system as consisting
of singlet pairs with singlet-triplet splitting given by a distri-
bution P(J). The distribution P(J) should be calculated
by a renormalization procedure but we will make a rough
estimate a little later.

In the inset in Fig. 3 we show the energy level of a single
pair of spins in the presence of a field 8. When the splitting
between the singlet and the lowest triplet level coincides
with 2p, „B, the nuclear-spin splitting, the spin pair will relax
the nuclear spin. The relaxation rate is independent of tem-
perature as long as kT && 2p, „8, which is always satisfied in
the experiment. Since p, „8&& p, ,8, we have J= 2p, ,8 to a
very good approximation. The relaxation rate is therefore
proportional to the probability of finding J=2p, ,8, i.e.,
P(J= 2p. ,B). Now P(J) = PR (R )/~ d1/dR (, and we expect
Pa(R ) to be a slowly varying function of R. From Eq. (3)
we have ~dl/dR ~~ J as a result of the exponential depen-
dence on R. Thus we conclude that fhe Ti ' should be
roughly proportional to 1/J, i.e., to 1/B.

In the following we make a slightly more quantitative esti-
mate of Pa(R). If we ignore the weak renormalization of
the remaining exchange coupling by the frozen singlets,
Pq(R) is equivalent to the following. Beginning with a ran-
dom distribution of sites, we first count the shortest
bond, then the pair that is bonded is removed, and the next
shortest bond is counted, etc. The resulting distribution of
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FKJ. 3. The field dependence of T&~' evaluated according to Eq.
(5) for four spin densities n, ~ith parameters given in the text fol-
lowing Eq. (5). (I) n, -n„(2) n, -0 ln„(3) n, -. 0 05n„and (4. )
n, -0.025n, . Note the approximate 8 ' behavior. The inset shows
the energy levels for a pair of exchange-coupling 1ocal moments
which relaxes the nuclear spin.

bond length is Pz(R). Let us consider the situation when
the bonding processes have reached the length g. Then the
number of bonded pairs per unit volume is f PR(R ) dR.

On the other hand, if we surround a spin with a sphere of
radius R, the average number of other spins in the sphere is

9 1Pg(R) =
g~ R4 RJ R$ Rj)

1-exp — exp— (4)

Thus we see indeed that Pa (R ) is a slowly varying function
of 8 in the region of interest.

For Si:P, it appears that the spin diffusion among nuclear
spins due to dipolar coupling is much faster than Ti '. In
that case Ti ' is just the relaxation rate due to the pairs.
This can be calculated with the use of the standard theory if
we make the effective-mass approximation for the impurity
wave function and the Heitler-London wave function for
the pair. The result is

1

Tip

2

2P,P.IA(x, )l' P (J=2P.,B), (5)

where Q(x„) is the electron wave function at the nuclear
site x„. Taking aq = 15 A and ~ = 10, the results are shown
in Fig. 3 for several values of the parameter n,' 'a~. We see
that if we take n, /n, = ~, where n, is the critical value for

the metal-insulator transition given by n,''ag=0. 25 and
close to the impurity concentration studied in Ref. 1, we are
within the correct order of magnitude of the experimental
zero-temperature intercept in Fig. l. Given the crudeness
of the present estimate and the uncertainty of what n, /n,
should be, this agreement is encouraging.

We next discuss process (i), the relaxation due to the
electrons near the Fermi surface. On the metallic side this
is the familiar Korringa process. The linear-T coefficient in
Fig. 1 for the metallic sample is about three times the free-
electron estimates. ' This kind of enhancement can be due
to correlation in the Fermi-liquid picture and is certainly
reasonable. The deviation from linearity above 100 mK
may be indicative of the small energy scale for a system
near the metal-insulator transition. Transport measure-
ments9 also showed that the true low-temperature behavior
is apparent only belo~ 100 mK.

On the insulator side, the nuclear spin can relax by the
spin-flip scattering of weakly localized electrons near EF.
These processes include the following: (a) A spin-down
electon in a doubly occupied state near E&(I) scatters into
an empty state near EF and inverts. (b) A spin-down elec-
tron in a singly occupied state scatters into an empty state
and inverts. (c) A spin-down electron in a singly occupied
state inverts and scatters into a singly occupied state with a
spin-down electron. At very low temperature, process (a) is

83 R3
N(R ) = —1 —exp-

R$ Rj)

where R$ =3/4mn, and n, is the density of spina. These
other spins must already be bonded, either to spins inside or
outside of the sphere. Thus we set

t 8
dR Pg(R) =—1 N(R)

aJ P 2 4mR3 3

From this we obtain
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1

T1k
1+exp-' IM;, I'f, (E )f, (EJ)

BT

xs(EF+2p, „B—E; —U; —2p,„B), (7)

where f,(E) is the Fermi function of the singly occupied
state E and M& is the transition matrix element which in-
volves the overlap between the initial and final single-
particle wave functions. We introduce P"'(Ei, Ri, E2, R2)
as the probability of finding states with energies Ei and E2
localized at Ri and R2. It can be written as

