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Hopping diffusion across interfaces
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%e study the hopping diffusion on a linear chain with different hopping rates on the left or right of the
origin. The relevance of our model with respect to experiments on interdiffusion between different solid
materials is pointed out.

Molecular transport across a simple interface between two
different solid materials, e.g. , metallic or semiconductor
films or between solid ionic conductors represents a consid-
erable theoretical challenge if discreteness of the jumps is
properly taken into account. In this short note we present
the simplest model-preserving discreteness and a minimal
description of jurnp rates in both lattices. It is composed of
two different one-dimensional Ising lattices meeting at the
origin and treated with Kawasaki kinetics (like the Glauber
model') with the spin-flip rate u in the "positive direction"
lattice and p in the "negative direction" lattice. If at is the
Ising spin variable for lattice site l(at = +1) then the occu-
pation number of site /is nt- (1+cr )t/2. Thus the occupa-
tion number transport equation is equivalent to the 61auber
kinetic equation for spins.

We write the transport equations of our model

n, (t) = X [K~( k~(t) —K)t+g~(t) ]n„(0)
k=0

+J,dt'Ht(t —t') np(t'). (13)

The functions H and E are

expressed by the fact that

nt(t)+n (+~(t) =1, for I«0.
The same result for the nt(s) can be obtained if we start

from a more general point of view. The solution nt(t) for
i «0 is given by the initial and boundary values nt(t =0)
and np(t) by the following expression which is a slight gen-
eralization of an equation due to Kidder, '

u(nt+& 2nt+nt t), fo-r l«1,
nt= u(n& —np)+p(n ~

—np), for l=0,
p(n(+t —2nt+n( t), for I = —1,

subject to the initial condition

(1)
(2)
(3)

K, (t) =e ' 'l~t~(2ut),

Ht(t) = Kiti(t).

(It is the modified Bessel function. )
The LT of H and E are'

(14)

(15)

1, forl=0,
0, for I )0. (4)

and

H (s) =.~'~

u(nt+t —2nt+nt t), for/«1,
snt= u(nt —np)+p(n &

—np)+1, for I=O.

p(nt+' —2nt+nt ~)+I, for I = —1.

(5)
(6)
(7)

This system is solved by the ansatz

Denoting the Laplace transform (LT) of n, (t) by
nt(s) =f dt e "nt(t), one has the difference equations

0

Kt(s) = [s(s+4u)] ''v'. (16)

If we use the initial condition (4) and apply Eq. (13) also
for l=0 (with p replacing u), then we can express the
whole set of nt(s) by np(s) only. Finally, np(s) is deter-
mined from particle number conservation. This leads to the
same expressions (8), (9), and (12).

Further quantities of interest are the penetration depths

1

n0~', for ( ~ 0,
'I

nl
n0 ——~~'~+ —, for ( ~ {),

s s

with v and ~given by

(I+-(1))= X In+, (t),
l=l

~hose Laplace transforms are found to be
t

{I (s)) = np(s) , (I (s)) =—np(s)
s s s

(18)

v=4u(ds+4u+ Js )

w =4p(v's+4p+ Js )

Equation (6) allows us to determine n p(s) as

(10)
In the continuum limit at times t and distances ( approach-
ing infinity in such a way that I'/t is kept finite we find from
(16) that K and H are given by the asymptotic representa-
tions (I is replaced by the continuous variable x):

1 vs+4p+Js
s Js+4p+&'s+4u (12)

In the special case of u = p the symmetry of the solution is

H(xs) =e

K(xs) =e ~"'~t/(2&su).
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The LT of (13) now simplifies to the usual expression' 2.0

n (x,s) = dx' [E(x —x', s ) —K (x + x', s ) ]n (x', 0)
«l P

+ H(x, s) n (O, s). (21)

This is the solution of the diffusion equation with diffusion
coefficient ot for the positive x direction subject to the given
functions n(x, 0) and n(0, s). Under the analogous initial
condition to (4)

n(x, 0) =8( —x) (22)

(8 is the unit step function), we obtain by the same pro-
cedure as used before

n(0, s) = —~1 Ep (23)

which has to be compared with the hmit of no(s) given in
(12) for small s (& a, p [note that by Eq. (23), n(0, t) is
independent of t ].

The solution n(x, t) can finally be written as~

n(x, t) =

X~ erfc ~, for x~0a+ p 2 nt
t

1 ——Ja erfc— X
for x «0

n+ p 2 pt

(24)

a n (0+,t) = p n (O, t)
BX BX

(25)

The asymmetry of n (x, t) in the presence of different rates
a and p leads to nonequal penetration depths for x +0 and
x&0,

(x+(t)) = Want, (x (t)) = ptn+ p a+ p
(26)

Therefore, (x+(t))/(x (t)) =v'a/p, in contrast to the
time-dependent ratio (I+(t))/(I (t)) in the discrete case,
see Eq. (18). A quantitative illustration of discreteness ef-
fects is given in Fig. 1. There we show the decay of no(t),

n (x, t) is continuous at x = 0 and fulfills the conservation of
current condition
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FIG. 1. Decay of np(t) for the rates a=1 and P-0.1. Curve (a}
results from Eq. (27) and (b) is the continuum limit n(0, t).

obtained from the simpler initial condition nt(0) =St, o, and
compare it with its behavior n(0, t) = [Gart (Wa+Wp)] ' in
the continuum limit.

Experimental techniques, such as perturbed y-y angular
correlation (PAC)' or Rutherford backscattering' have suc-
cessfully been used in the past for probing interdiffusion
processes at the interface between solid materials. A depth
resolution of a few atomic distances should make it possible
to obtain direct information about the occupation nt(t) of
probe atoms near the interface. Our model suggests that
useful microscopic information, for example, jump rates
across the interface, could be deduced from such experi-
ments. Clearly, for an actual comparison our model has to
be extended by taking into account more realistic material
parameters, for example, a potential energy difference and a
difference in lattice structure between the two phases.

no(t) = 1
[ ae ' '[Io(2at ) + I t (2at ) ]

Pe 's'[lo(2Pt)+—I&(2Pt)] ], (27)

We thank G. Schatz for helpful discussions. This work
was supported in part by the Deutsche Forschungsgemein-
schaft (Sonderforschungsberich 306) and by the U.S. Na-
tional Science Foundation.

Permanent address: Department of Chemistry, State University of
New York, Albany, NY 12222.

'Roy J. Glauber, J. Math. Phys. 4, 294 (1963).
2D. V. %idder, The Heat Equation (Academic, New York, 1975).
M. Abramowitz and I. A. Stegun, Handbook of Mathematica/ Func-

tions (Dover, New York, 1972).

4J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1956).
~%. Keppner, T. Klas, %. Korner, R. ~esche, and G. Schatz, Phys.

Rev. Lett. 54, 2371 (1985).
6%'. K. Chu, J. ~. Mayer, and M.-A. Nicolet, Backscattering Spec-

trometry (Academic, New York, 197S).


