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Dynamic scaling and the field-dependent critical line in a fracta] c]uster
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%'e extend an earlier fractal cluster model of spin glasses to study (1) the magnetization relaxation M(t)
induced by a magnetic field, (2) magnetic noise, and (3) dynamics near a critical line Tz(H). Above the
zero-field transition temperature Tz, M(t) follows a stretched exponential form exp( —r' ") with

n -vz/($+vz), where qb, v, and z are standard static and dynamical critical exponents. A dynamic scaling
relation is derived for the entire region Tz(H) & T ( Tz in agreement with experiments. The equations
associated with lines of constant relaxation time are obtained, and it is shown how nonuniversality of ex-
ponents along the critical line can be tested.

In this equation li -H/kT is the reduced field and the ex-
ponent y-1 and ~ for the ferromagnet and spin glass,
respectively. ' According to scaling theory, the cluster size
distribution n, (number of clusters with s spins per magnetic
site) is given by'

(2)n, = s 'f(s/s&)

where r =2+5 ' is another critical exponent's (not to be
confused with the relaxation time r), and f(x) is a scaling
function which approaches a constant as x 0, but drops
off towards zero above x-1. Clusters are assumed to be
independent, interactions being taken into account by the
growth with decreasing temperature of the clusters them-
selves. " We also ignore here transverse ordering and
Heisenberg behavior, assuming that local anisotropy effects
predominate at low fields. '

Let us now calculate the time decay of the magnetization
induced in a spin glass by a weak magnetic field which is
turned off at t=0. We get

goo -cu e
szv 'f(s/s&)e o ds

(3)M(0) zv, f( / )d~0
where cv0=~0 ', and we assumed that the relaxation of a
given cluster is exponential. From the equation above we
can derive the following scaling expression for the time
dependence of the magnetization:

g (oiot/s j ) g (ego t/ I & I
"')M(r)

The last equality was obtained using z = Dx and srcL Iol
This is an important equation since it shows that although
the system has a distribution of relaxation times, there is a
single characteristic time, which is the relaxation time of the
typical cluster, that determines the overall time scale of the
dynamical processes. This makes explicit the underlying as-
sumption of earlier scaling treatments. ""

We now calculate the specific form of the relaxation of
the magnetization in the long-time limit. For this purpose
we consider that as in the percolation model of a phase tran-
sition, 'o f (s/s&) ~ exP [ —(s/sz) ") for sufficiently large clus-
ters, close to T~ and ignoring algebraic prefactors. The ex-
ponent is v = 1 and (d —1)/d, where d is the dimension of
the system, at temperatures above and below the transition,
respectively. 'o The relaxation of M(t), after the small ap-

Recently, there has been a lot of interest in the study of
spin-glass dynamics both theoretically'~ and experimental-
ly. ' '6 At the same time a critical fractal cluster model of
spin glasses has been proposed which is able to describe the
essential features of the phenomena occurring near a spin-
glass phase transition and to account for the static critical
exponents which experimentally turn out to be different
from those predicted by mean-field theory. " The basic as-
sumption of this fractal model is the existence of a
temperature- and magnetic-field-dependent characteristic
cluster size s~ on which all relevant physical quantities
depend and which diverges at the transition temperature T.
It is related to the correlation length g and the cluster fractal
dimension D by sr~ gD.

In this Rapid Communication we extend this critical frac-
tal cluster model to describe several aspects of spin-glass
dynamics which are of current interest: (1) stretched ex-
ponential relaxation, '" ' ' ' 'o (2) magnetic noise, ""
and (3) scalings "'4 above the field-dependent critical line
Tz(H), where conventional equilibrium dynamics can be
assumed to apply. Although the critical cluster model
predicts complementary behavior from finite-size clusters
below the critical line, this dynamic behavior is in most
cases masked by the slow dynamics of the infinite cluster
which we do not consider here.

We start by introducing the relaxation time of a cluster of
size s which we assume to be given by 7 = ~0s", where v0 is
a constant and x a critical exponent related, as shown below,
to the exponent z introduced earlier in a generalization of
the standard dynamical scaling hypothesis to spin glasses.
In the fractal model then, the slowing down of the dynami-
cal processes, as the critical temperature is approached, is
due to the growth of the characteristic cluster size s~.

Since sr~(D and g~ [el ", where e= (T Tz)/Tz is the-
reduced temperature and v-i'/D is the usual critical ex-
ponent associated with the correlation length, we find
sr~ Iel "D. The relaxation time of the characteristic cluster
is r&=rosf, and consequently, rr=roIeI "~. Comparing
this result with the standard dynamical scaling hypothesis
which assumess rrcc Iel "*, we obtain the desired relation
z = Dx between the dynamical exponents.

