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Dynamics of the two-dimensional axial third-nearest-neighbor Ising model:
Entrainment and diffusivity
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%e report results of a Monte Carlo study of the "equilibrium dynamics" of the two-dimensional axial

third-nearest-neighbor Ising model, which exhibits a modulated phase incommensurate with the lattice spac-

ing. The linear response function is shown to be a good predictor of model phases and boundaries. Two

phenomenological observations, entrainment and diffusivity, are related to other studies, both theoretical

and experimental.

Models with competing interactions have been of interest
because they yield a rich structure of modulated phases. '

Many techniques have been used to study the phase dia-

grams of models of this type. They include free-fermion
analysis, domain-wall free-energy calculations, exact solu-
tions of equivalent quantum Hamiltonian models, 4 phe-
nomenological finite-size scaling analysis, series analysis,
and Monte Carlo simulations. 7 In particular, the three-
dimensional axial third-nearest-neighbor Ising (A3NNI)s 9

model has been shown to have an apparent correspondence
with a number of crystals. Most of the Monte Carlo simula-
tions to date have examined the static equilibrium properties
of such models. The static structure factor has been exam-
ined to determine the location of the commensurate-
incommensurate phase transition boundaries. Here we re-
port on a dynamical equilibrium simulation of the two-

I

dimensional A3NNI model, which demonstrates the useful-
ness of another predictor of the commensurate-
incommensurate transition: the linear response function.

A phase diagram of the A3NNI model (Fig. 1) was ob-
tained by a conventional Monte Carlo study, using the
Hamiltonian

~= X ( —T)(JpStiSi*iJ+ JiStiSti ~i
lJ

+ J2StiStJ g2+ J3Sti ti g3)

where Jp= +1, Jt = —1, 0+ J2 P —1, J3= +0.1, and i and

j denote Cartesian coordinates on a square lattice. The
three commensurate phases shown have the following struc-
ture:

(I) ]1]1l1, (1,2) ]11[11]11,(2) ][11]]11
The peak in the static structure factor

1

S(k) = Xexp( —ikr) X [M(x+ r)M(x)] —X [M(x+ r)] X [M(x) ]
X x x

(2)

[where M(x) is the magnetization of row x] gives the
clearest signal of the phase transitions: In the commensu-
rate (C) phase it was narrow but very weak, in the incom-
mensurate (IC) phase it was narrow and intense, and in the
"paramagnetic" (PM) phase it was broad and weak. This is
consistent with other work on the structure factor in modu-
lated systems. s The peak in S(k) occurs at a k value equal
to the modulation wave vector. As the temperature was
swept, the value of the temperature at half-maximum inten-
sity of S(k) was taken as the transition point. Hysteresis
between ~arming and cooling runs established the error
bars.

In order to exploit the vector capabilities of the Control
Data Corporation CYBER 205 (which was used to run the
simulations), a "four-color parquette" updating scheme was
used in which groups of spins which do not interact directly
were updated together (Fig. 2). This is a generalization of
the "two-color checkerboard" technique used to vectorize
models with nearest-neighbor interactions. '0 Thus, in the
figure all the sites labeled A would be updated together,
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FIG. 1. Phase diagram of the 2D A3NNI model. (1), (12), and
(3) are commensurate phases. All lines are continuous transitions.
Solid lines are domain-eall free-energy calculations; ' dashed lines
are to guide the eye. The dotted line is the disorder line (not a true
phase transition).
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FIG. 2. Updating scheme (shown for an 8& 8 lattice).

which is the Fourier transform of the connected correlation
function

G(r, r) = X [M(x+ r, r+ r)M(x, r)]

—X [M(x+ r, r+.)] X [M(x, r)] (4)

exhibits a sharp peak at nonzero frequency and wave vector,
but only within the incommensurate phase (Fig. 3). M(x, r)
is the time history of the row magnetizations. In the com-
mensurate phase a weak peak is found at zero frequency,
awhile the paramagnetic phase shows a broad, less intense
peak. In order to confirm this behavior, we also looked at
the axial next-nearest-neighbor Ising model, ~here the
phase diagram is well established. '2 '5 The same behavior
was observed: The sharp peak at nonzero frequency was
unique to the incommensurate phase. The temperature
dependence of the peak's frequency, as well as the max-
imum intensity of the structure factor, are given in Fig. 4.
The peak frequency increases monotonically with tempera-
ture within the incommensurate phase; the temperature
where it first deviates from zero frequency is consistent with

then those labeled 8, and so on, until the entire lattice had
been passed over (the subscripts indicate the numbering
scheme used for the lattice). This method proved extreme-
ly efficient, with a per site updating time of 160 ns. The
heat-bath algorithm" was chosen to update individual spins,
since it provides rapid thermalization in systems ~here there
are a small number of states at each site. The system was a
two-dimensional, 48&172 lattice with periodic boundary
conditions. For the dynamic study, after initialization (ei-
ther in a randomized "hot" configuration, or one of the
"cold" T=O ground states of the system), the lattice was
allowed to relax for 50000 passes ia order to come to equi-
librium at a desired temperature.

In the measurement portion of the run, row magnetiza-
tions M(x, r) (the average spin in a row perpendicular to the
axial direction) and the local energies of a representative
group of sites were sampled every 100 Monte Carlo passes
through the lattice. A current table of 100 such passes was
maintained in order to compute, and then average, the tem-
poral correlation functions of the local energies, as well as
the spatial-temporal correlation function of the row magneti-
zations. A total of 50000 measurement passes were taken,
i.e., averages were taken over 500 configurations.

