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Ordering and relaxation in spin glasses
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Ordering and relaxation in spin glasses are discussed in terms of the diffusion of the point representing
the system in eigenstate space. On this approach, the spin-glass transition T~ appears as a percolation
threshold; stretched exponential relaxation behavior extends from Tg to an upper characteristic temperature

T,. Predictions are consistent with three-dimensional Ising simulations by Ogielski. Experimental data sug-

gest that for real metallic spin glasses T, = 1.5 T. This approach may be relevant for other broad-spectrum
relaxation phenomena.

I. INTRODUCTION

The question of the existence of an ordering temperature
for spin glasses has been hotly debated for a long time; it is
generally assumed, at least implicitly, that if there is an or-
dering temperature it can be identified with the ac suscepti-
bility cusp temperature T. However, it has been found that
a precise definition of the ordering temperature is made dif-
ficult by relaxation effects, or in other ~ords, the effective
T is dependent on the time scale of the measurement. Be-
cause of this, the existence of a real transition has remained
in doubt.

In this article I will discuss relaxation and ordering in spin
glasses and conventional magnetic systems in general terms,
concentrating on the Ising case for simplicity, and following
along the lines of a brief analysis published elsewhere. ' The
spin-glass transition appears as a percolation threshold in
eigenstate space and is preceded at higher temperature by a
crossover from paramagnetic behavior to nonparamagnetic
stretched exponential relaxation. I will quote extensively
from simulation results2 plus a selection of experimental
data which can be interpreted in this way. Finally, and
more speculatively, I will propose that this type of descrip-
tion of relaxation in a disordered system may be sufficiently
general to be applicable to a wide range of complex systems
which show characteristic broad-time-spectrum phenomena:
magnetic lag, mechanical creep, I/f noise, and so on.

identify Inp(E) with the entropy S and E with the internal
energy U. We know that dS/dU=1/T. This means [see
Fig. 1(a)l that once we have the curve S( U) and we know
the temperature T, the only eigenstates that contribute to
the physical properties of the system at that particular tem-
perature are those with E, = U( T), where U( T) is deter-
mined by the condition that the line with slope 1/T is
tangent to the curve S( U) for U= U( T). This is because
higher-energy states are too high in energy to be populated,
and states of lower energy are populated but are so relative-
ly few in number that their contribution to any thermo-
dynamic average is negligible.

One further thermodynamic relation that will be useful is
for the specific heat:

C= —(T d2S/dU )

This follows immediately from the standard definitions. %e
can now describe different sorts of transitions. If S(U) is
concave upwards over some range of U, the system will
have a first-order transition, going from point A to point 8
in Fig. 1(b). There need be no discontinuity in S(U) or
any of its derivatives, so a first-order transition need not be
strictly a "phase" transition, as is we11 known.

As an example of a second-order transition, let us take an
Ising ferromagnet with W spins so i =2~. All eigenstates
have energy E~ and moment mi as good quantum numbers.
Schematically, p(m) is shown as a function of m for dif-

H. THERMODYNAMICS OF TRANSITIONS

In order to underline the essential difference between a
conventional transition and a spin-glass transition, I will
describe things on a very elementary level using a slightly
unconventional vie~point of standard thermodynamics.

Suppose we have a Hamiltonian for our system which can
be diagonalized to give j eigenstates of energy Ei, i =1 to ~.
In addition, we have a very weak time-dependent interac-
tion which can induce transitions between the levels without
changing the Ei. This interaction puts the system in contact
with a bath at temperature T. The populations of the levels
will be given by the Boltzmann factor

Now if i is large, we can make a plot of the log of the
density of states per unit energy Inp(E) against E. We can

FIG. 1. (a) Schematic plot of entropy S as a function of internal
energy U. The straight line is a tangent with slope 1/T Only states.
corresponding to point C, where dS/dU- 1/T, contribute effectively
to the physical properties of the system at temperature T. (b) As
(a) for a system with a first-order transition which takes it from A
to 8 at temperature T, The slope of the commo. n tangent is 1/T,
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FIG. 2. The density of states as function of magnetization rn for
an Ising ferromagnet at certain fixed values of U (or T).