In an Ising fractal cluster model, the magnetization M at a
temperature T induced by an external magnetic field 0 is an
average over all cluster sizes:

M~ Jl ds n, s~ tanh(pos'h ) (1)
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plied field is turned off at t = 0, is then given by

M(t)~ dsexp[ —(s/st)" —p2pts "l
40

An expression similar to the equation above has been previ-
ously' obtained in a study of the relaxation function of
conventional glasses. It can be evaluated in the limit of
long times to yield

using distributed activation barriers as appropriate for
T & Tg.

Let us now study thc relaxation of the magnetization of a
spin glass at the transition temperature. At T~ the cluster
size distribution is given by n, = s ', since the characteristic
cluster size is infinite. The equation describing the relaxa-
tion of the magnetization after a small field has been turned
off at t=0 is

—(r/~ )M(t)~ e ', n=x/(x +u) =2 z/(wz+p2)
-x

cal 0fs
M(t)zz. ds s' 'e

4 0 GP0t

P/v2

, (8)

with rq~ st as expected from Eq. (4). Since u decreases
from 1 to T in three dimensions (3D) as the system is

cooled from above to below the transition, the exponent n

increases with decreasing temperature.
Equation (6) is of stretched exponential or Kohlrausch

form, which has recently been found to describe the relaxa-
tion of the magnetization in spin glasses, both experimental-
ly9' ' "' and theoretically. '4 Initial attention focused on
the nonergodic region below T~ and a derivation of this re-
laxation form was made in the context of the nonergodic
Parisi solution for the mean-field spin glass. '4 However,
our result highlights the fact that the same kind of relaxa-
tion can be obtained above T~ in a region described by
equilibrium dynamics. Recently, the first observation' of
stretched exponential relaxation in a spin glass above T has
been made on Eu04Sr06S, ~here n 0.9 belo~ T and de-
creases slowly above T~. Using dynamic scaling results on
the same system, p which give (t(=4 and vz = 7.2, we predict
n =0.64 above T~ and n =0.73 belo~ T~ in rough agree-
ment with experiment. Numerical calculations' of a 3D Is-
ing model have given n =0.65 at T~ (see Fig. 11 of Ref. 3),
decreasing linearly above T~. In the simulation vz-7.9,
and if we assume $-4, we obtain the same predictions for
n.

Equation (6) gives for the first time the stretched ex-
ponential po~er in terms of critical exponents in spin
glasses. While the order of magnitude and trend are
correct, the observed continuous change in n as a function
of temperature needs to be understood, which probably re-
quires taking into account crossovers to power-law relaxa-
tion (see below) and finite-field effects. Another interesting
point is that the derivation of Eq. (6) is valid both for fer-
romagnets and for spin glasses in the cluster model. Usual-
ly, relaxation behavior of the type predicted by Eq. (6) is
difficult to scc in fcrromagnets because of the exceedingly
smail temperature range near T~, where the time constants
are experimentally accessible. However, recently such re-
laxation has been seen" in the reentrant fcrromagnct
Eu054Sr046S, giving a value n = 0.85.

In the limit of linear response and equilibrium thermo-
dynamics, Ocio, Bouchiat, and Monod' have sho~n that
from a knowledge of the stretched exponential po~er 1 —n,
a magnetic fluctuation noise-power spectrum going as co" '
can be derived for frequencies greater than the characteristic
frequency (p= I/rt. Thus, we predict a noise spectrum go-
ing as

S (~ )~ ~ —(vz+24lv)/(vz+fv)

which gives ~ ' for T & T~ in Eu04Sr06S. No experimen-
tal results have yct been reported above T~. This is thc first
prediction relating the noise spectrum to the critical ex-
ponents, although 1/f noise has previously been derived2p

where we used the standard scaling relations PS=(t =(zD
for the critical exponents, ' and z = ax as obtained before.
The divergence of M(t) at t =0 is unphysical and can be
traced back to the assumption of s going continuously to
zero in the integral. In the frequency domain, Eq. (8) gives
rise to a noise spectrum' varying as & "*

Notice that the exponent which appears in this equation is
that of the order parameter (P) and not that of the suscep-
tibility (7). This is characteristic of spin-glass response and
arises because y = Y instead of 1 as in ferromagnets. " This

algebraic type of relaxation at the transition temperature is a
standard feature of critical phenomena and in our model it
is a direct consequence of the form of the cluster size distri-
bution at T~ and of our assumption of a cluster relaxation
time which is a function of its size. Equations (7), (8), and
(2) also illustrate the algebraic nature of the relaxation asso-
ciated with small clusters (s « st). The exponent P/vz
can be easily estimated. If we take P=0.5 as in 3D Ising
simulations, 3 we predict M(t)zz. t p~', in agreement with
the numerically observed exponent of —0.06 at T~. The
noise spectrum would be close to 1/f. On the other hand,
most experiments seem to show stretched exponential relax-
ation at T~. Here we believe the effects of finite field, ig-
nored in the simulations and in our derivation of Eq. (8),
will be important. Where power-law relaxation has been ob-
served, " as in CsNiFeF6, there is good agreement between
the M(t) exponent and the noise spectrum prediction, but
so far these observations are all below T~. Wc should also
point out that the small exponent P/2 z makes it difficult to
distinguish the algebraic decay from other forms of relaxa-
tion.