The linear response function

S(k, eu) = Xexp[ —i(kr —cut)]G(r, r)

the incommensurate-commensurate phase transition, as
determined by the structure factor data.

The cause of this peak is found by examining row mag-
netization histories of the system. In the incommensurate
phase (Fig. 5) the pattern is clearly propagating, with a velo-
city of 3.7&10 sites/pass. This drift of the incommensu-
rate pattern has been previously observed by Selke and Fish-
er. 7 The commensurate pattern [Fig. 5(c)] is locked to the
lattice (note the fluctuation in position of a domain wall).
In the paramagnetic phase [Fig. 5(a)] fluctuations have des-
troyed any long-range ordering, in space or time. Since an
incommensurate pattern has no preferred location on the
lattice, it should respond much more readily than a com-
mensurate pattern to a driving force having an axial com-
ponent. The four-color parquette parallel-updating scheme
effectively provides such a force; since updating is per-
formed sequentially along (1,1), disturbances will propagate
in that direction. This anisotropic updating entrains the in-
commensurate pattern. Increased temperature loosens the
pattern and increases the system response to this force.

The Fourier transform of the local-energy correlation
shows two features: a constant background, corresponding
to short-term fluctuations, and a peak due to pattern drift.
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FIG. 4. Temperature dependence of cue and S(k) (~,„.Arbitrary
units for S(k) (m,„.All parameters as in Fig. 3, except T varies.
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TABLE I. Diffusivity measurements.

Theoretical Experimental

Dk (cm /s)
D, (cm2/s)

Dk/D,

1D
SG-MD

2D
Present

2+0.5

Quasi-2D
8aM nF4

0.14
0.007

20

3D
BaNawb50(5

1.3+0.2
0.02
65
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L
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L hl i 8 l3L1

The central frequency of this peak is just t~ice that of
S(k, ai), since equivalent energy fluctuations occur twice in

the passage of a row-magnetization wave over a given lattice
site. At the transition to the incommensurate phase, the
kink diffusivity can be obtained from the width of the peak
in S(k, co), and the therma1 diffusivity from the width of
the Fourier-transformed energy correlation, using the
fluctuation-dissipation theorem.

The fact that the kink diffusivity obtained from the
present two-dimensional calculation is slightly larger than
the thermal diffusivity is interesting when compared with
earlier theoretical and experimental studies. In two dif-
ferent three-dimensional incommensurate insulators an
unexpected high-speed diffusion has been observed. In
BaMnF4, Lyons eg al. l6 find from the linewidths and k
dependence of dynamic central-mode scattering a diffusivity
20 times greater than the directly measured thermal dif-
fusion constant in the same specimens. ' Similarly, in

Ba2Nawb50~5 Young and Scott' infer a kink diffusivity

FIG. 5. Row-magnetization histories: (a) "paramagnetic" phase
( T - 1.6), (b) incommensurate phase ( T = 1.4), and (c) commens-
urate phase (T=0.6). All parameters as in Fig. 3, except T, as not-
ed. Shading indicates row magnetization: pure white is M = + l,
pure black is M —1, Scale in the x direction is 86 lattice sites, in
the t direction 105 lattice updates.

which is 6S times as fast as that which can be calculated
from the data of Burkhart and Rice. ' The diffusivity in-

ferred by Young and Scott is manifested as an inverse relax-
ation time for acoustic phonons which varies as O'. It
is important to note that Dk = 1 cm2/s observed in

&a2NaNbsOts and 0.14 cm'/s in BaMnF4 are about 10' times
too fast to be due to ionic diffusion (e.g. , of Na+ ions in

BatNaNb50ts); such ionic diffusivities are of the order 10
cm . 0 Thus, in two different structurally incommensu-
rate insulators, two independent groups using unrelated ex-
perimental techniques have concluded that there is a dif-
fusion one to two orders of magnitude faster than thermal
diffusion of entropy fluctuations. Kink diffusion has been
suggested as a possible explanation of the fast diffusive
mode. 23

By comparison, molecular-dynamics model calculations24
for the one-dimensional (1D) sine-Gordon model (SG-
MD)' predict subdiffusive behavior for kinks (([r(r)
—r(0)]2) ~ r /3, where r is the kink position). This gives a
vanishing diffusion constant for kinks. The ordinary ther-
mal diffusion (due to phonons) is nonzero, since the
scattering rate for phonons in the model is finite. There-
fore, the ratio Dz/D, =O for this 1D model. (The phonon-
scattering rate goes to zero in the continuum limit, where
the kink width is much larger than the lattice spacing. In
that case the thermal diffusion constant must diverge. )

The present dynamical Monte Carlo study thus suggests
(Table I) a bridge between previous 1D theoretical predic-
tions and 3D experimental observations of kink and thermal
diffusion.

In conclusion, the linear response function S(k, co) ap-
pears to be a strong predictor of phases and phase transi-
tions in incommensurate systems. It remains to check if
this behavior is also manifested in Monte Carlo studies of
other incommensurate systems, and if random-site updating
destroys it, as the entrainment picture would suggest.

Discussions with Tom deGrand and Harry Jordan are
gratefully acknowledged.
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