
PHYSICAL REVIE%" 8 VOLUME 33, NUMBER 5 1 MARCH 1986

Effects of trilinear symmetry breaking on the Potts-model transition
of uniaxially stressed SrTi03
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A Landau analysis shows that a break of trilinear symmetry in the continuous three-state Potts
model with linear and quadratic symmetry breaking is relevant for the trigonal-to-pseudotetragonal
phase transition in uniaxially stressed SrTi03 along [1+51+5 1 —25], and that the effects of quar-
tic symmetry breaking are vanishingly small. The shift of the tricritical stress parameter 5, is large
enough to mask fluctuation corrections to 5, /5, in d =4—e dimensions, and a number of quantita-
tive results for the phase diagrams are obtained.

Attention has been drawn recently to the study of the
effects of symmetry-breaking perturbations on the phase
transition of the continuous version of the p-state Potts
model, motivated by physical realizations of the
model. ' Of particular interest is the three-state model
which has been pointed out to describe, among other
things, the magnetic phase transition in cubic ferromag-
nets with easy axes along the cubic axes in a [111]diago-
nal magnetic field, and the first-order trigonal-to-
pseudotetragonal structural phase transition in [111]-
stressed perovskites like SrTi03. Blankschtein and
Aharony (BA) suggested further than an off-diagonal
stress along [1+5,1+5,1 —25] applied to SrTi03 should
yield to a trigonal-to-pseudotetragonal phase transition
described by the three-state Potts model with linear and
quadratic symmetry breaking. 2'b' The effect of these
symmetry-breaking terna is to change the first-order tran-
sition for this model into a second-order transition at a
tricritical point or the first-order transition may disappear
at a critical point. Also, universal ratios of critical and
tricritical parameters (reduced temperature, "magnetic
field, "and order pariuneter) were proposed on the basis of
scaling arguments and confirmed by renormalization-
group (RG) calculations, to order e, in d =4—e
dimensions. 'b'

It has been pointed out that quadratic symmetry break-
ing yields a break of trilinear symmetry in the continuous
version of the Potts model, ' ' but a physical realization
has not been discussed before. In the present paper we
provide mean-field estimates of the effects of trilinear
symmetry breaking (TSB) on the Potts-model transition of
uniaxially stressed SrTi03 with the main purpose of find-
ing out if fluctuation corrections should take into account
the full trilinear coupling in a RG calculation in d =6—e
dimensions, and eventually to stimulate further experi-
mental and theoretical work. We also estimate the effects
of quartic symmetry breaking (QSB), which should be
considered together with TSB in the case of SrTi03.

Our main results are the following: (a) the shift of the
tricritical point due to TSS is large enough to mask the
fluctuation corrections calculated with the RG in d =4 @-
dimensions to the ratio 5, /5, of the tricritical and critical
stress parameters, 5, and 5, . (b) TSB does not alter the
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where b, and b, are coefficients that couple elastic to
order-parameter degrees of freedom in the cubic system
with three-component order parameter Q that represents
the high-temperature phase of SrTi03 beyond the second-
order pseudocubic-to-trigonal phase transition. Experi-
mental values for all five constants are available in the
literature. '0 With the stress along [1+5,1+5,1 —25], and
rotating the order parameter to brin one component
along [111] as $i =(Qi+Q2+Q3)/ » $2 (Ql Q2)/
v 2, and $3 ——(Qi+Q2 —2Q3)/W6, Eq. (1) becomes
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where b, ~0, b«0, but 6b, b, )0, for SrTi0—3.
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qualitative picture of the phase diagrams of BA I. (c)
Quantitative estimates of the effects of TSB on the phase
diagrams are obtained in terms of appropriate dimension-
less parameter3 that contain the experimental variables p,
T, and 5. (d) It is shown that QSB provides negligible
corrections to the results with TSB.