ferent E& (i.e., different temperatures) in Fig. 2. Below T„
p has two maxima at m = 2 mq, and the number of states
with m = 0 is infinitesimally small compared with the
number in one or other of the maxima in the thermo-
dynamic limit N ~. Then for T & T, once the system is
in one of the maxima by a random walk among states of the
same energy, it will (thermodynamically) never end up in
the other maximum because the probability of it finding it-
self in a bridge state with m 0 is just too small. The sys-
tem has become noncrgodic, i.c., states with the same ener-
gy arc no longer mutually accessible by the relaxation pro-
cess. However, below T, all states of given E having the
same sign of m are mutually accessible. At T, there is an
incident on the specific-heat curve, as above T, the system
follows the curve S- lnp (v, m =0) and below T, the curve
S lnp (i,m mr). d S/dU or d3$/dUs will be discon-
tinuous, leading to a step or change of slope in C( T), from
Eq. (1).

c can also represent the eigenstates of any N-spin Ising
system by the vertices of an %-dimensional hypercubc. 2

Suppose we relax by single spin flips; then the system will
diffuse from vertex to near-neighbor vertex. For the fcr-
romagnct, the states of different energies are so arranged on
the hypcrcubc that they are either all mutually accessible
(E & Ur ) or split into two families, each internally mutual-

C

ly accessible (E ( Ur ).

III. ISING SPIN GLASS

Now consider an Ising spin glass. Because of the random
nature of the interactions between the spins, the cigcnstatcs
of each given energy E will be distributed in a much more
irregular manner on the hypercubc than in the case of the
fcrromagnct. At low temperature there will be a thermo-
dynamically significant number ( —e ") of alternative
ground states, ' isolated states on thc hypcrcubc surrounded
by states of higher energies (these ground states have a dis-
tribution of energies). 3

Suppose we start at high temperature. The entropy is

high, so the hypercube is densly covered in available states
which will all be mutually accessible by relaxation. The sys-
tem is paramagnetic. As the temperature is lowered, the
entropy drops, and the available states thin out. At some
temperature there will be a crossover to a situation where
the available states form a ramified structure resembling a
fractal. The system will percolate among these available
states; they will all be mutually accessible on a finite time
scale. The system is still ergodic, but the way it relaxes has
changed qualitatively. As I have pointed out, ' because of
the ramified nature of the available diffusion path, long-
time relaxation will be of the stretched exponential form
exp( —ts) with p ( 1 in this range of temperature. Alter-
natively, for an experiment done on a short-time scale the
system will be effectively trapped in one part of phase space
in this temperature range. As temperature is lowered fur-
ther at a well defined temperature, the density of available
states on the hypercube will attain a value corresponding to
the percolation threshold. At this temperature the relaxa-
tion exponent p should be equal to ~ (Ref. 1), from the

known properties of the percolation threshold fractal in in-
finite dimension space. ~ Below this temperature the eigen-
state space will split up into nonpercolating clusters, i.e., the
system will be nonergodic as states on different clusters will

not be mutually accessible. We thus have a strictly defined
temperature at which ergodicity breakdown sets in. At
lower temperatures still, clusters will break up further into
smaller noncommunicating clusters.

Because of the irregular structure of the eigcnstate distri-
bution, there is no reason to expect an accident in the ther-
modynamic specific-heat curve at the ergodicity breakdown
temperature. The number of available states will evolve
smoothly as a function of temperature through this tem-
perature, so d2S/dU will evolve smoothly. The contrast
with the Ising fcrromagnct case outlined above appears to
be related to the absence of a conventional ordering param-
eter in the spin glass. There may be practical problems in
some systems to measure the specific hest slowly enough to
reach the true thermodynamic value.

The difference between the standard second-order transi-
tion and the spin-glass transition is that in the former, the
system is either ergodic (T & T, ) or nonergodic (T( T, )
on any time scale, while for the latter strict crgodicity break-
down only occurs at T», but apparent crgodicity breakdown
starts at T, on short-time scales.

