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Optical diffraction on fractals
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Diffraction experiments are performed on two-dimensional deterministic fractals such as Cantor bars or

Vicsek fractals. %'e show that the intensity I (q) which is scattered at a wave vector q by a fractal grating is

simply its optical Fourier transform. This allo~s a direct determination of the Hausdorff dimension D and

of other geometrical characteristics of fractals. Applications of this analog method to experimentally ob-

tained aggregates are discussed.

Most of the fractals obtained in real experimental situa-
tions are self-similar objects, i.e., their geometrical charac-
teristics are invariant over scale dilatations. They are
characterized by the fractal dimension D which measures
the manner in which the mass M, embedded in a sphere of
radius R, increases: M(R) =—R . Similarly, the density-

density correlation function g(R ) conforms to a power-law
variation: g(R ) =—R (d is the Euchdean space dimen-

sion). Experimentally obtained fractals are usually analyzed
through this mass-radius relation or the two-point correla-
tion function. Current procedures consist of taking photo-
graphs of the objects under study, recording these pictures
in a computer through an image processing device, and fi-
nally calculating M(R ) or g (R ). It is also possible to have
access to D when studying the variation of the intensity

1(q) scattered by a fractal at a wave vector q:
I(q) =q D. ' This relation has been used to interpret
small-angle scattering experiments on silica gels' or col-
loids. '

In this paper, we present diffraction experiments on
deterministic fractal gratings. In particular, we are interest-
ed in one- and two-dimensional self-similar fractals which
are constructed recursively. For instance, Cantor triadic
bars are obtained by dividing a bar into three equal seg-
ments and removing its middle third. Then the same con-
struction rule is applied to the two remaining parts and so
on; the fractal dimension of this fractal is ln2/ln3. The
fractal of Fig. 1(b) has been introduced recently by Vicsek
as a two-dimensional model for imitating diffusion-
controlled deposition on a surface. ' The first cell, which
consists of five squares, is repeated according to its original
configuration ad infinitum These fracta. ls are generated on a
microcomputer and drawn on a precision graphics plotter
HP 7470. Finally, they are photographed using a high-
resolution 24-35-mm film (for instance, a Kodak Infocap-
ture AHU 1454 film allows a resolving po~er up to 500
lines/mm).

A first limitation arises from the A4 format of our graph-
ics plotter and from the minimum width of the lines which
can be drawn (0.2 mm). Consequently, the ratio between
the largest scale I. and the smallest one ~ is about
L/s =10 . For instance, in the special case of triadic Can-
tor bars or Vicsek fractals, as the factor of division at each
iteration is 3, we are limited to objects obtained from 7
iterations. This restriction is released if we use a more effi-
cient graphics plotter, of if we are interested in experimen-

tally obtained fractals. In these cases, the limitations arise
from the finite size of an elementary grain on the film,
which defines the smallest scale which can be recorded on
the film (here a;„=2 p, m), and from its size L which

determines the resolution of I(q) measurements. Thus,
the ratio L/a, which gives the number of scales which may
be recorded on such a film is L/a =—10 . In practice, most
of the fractals encountered in experimental situations have a
smaller number of scales and can be recorded by this way.

The optical arrangement on which the diffraction experi-
ments were performed is represented in Fig. 2. The beam
La of an argon laser (X = 488 nm, 600 mW) is expanded by
a microscope lens I; at its focal point, a small pinhole (25
ii, m in diameter) acts as a spatial filter selecting the
transverse mode TE00. L is a converging lens (Nikkor 690
mm, f =11). We assume that its aperture is smaller than

FIG. 1. Successive stages of generating iterative fractals: (a}
Cantor bars, (b) &icsek fractals.
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that of the expanded beam so that it can be considered to-

tally and uniformly illuminated. Moreover, in the following

we shall neglect any diffraction effect which might be intro-
duced by lens L. The fractal grating G to be studied is

disposed between lens L and screen S.
Let us now demonstrate that the diffraction pattern ob-

served on screen S is the optical Fourier transform (OFT)
of the grating. G is illuminated by a spherical wave which

converges on the screen, S. G and 5 being separated by a

distance d, the amplitude of this spherical wave just before
the grating is

a (x,y ) = ao exp —j (x'+y')
)d

x,y] [u,v)

In the plane of the grating, this amplitude takes a new

value,

a'(x,y) =a(x,y)T(x,y) (2)

where T(x,y) denotes the transmittance function of the
grating. On S, the amplitude diffracted by G is given by the
Fresnel's diffraction formula:6

FIG. 2. Schematic showing the experimental arrangement. La,
argon laser; 1, microscope lens; P, spatial filter; L, Fourier
transform lens; G, fractal grating; PM, photomultiplier; MCA, mul-

tichannel analyzer; M, motorized micrometer.