(El~ R1~E2i R2) G(Elt RliE2i R2)Pp(E1)Pp(E2)

where Pp(E) is the density of localized state per unit
volume. It is easy to show that the average Tik' due to this
process is reduced from the Korringa relaxation TI,k' by the
following factor:

i dki dR2exp—
2IR) —R„I 2IR2 —R„I

fA '(F
x G(Eg, Ri, EF, R2)

where g& and (F are the localization length at E& and EF. If
the sites of localized state are distributed completely at ran-
dom in space, 6 =1 and we have p, =1. Thus any devia-
tion from p. =1 must come from the fact that states are
correlated in the sense that states that are nearby in energy
are far apart in space. The physical origin of this correlation
must come from level repulsion. Let us introduce a length

3

4mPp(Ep)

which is the average separation of localized states with an

energy difference EF E„. If gF—(and/or gg ) is greater than

I.„it is clear from Eq. (g) that p, = 1. The opposite situa-

tion is more complicated. While the states are on the aver-

age L, apart and the relaxation rate due to these states is

small [ —exp( —L, /g) ], it is possible to find states that are

much closer than average, and these states wi11 dominate
the relaxation rate. It is only level repulsion that prevents
states from being too close together. As originally discussed

by Mott and Davis' and Mott, " states with strong overlap
wil1 have a certain minimal splitting in their energies. This
splitting is difficult to estimate except in the limit when the
states are basically localized impurity-bound states. While it

is difficult to make quantitative predictions, these considera-
tions suggest to us that the Korringa-type linear- T-
dependent contribution to Ti ' probably persists deep into
the insulator side of the metal-insulator transition.

In summary, our model of two types of contribution to
Ti ' appears to account for existing data. ' Our model is
obviously highly idealized. Some problems require further

dominant. The condition of conservation of energy is

~i+ 2p, ,B+ UI = eJ + 2p, „8
Subscripts r and j correspond to the initial and final states.
From Eq. (6), the relaxation rate of these processes can be
calculated as follows:

discussion.
(I) We have treated the local moments and the states

near the Fermi level as two separate entities. The question
arises whether the exchange interaction between the local
moment will be affected by the rest of the electrons, e.g. ,
via some kind of indirect exchange interaction. The indirect
exchange interaction can be estimated in analogy with the
Ruderman-Kittel-Kasuya- Yosida (RKKY) interaction in

metals. %e must remember that the RKKY interaction in a
dirty metal decays exponentially as —I/R'exp( —R/A. ),"
~here A. is the mean free path of electrons. Near the
metal-insulator transition, P = k~ ' is of the order of a~,
whereas the direct exchange would decay much more slowly

on a length scale given by the localization length. Besides
this, the preexponential factor J$/EF of the RKKY interac-
tion is also smaller than the preexponential factor of the
direct exchange interaction. %e therefore conclude that the
indirect exchange interaction is ~eaker than the direct in-

teraction, and does not change the characteristic of the ex-
change interaction between the local moments. Thus, an
exchange interaction given by Eq. (3) with as replaced by a
different parameter is a valid starting point (see below).

(2) In Si:P the multivalley degeneracy enhances the bind-

ing energy of clusters. ' The isolated impurities are actually
at the top of the Hubbard band and near the Fermi level.
Thus, the most likely candidates for the local moment are
the clusters with an odd number of electrons. The ex-
change interaction between these clusters is obviously more
complicated than Eq. (3), but the qualitative feature of our
model is unchanged. Our estimate of the absolute value of
Ti is clearly only qualitative, but the temperature and field
dependence should be correct.

(3) A proper calculation of the renormalized P(J) should
be possible along the lines of Ref. 6. In particular, accord-
ing to Ref. 6, P(J) may be approximated by the form J
where 0. decreases gradually from unity as the cutoff is re-
duced. However, we must emphasize that in Ref. j. the ex-
periments were performed in the limit p, ,8 && kT so that
the magnetic field energy rather than kTis the cutoff. Since
p, ,8 is fairly large, the renormalization is probably not too
strong so that a may be close to 1. In particular, the
behavior of the spin susceptibility X —T quoted in Ref.
1 is valid only in the limit of zero field and the exponent 0.7
may be considered an empirical lo~er bound on o.. Thus we
expect Ti ' to vary as 8, where o. is between 0.7 and 1.
It will be interesting to use the magnetic field dependence to
separate out the local moment and the Korringa-type contri-
bution to Ti and study more carefully the field dependence
of the local moments part.

Finally, we point out that our model should be applicable
to any metal-insulator transition system. In particular, the
data in the mixed bronze'5 may be interpreted by similar
ideas except that the nuclear-spin diffusion is very slow in
that case and one should observe a broad distribution of
TI ' in the insulator phase due to paired local moment re-
laxation. %e believe the existing data strongly support the
existence of paired local moment on both sides of the
metal-insulator transition, and this picture should have im-
plications for a scaling description of the transition.
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