We follow the Landau analysis for perovskites of BA II
and take the free-energy functional for uniaxial stress
o,j ———pa;al in the direction of the unit vector with com-
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Since r, ~(r2, r3), the arder-parameter component si
orders first as the temperature is lowered from the pseu-
docubic phase at constant p. The value of si that mini-
mizes Fgives the trigonal order parameter
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As the temperature is lowered further either $3 or s3
(eventually both} will order next, depending on the sign of
5 for which the coefficients ri ——ri+4(uo+vo)M and
r3 —r3+4(uo+vo)M of the terms in si and s3 vanish.
These new coefficients include the contributians due to
the shift of s i to si ——M +si by the small secondary order
parameter si, given by si ———[wi($3+$3)+g»$3]/r„
where ri ri+4(3——uo+vo)M and wj ——4(uo+vo)M. El-
iminating s i, as in BA II, we obtain to leading order in 5
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where r =ri r3 at——5=0,

g = —,'(r3 —ri)= —,'(6b, b, )p5+ 0—(5 ),
with the "external field" h3 ———gi3M, in which p» is
given by Eq. (6}, while u4 ——uo+ —,vo —w i/2r i,
u = —(2v 2/3)vogi3/ri and

which si ™&0but $3 ——s3 ——0, because the field term
his3 will induce a secondary ordering of s3 along h3, we
follow BA II in assuming that, at least to lowest order in
5, our results should give the correct description of the
trigonal-to-pseudotetragonal phase transition in SrTi03.

To determine the shift of the critical and tricritical
point due to TSB we constructed the phase diagrams that
follow from Eq. (8) in the standard way. ' Some general
results are first obtained for the Potts model which we
later apply to SrTi03 ~ The results for the former are the
following: first we find that the qualitative picture of the
phase diagrams is the same as that of BA I, without TSB.
There are three equilibrium phases: in phase I $3&0,
s2 ——0, but $3~0 in the limit h3~0. This is the disor-
dered phase of the model and it corresponds to the trigo-
nal phase for SrTi03. Next, in phase II $3&0, $3 ——0, but
$3~ as h3~0. In phase III $3&0 and $2+0. These
two are ordered phases separated from I by a first-order
transition ending at a critical point (in the case of phase
II) or changing into a continuous transition in which I
and III are in equilibrium beyond a tricritical paint. The
tricritical point eventually disappears at a critical end-
point, and a typical phase diagram is shown in Fig. 1 ~

The quantitative effect of TSB is to lower the first-order
transition line II-III in a way that shortens the line I-II.
At the same time the tricritical point is raised. None of
the qualitative features are changed by QSB and the quan-
titative effect is a small perturbation due to the smallness
of q4 =—u/u4-— 2.6X10 6 for SrTi03.

Indeed, the critical point is given by
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in which w = —(23/2/3)voM. Equation (8) is then recog-
nized as the free energy for the three-state Potts model
with linear, quadratic, and TSB terms, " with QSB.
Note from Eqs. (3), (6), and (7) that the parameters p, 5,
and E that can be varied experimentally appear only in
the dimensionless form gi3/M vo. For the purpose of
constructing phase diagrams that can be both useful for
experiments and for comparison with those of BA I, it is
convenient to define dimensionless parameters

8 =(4u4/9w )r,
H =(16u4/27w )hi,

1 32
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The tricritical point is located at
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in which q
—= 1+3q and the value of the order p~™ter

along the critical line remains constant at$3™,(6)=—u/4u4(1 —q4) ~ Second, the line of first-
order transition between phase I and II is given by

6 =(4uq/9w )g,
in which w=u(l+3q)/4, where q:—v/u. With this
choice of parameters,
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and noting that gi3 ~p5, Eq. (6), u /w, and v/w will only
depend on 6 (besides a constant) for SrTi03 ~ Although
when 5&0 there is no longer a "true" trigonal phase in
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in w»ch m =—(16q'+q '6)/64q and the value of s3 along
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the tricritical line is given by

si(G, q) =3 m 1+3 (7m —q)
u i/4

u
(16)

For SrTiOi we find that the tricritical point becomes a
critical endpoint when G&0.563, a limiting value for
which R, =-0.252 and H, -=0.084. On the other hand, the
critical point disappears when G& —0.200, for which