IV. COMPARISON %ITH SIMULATION RESULTS

By far the most information available on the d = 3 near-
neighbor Ising spin glass is from large-scale simulations by
Ogiclski. The long-time relaxation of the correlation func-
tion q(t) ($(t)$(0)) shows qualitative changes of re-
gime. Above a characteristic temperature T= 4.5 J, relaxa-
tion is exponential (p= 1); from T=4.5 J down to T=1.2
J, relaxation is stretched exponential exp[ —(t/r)s) with 7

tending to ~ and p to ~ at T= 1.2 J, which Ogielski identi-

fies as the glass temperature. The scenario for spin-glass
ordering which I have outlined above is consistent with
these results; wc can associate the upper characteristic tem-
perature with the "dense to nondcnse" crossover, and thc
lower spin-glass ordering temperature with the percolation
threshold. The fact that in the simulation the exponent p
tends to ~ at the ordering temperature is particularly cn-



33 ORDERING AND RELAXATION IN SPIN GLASSES 3589

10

~~ 10

& 10
LL,:10

I

l

lo
I

I

I
0

I o
I

I 0
I o

9
I

o
I

I

I

I

I

~ I

I

I

I

I i

o
0

0

I

g g g
I

smoothly through Tg. I will compare with the experiment in
Sec. V. Secondly, on an intermediate-time scale or below

Tg [and always for q(t) &0.5] Ogielski finds g(t) —t

with x & 0.5. On the diffusion approach this regime would
correspond to diffusion within a nonpercolating cluster for
T & T~, or within an analogous short-range structure for
T, & T) Tg. This corresponds to the time scale within
which the system is diffusing among states "within one
well. " Because of the wide range of distance scales needed
to describe the nonpercolating cluster, it is obvious that the
relaxation will be characterized by a wide range of relaxation
times, but it is not yet clear to me why the result should be
algebraic relaxation.

V. COMPARISON WITH EXPERIMENT

3 4 5 T(J)

FIG. 3. The relaxation times (r+ I), 0; rF, ~ plotted against

temperature from simulation results on a (three-dimensional, +8
Ising spin glass, Ogielski (Refs. 2 and 5). r is defined from

q (t ) - t "exp[ —(t/r )S] and r F- I/ [I—q (I ) ]. (r + 1) is plotted,
rather than ~ for consistency of definition in the high-temperature
limit.

couraging.
In addition to the long-term relaxation behavior, it is pos-

sible to identify two other relaxation regimes. The first is
on very short-time scales, one Monte Carlo step per spin.
From the results for q (Ref. I), which Ogielski does not dis-
cuss explicitly, we can directly obtain the rate at which indi-
vidual spins are flipping at any given temperature. This
characteristic time given by the inverse flip rate rj= I/
[I —q(l) ] can be very much faster than the relaxation time
7, as each given spin can flip backwards and forwards many
times while its overall time-average correlation on an inter-
mediate time scale remains almost constant. I have plotted
(Fig. 3) rf and r both taken from Ogielski's results. ' The
important point is that vf becomes essentially equal to v at
the upper characteristic temperature T„which one could ex-
pect as above this temperature relaxation is exponential, so
there is only one characteristic time scale. 7.q varies

A number of experiments have shown that short-time-

scale relaxation properties of metallic spin glasses are quite
different from those of standard ferromagnets. Ogielski's

simulation results show that for the three-dimensional Ising
spin glass, relaxation is nonexponential up to a limiting tem-

perature T, which is about 3.75T~. The arguments I have

given suggest that the existence of T, should be a general

property; however, one can expect the ratio of T, /Ts to be
system dependent. I will now show that there is experimen-
tal evidence in metallic spin glasses that a temperature T,
can be defined with T, /Tg about 1.5.

It is difficult to measure q(t) directly at different tem-

peratures and to pin down a temperature at which relaxation
becomes strictly exponential. Neutron-spin-echo (NSE)
measurements get close to this, but existing data well

above T~ are rather scanty. The results, as they stand, show

that relaxation is definitely nonexponential for T & 1.3T~.6

As an alternative, we can use the technique suggested by

Fig. 3. As I have noted' the temperature-dependent part of
the resistivity of a spin glass is due to the inelastic local-
moment-conduction electron-spin-flip scattering, and so can
be used to estimate the local-moment spin-flip rate (define
in just the same way as rF in Sec. IV) in absolute terms.
This can be compared with experimental values of the
local-moment correlation times in the same alloy, when
these are available. Figures 4(a) and 4(b) are comparisons
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FIG. 4. (a} Estimates of the local-spin-correlation time T, 0 from NSE (Ref. 6) and of the spin-flip scattering time (Ref. 7) ~F, ~ for
Cu-5 at. '/o Mn. (b) Estimates of the local-spin-correlation time ~, 0 from Mossbauer linewidth (Ref. 8} and of the spin-flip scattering time
(Ref. 7} TF, 0 for Au-3 at. % Fe.
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of this sort. In the first case, ~ is estimated by fitting with a
stretched exponential to the NSE data for CuMn 5 at. '/o.