The form of Eqs. (6) and (8) for M(t) leads us to sug-
gest the following interpolation expression to describe the
relaxation of the magnetization in a spin glass:

M(t)~ t t't"'exp'( arlT Ttl"*)' "—]— (9)

where a is a constant. In this case, the relaxation crosses
over from exponential to algebraic as the transition is ap-
proached. An expression like the one suggested above has
been found to describe the time-dependent magnetic corre-
lation function of a spin glass simulated in a special purpose
computer. 3 The temperature dependence of the exponents
which was found there may be a consequence of the inter-
polation character of Eq. (9) which gives rise to effective
exponents.

In order to get a deeper understanding of the dynamics of
a spin glass and its response to an external magnetic field, it
is crucial to have a detailed knowledge of the behavior of
this system in the 8-T plane and in particular the location
of any phase transition line, such as the dc Almeida- Thou-
less line ' of the infinite-range Ising model, separating the
spin-g1ass and paramagnetic phases. We shall now extend
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our analysis to account for the assumed existence of such a
critical line, described by the following equation:

Tg(H) —Ts(l gHiA ) (10)

fq(lyl) —lyl '(I ilyl i/~), (12)

with + referring to T ~ Tg, respectively. These forms in-

sure the proper behavior of the relaxation time, as will be
seen below.

It remains to define the form of f&(y) as the critical line
is approached from above. Since s~ diverges on this line,
one can write in general

or alternatively e~= gH'/&, where ~sH= ( Ts Ts—(H) )/Ts; g
is a constant, and Q an exponent characterizing the shift in

the critical temperature due to the magnetic field."
The scaling expression for the characteristic cluster size

can be generalized for the case of finite fields in the stan-
dard way:"

s~ lcl +f&(H /lel+)

where P=vD is the crossover exponent, and ft(x) is a
scaling function. In the conventional "analytic" regime for
T ) T~ and y = H /e~ 0, the function f~(y) goes as 1 —y.
In the field-dominated regime, where ly I

= H /l~l~

(~g/~0)" = l~l ~fg(H'/I~I'),

or alternatively, near the critical line,

(i) /70)' "= ([(T Ts(H) ]—/Ts]

(16)

Equation (16) implies the well-known result that, in the an-

alytic regime H'/e~(& 1, lines of constant s~ or r& leave
the temperature axis perpendicularly and then bend over as

where + refer to T »~Tg. Here we have kept the factor
even though this form and that in Eq. (12) ignore addi-

tional constant factors. Comparing Eq. (14) (with @=/)
and Eq. (15), we now see that aside from these constant
factors, the form of f&(y) as given by Eq. (14) is un-

changed throughout the range T & T~, and in the simplest
case, the constants are the same in both regions. As we
shall see below, this simple case appears to be observed in
experiments.

Let us now relate these results to experiment by using the
basic dynamic scaling relationship ~~= ~os~. Obviously, this
relationship implies that critical slo~ing down occurs as the
typical cluster size diverges approaching the critical line. It
also implies that lines of constant characteristic relaxation
time r&, which are accessible experimentally (see below),
are also lines of constant s~. From Eqs. (11) and (13),
these lines are given by

sg~ A (H) I&HI ~, ~H= [T's(H) —T]//Ts (13)
Tj(H) T/(0) —IC/[T/(0) —Ts]4' 'IH (18)

Although there is some evidence for nonuniversality of
dynamic exponents, ' we will assume that the static ex-
ponents do not depend on field. In this case P=Q, and A

becomes independent of H (see below). The generalized
scaling assumption of Eq. (11), together with Eq. (10), im-

plies the important relation $=2iC/, relating the crossover
exponent and the exponent ii/ characterizing the shift in the
critical temperature by the magnetic field, independently of
the universality assumption. 2 This relation can be directly
verified substituting Eq. (10) for the critical line in Eq. (13)
and requiring that s~ be independent of temperature to
lowest order in the field-dominated regime. Conversely, it
can be shown that the validity of $-2P guarantees that s&

is independent of temperature in this regime, even without
universality. The relationship $-2Q has recently been con-
firmed in Eu„Sui „S (Refs. 8 and 17) and in an amorphous
spin glass. "

A convenient expression for the typical cluster size near
the critical line is s~cc IH —H, l ~, where the critical field
H, (TO) at a given temperature To, is defined by Eq. (10)
with Ts(H) = To. This is a useful equation when approach-
ing the critical line at constant temperature.