A(u, v)=
t

Ao ~ e W+oo

exp j (u'+ u')j A.d A.d

1 1

a'(xy) exp j (x'+y') exp — j (ux+vy) dx dy
A, d A.d

(3)

Now replacing a'(xy) in (3) by its value given by (1) and (2), one sees that the quadratic term exp[jm(x'+y')/Xd] which
appears in (3) vanishes. Finally, the amplitude of the diffraction pattern of G can be written simply as follows:

Ap rot + oo

A (p q ) = exp[jn )t d (p'+ q') ] ~ T (xy ) exp[ —2j n (px + qy ) ]dx dy
jXd J (4)

where p - u/)td and q = u/Ad are spatial frequencies. Apart
from the fact that a phase term exp[jw)td(p'+q')] takes
place in the prefactor of the integral in (4), A (p, q) is the
Fourier transform of the transmittance T(x,y) of G. Vary-
ing the distance d between the grating and the screen, we
can continuously change the magnification ratio of the dif-
fraction pattern. As far as we use a quadratic detector, such
as a photomultiplier, which records the energy diffracted at
(p, q), we measure the square of the Fourier transform of
T(x,y). In Fig. 2, this photomultiplier PM is connected to
a multichannel analyzer which records 1(p,q). A high-
precision motorized micrometer controls the displacement
of the photomultiplier and performs a precise scanning of
the Fourier plane. In our experiment, a translation of 10
mm corresponds to a variation in the diffraction angle equal
to 0.2S deg, A small pinhole (25 p, m) ensures the selection
of the wave vector (p, q). The uncertainty in the deter-
mination of the diffraction angle, due to the aperture of the
pinhole, is about 10 deg.

Let us now calculate analytically the OFT of Cantor bars.
The optical transmittance of the grating at iteration n,
T„(x,y), is determined recursively from To(xy ). In effect,
at iteration 0 the grating reduces to a single bar of width
e = I, centered at point x = 0; its transmittance is To(x )
=rect(e= 1, x =0), where rect(o, x) is a rectangle function
of width & at point x. At the first iteration, the transmit-
tance T~(x) is expressed as a function of To(x):

T, (x) = To(x)' g(» —I)+ T'o(x) &(x+ I),

I

tion exists at any stage n between T„and T„
T„(x)-T„ i(x)~5(x —3" ')+ T„ i(x)» 5(x+3" ')

Taking the Fourier transform of the two sides of this rela-
tion,

A„(q)= [2cos(2m3" 'q)]A„~(q)
Finally, the amplitude scattered by Cantor bars at iteration n

1s
t

n —1

A, (q) =2" Q cos(2m3'q) Ao(q); Ao(q) =
i=0 77q

t

Ao(q) is the amplitude diffracted by a single bar. We
deduce from A„(q) the intensity diffracted in the Fourier
plane:

n —1

l„(q)=2'" g cos(2m3'q)
i=0

t t t

As usual in diffraction experiments, l„(q)includes a form
factor F(q) and a structure factor. The form factor corre-
sponds to the intensity scattered by an elementary unit, here
a bar of width e,

sinn q

The structure factor S„(q) reveals the way in which the ele-
mentary units are distributed in the fractal. It is given by
the series

where ~ denotes a convolution operator and 5(x —xo) a
Dirac function at x =xo. Since the way of generating Can-
tor bars is iterative, it is easy to establish that a similar rela-

t
n —1

S„(q)=2" g cos(2m3'q)
i =0
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The coefficient S„(0)=2'" is equal to N', where N =2" is

the number of diffracting elements. The mass of a single
bar has been taken equal to 1 and S„(0)can be interpreted
as the square of the total mass M. Thus, experimentally, M
is simply measured by I„(0).In the following, we have
normalized S„(0)to 1.