~~ is estimated from data in Ref. '7. In the second case, for
AuFe 3-at. % effective ~ values from Mossbauer linewidth
datas are compared with v+ values from resistivity data. 7 In
both cases, the ~ extracted from the data is an "effective v"
obtained by fitting experimental results to a model of relax-
ation which is incomplete. Also, the ~~ values have a sys-
tematic uncertitude because a free-electron model was used
to pass from p(T) to rF. Nevertheless, even taking the fig-
ures with a pinch of salt, there is a clear resemblance to Fig.
3, with ~F= v for T above about 1.5T». This is evidence
that for T above this temperature there is only a single
characteristic relaxation time for the spin glass, or, in other
words, T, = 1.5 T» in real metallic spin glasses.

This result thro~s some light on ESR measurements in
spin glasses. It is well established that for T &( T» there is
a resonance line shift which is due to Dzyaloshlnsky-Morlya
interaction anisotropy. This anisotropy is nonzero because
the system of spins is blocked "within one well" at low
temperatures. Ho~ever, when T is increased, the resonance
shift only tends to zero at around 1.5T». ' '2 Following the
arguments given above, for temperatures up to T„ the sys-
tem is blocked "within one well" on short-time scales (i.e.,
it has not had time to percolate completely). The ESR mea-
surement is on a short-time scale of about 10 '0 sec; we
would then expect a quasistatic resonance field shift up to
almost T,. The fact that a shift appears near 1.5T» is con-
sistent with the estimate for T, from the other experiments.

The observed frequency dependence of the effective T» in
susceptibility measurements'3 could clearly be interpreted in
terms of the temperature variation of the relaxation.

VI. DISCUSSION

Spin glasses are not only of interest in themselves, but
also as test-bed systems in which to develop concepts which
one can hope wi11 apply to even tougher disorder problems.
Relaxation with a very broad spectrum of characteristic
times appears to be a hallmark of disordered systems. Lag
in ferromagnets has been analyzed in terms of logarithmic'4
or stretched exponential'5 decay. The susceptibility of con-
centrated dielectrics sho~s behavior which is equivalent to a

stretched exponential time dependence, '6 " Creep in poly-
mers and glasses also follows the stretched exponential form
(with an exponent P = T) and is accompanied by aging ef-

fects which appear to vary logarithmically with time after
quench. '8

It has been suggested a number of times' ' '9 that a sin-

gle physical mechanism should be at the base of the ex-
planations for all these phenomena in apparently diverse
materials. I have argued above that the successive broad-
spectrum relaxation regimes observed in the Ising spin-glass
simulations2 can be understood in terms of general proper-
ties of diffusion of the point representing the system in the
eigenstate space of the complicated spin-glass Hamiltonian,
and that it is possible to interpret results on real spin glasses
along the same lines. The physical approach in terms of dif-
fusion in an eigenstate space where the energies of the
states have an irregular structure would seem to be applica-
ble, mutatis mutandis, to any strongly disordered system and
not to be restricted to spin glasses. It remains to be seen
whether the similarities between these different phenomena
are only superficial, or whether the systematics for the
behavior of the Ising spin glass carry over in detail to the
other materials. A rapid survey of some of the vast set of
existing experimental results seems to be encouraging.

In conclusion, I have discussed relaxation and onset of
nonergodicity in spin glasses in terms of diffusion of the
system point in eigenstate space. The spin-glass transition
appears as a percolation threshold; between T» and an upper
characteristic temperature T, the long-term relaxation
should be stretched exponential with an exponent P going
from T at T» to 1 at T,. These predictions are consistent

with results of large-scale simulations on a three-
dimensional Ising spin glass. An examination of experi-
mental data on real metallic spin glasses suggests that for
these Heisenberg materials T, =1.5T». This approach may
be relevant in other disorder problems, ~here there are
broad-spectrum relaxation processes.
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