From Eqs. (11) and (13) we can now derive the form of
the scaling function f~ near the critical line:

fg(lyl)=lyl ~~(g —lyl '~) ~, lyl-g ~ . (14)

Clearly this diverges when lyl =H/Ial+=g +, which is
equivalent to the critical line of Eq. (10). The amplitude re-
lation can also be explicitly obtained and is given by
A (H)~ H "' 4'/~i. Let us compare this result to that of
Eq. (12) in the field-dominated region. Since Iyl ~ in
this region, Eq. (12) can be rewritten, to first order in
ly I

—i/0 as

fq(lyl)- lyl '(1+4 'lyl '~) ~, Iyl- ~ . (15)

l~gg/~ELHI

= (H'"/l~gHI ) 1. — (19)

Here ~/ii and e~= [T~(H) —Ts]/Ts are the reduced tem-
peratures at zero and finite fields, respectively, deduced
from a criterion like the inflection point of x" at a frequen-
cy f. In Eq. (19) we have neglected constant factors. By
contrast, if we use the nonuniversal form of Eq. (13) for s&

where C is a constant and T&(H) is the characteristic tem-
perature for a given field and frequency (or relaxation
time). At H 0, T/(0) —Ts~ r~

' "', so as might be expect-
ed, the curvature increases as r~ increases and T/(0) ap-
proaches Ts. Equation (16), coupled with Eq. (12), also im-

plies that at Ts (e-0), s~~ H ', and on a line of constant
r, Hce r '/~ and dH/dT~ H. This means that the lines of
constant v are linear in the H-T plane as they cross the
vertical axis at Tg. As 7 increases they cross at lower fields
and with lower slope. These features are well known in ex-
perimental studies of several spin-glass systems, """
where r~ is taken as I/cu (co is the frequency of the ac sus-
ceptibility measurement), and where T&(H) is determined,
for example, from the inflection point of the out-of-phase
susceptibility X" at a fixed frequency.

Equation (11) with s&=const relates the magnetic field
and temperature along the lines of constant relaxation time.
Implicit differentation of this equation sho~s that in the
case ~here these lines have inflection points these points
should fall on a curve where H~ Ill+2, which is conse-
quently governed by the same exponent f =$/2 of the criti-
cal line. This curve joining the inflection points of the lines
of constant relaxation time constitutes an alternative, pre-
cise definition of a crossover line.

Of special interest is the determination of the critical line
Ts(H), which has been attempted in a number of studies
recently. Normalizing to the zero-field limit "' one can
transform Eq. (11) with Eqs. (14) and (15) into
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near the critical line, we obtain in the same way

legs/eel"4'= (~/I'IHI')" (~—/lleIHI4') "4' " . (20)
-O.4—

It is obvious that Eq. (20) reduces to Eq. (19) as $- @.
Comparing Eqs. (19) and (20), it is apparent that the

linearity of scaling plots of legs/e~l as a function of
(H &/~e~H~) can test the universality hypothesis (see Fig.
1). However, caution should be exercised because in the
high-field limit, an equation similar to Eq. (19) [but with
+1 instead of —I, see Eq. (12)] applies for T& Ts. It is

tempting to use such an equation' to extrapolate to
lt yg/e fHI =0, where r "and e~ gFP4; however, such
a formal determination of the critical line does not, in fact,
test the critical behavior at all except at H=O. Two stud-
iess, &i have explored the T & T reg, me and have indee
found linear scaling behavior as predicted by Eq. (19), with
no change in slope over the entire range of data for T ( Tg.

Our analysis, coupled with these results, has thus brought
out the following new points: (1) While the linear scaling
behavior of Eq. (19) was originally found empirically, we
have derived it theoretically from the assumption of a criti-
cal line esH" FP4 and of universality in the exponents along
the critical line. (2) Our derivation does not rule out the
possibility of a change of slope in Eq. (19) as the critical line
is approached, but such a change of slope can only affect
data at times longer than conveniently accessible in present
experiments. (3) The fact that the scaling behavior follows
Eq. (19) rather than (20) provides evidence for universality

fO~ fH

FIG. 1. Dynamic scaling plot of Eu04Sr06S data by Bontemps
eral. (Ref. 8) (circles), and of Eq. (20) for different values of $/qh

(same units as Fig. 3 of Ref. 8). Deviations from a straight line in-

dicate nonuniversality of exponents.

of exponents.
In summary, the critical cluster model of spin glasses pro-

vides a simple framework for understanding many static and
dynamic properties of spin glasses.

This work was begun in close collaboration with B. Bar-
bara and S. Barnes.
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