R, ~0.226 and H, =——0.053, with an error only in the
last figures due to neglect of QSB. with

3'�(1—y)
b, (1+2y )

(18)

Using the relationships for R, and H, in terms of the
physical parameters of the model given by Eq. (1), we find
for the critical point,

1
p, 5, = 2 1+z 1—,(17)
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in which

A„A
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is the term that corrects for TSB and the terms in

A„/u4A are the contributions from QSB, while

p, =25. 15(25.38) kg mm, 5, =0.0077(0.0081)

a3, =0.5685(0.568), M, =6.904(6.907)X10 ' cm
(23)

With the measured parameters for SrTiOi (in cgs units) at
4.2 K, EC = —3.08X10, A =1 58X10", A„=6.19
X10"2, b, =7.34X10', and b, = —1.98X10' we find

u4 ——A +(A„/4) —A2/(A +A„/3),
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and for the dim ensionless parameter G we obtain
G, =0.0298, where in parenthesis are our values without
TSB and QSB. Neglect of QSB leaves these results un-

changed, except for the last figure in ai, . In view of the
relatively large uncertainties in the determination of the
parameters by present experiments, ' the predicted shift in

5„65,=4X10 is too small to bedetix:ted. The effects
on the tricritical point, however, are quite larger.

Equations (15) yield for the tricritical point

A.PA=ziW
(24)
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FIG. 1. Phase diagram for the three-state Potts model with
linear, quadratic, and TSB in terms of dimensionless 8, 8, and
6, for fixed 6 =0.0298 corresponding to u =0.9798 and
u =1.0067 {Ref. 11, with g=0.2176). First-order transitions
ending at a critical point {CP) or at a tricritical point (TCP)
represented as solid lines and the broken line indicates a
second-order transition. Since 6,~0.0298, CP also lies on a
line of critical points in (p, T) space for SrTi03 if 5 is fixed at
~5, =0.0077.

X(12b, +b, ) 1 — y, [4(A+A„/3)],
A„

1280 u A

where the correction due to TSB is in the last two terms
of y2, and QSB is in the term 43 A„ /1280u 4A,
M, = —(K+ —b,3p, )/[ ( 4+AA„/3)]. With the same
measured parameters we find, with no significant change
due to QSB,

p, =27.39(28.27) kgmm, 5, =—0.0378( —0.0419)

az, ——0.621(0.626), M, =6.933(6.944) X 10 ' cm (26)

G, -=—0.158 .
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It can easily be seen from Eqs. (17)—(19), (24), and (25)
that 5, and 5, remain the same with varying K and p.

The result obtained here for 5, /5, = —4.901 with, or
= —4.896 urithout QSB should now be compared with the
mean-field prediction 5, /5, =- —5. 18 of BA II, without
TSB and QSB. Although the difference is presumably too
small to be detected experimentally, at present, it is in-
teresting to note that it is much larger than the effect of
fluctuation corrections in d =4—e dimensions, calculated
in BA II, where

/5 5(81/80)axy —sn (27)

in which LL/(() ——,—= —s'/10+ 0 (e ). This yields

5, /5, = —4.9988 in three dimensions, which should be
compared with the result 5, /5, =——5, when a=0 for the
fluctuation-free theory of Ref. 2(b), based on the XY
model. An appreciable effect on 5, /5, implies also one on
the ratio of the fields h3, /hs, . One of our main results,
that TSB completely masks the fluctuations corrections in
d =4—a' dimensions, suggests that it should be interesting
to study the effect of fluctuation corrections which take
fully into account the trilinear coupling of the model by

means of RG calculations in d =6—e dimensions. Some
progress in this direction will be reported elsewhere. '

Our other main result, that the Potts-model transition of
uniaxially stressed SrTiOi is a physical realization of
TSB, due to the negligible effect of QSB, may be a further
motivation to consider such RG calculations. The results
of the present work are expected to apply along the
Potts-model transition line in uniaxially stressed SrTi03,
except in the immediate neighborhood of the multicritical
point where the continuous trigonal to pseudocubic transi-
tion starts, for which the trilinear coupling should be van-
ishing small.
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