Let us investigate more deeply the properties of S„(q).
First, the whole spectra can be deduced completely from the
range q = (0, 0.25) by symmetry operations about q =0.25
and q =0.50; this is a consequence of the regular properties
of Cantor bars. In Fig. 3, we have calculated and plotted
the structure factors $5, S6, and S7. Clearly, as n increases,
these spectra are composed of an increasing number of fre-
quency bands 8~, which are scale invariant over dilatations
of factor 3. For a fractal obtained at iteration n, we can de-
fine n —1 frequency bands 8&, each of them extending in
the range (0.25/3, 0.25/3J '), j varying from 1 to n —1.
The spectral density of S„(q)over a frequency band BJ is
defined by
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FIG. 4. Comparison between the calculated diffraction spectrum
of Cantor bars (up) and the experimental data {down); n = 7.

r+ Ig

(S„(q))= „' S„(w)dw
2q ~«3 (5)

In Fig. 5, we have calculated and plotted (S7(q )) over each
band 8&. %e find that it varies according to the power law

(S„(q))=q

where D is the fractal dimension (D=ln2/ln3). This rela-
tion, obtained after an averaging operation in order to break
up any regularity due to the deterministic properties of Can-
tor bars, is the same as the one expected for random frac-
tals. ' It results from the self-similarity of Cantor bars.

Experimental and calculated spectra of Cantor triadic bars
are compared in Fig. 4 (n =7). Here, the resolving power,
b, , which measures the capacity of separating two wave vec-
tors is proportional to 1/L: 5-2.85X10 ' pm '. The

0.5.,

largest spatial frequency (0.065 p, m ), which is associated
with the smallest scale e of G, has been normalized for con-
venience to q =1. The first zero of the form factor F(q)
occurs for q = 1; thus, at high spatial frequencies, F (q )
smears out the structure of the grating. On the contrary, at
low angles (q (0.25), F(q) =—1, and 1„(q)=—S„(q).We
have calculated (S7(q)) according to formula (5) for the
experimental spectra. The resulting data are presented in

Fig. 5; at very low angles the experimental data cannot be
used, since they are affected by the contribution of a central
peak due to the incident beam. The calculated value of D
fits with the expected one within an uncertainty of 100/0, this
includes the reproductibility of the experiments. This large
uncertainty is due to the small number of iterations used to
construct the fractal which has been studied.

The preceding method can be generalized to any deter-
ministic or random fractal in two dimensions. The experi-
mental procedure is applied identically with the proviso that
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FIG. 3. Structure factors of Cantor bars obtained for n =5, 6,
and 7.

FIG. 5. Log-log plot giving the variations of (S7(ql} for Cantor
bars. The curves showing the calculated data {) and the experi-
mental results (0) have been shifted for clarity.
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FIG. 6, Structure factor of a Vicsek fractal (n = 5} and its experi-
mental diffraction pattern.
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a two-dimensional (2D) scanning of the Fourier plane is
necessary to record I„(p,q) completely. Figure 6 shows the
calculated structure factor Sq(p, q ) of a Vicsek fractal
(n = 5) and its OFT. They clearly exhibit invariance over
dilatations of factor 3. As above, at high spatial frequen-
cies, the structure of the grating is smeared out by the form
factor, i.e., the diffraction pattern of a square of side e. We
have checked that the diffracted intensity averaged over
each of the frequency bands, which are scale invariant,
varies according to the power-law variation (6).

Summarizing, we have presented an analog method for
performing OFT of 2D fractal gratings. The diffraction pat-
terns possess the same symmetry properties as the objects in
real space; they exhibit self-similarity because of the fractal
nature of the gratings. Applications to 1D Cantorian triadic
bars have been described in detail; we have compared the
experimental spectra to the exact one, obtained from analyt-
ical calculations. In particular, we have sho~n that the
method enables a direct determination of I., &, and D. Ex-
tensions to 2D deterministic fractals have been discussed
briefly; further applications to random 2D structures are
now in progress in order to investigate experimentally ob-
tained fractals.




