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Three-dimensional percolation with removed lines of sites
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The site percolation problem on a cubic lattice in which entire lines of sites are removed randomly

is analyzed with use of both analytical and large-cell (up tp 100 ) Monte Carlo renorm»l*ation-

group techniques. Because of strong correlation effects, the behavior of small systems deviates ap-

preciably from regular percolation, and the percolation threshold is lowered. However, it is sho~n
that the asymptotic values of the critical exponents are consistent with those of regular percolation.
The results suggest a practical way to generate macroscopic three-dimensional percolating samples,
which can be used to measure various physical properties of percolating systems.

Certain physical properties of percolating systems can
be conveniently investigated by performing "table-top ex-
periments " in which one creates a macroscopic saruple of
material with a well-defined percolation geometry and
then measures the dependence of physical properties of
the sample on the volume fraction of remaining material.
For example, the conductivity, 'z Hall coefficient, and
elasticity of two-dimensional (2D) systems have been in-
vestigated by punching holes in a sheet of material and
measuring its properties. Such experiments are not trivial
analogues of computer Monte Carlo (MC) simulations,
since in some cases there exists an ambiguity as to which
discrete equations should be used to represent correctly
the properties of the actual system: For example, dif-
ferent discretization schemes can lead to different predic-
tions for the Hall coefficient; different discrete elastic
Hamiltonians lead to different predictions for the elastic
behavior of percolating solids. s Unfortunately, table-top
experiments are frequently limited to 2D. Attempts to
create a three-dimensional (3D) percolating system by
combining many 2D percolating sheets have not been suc-
cessful because of problems created by the contacts be-
tween the sheets, and because the 3D percolation thresh-
old is lower than the 2D percolation threshold, forcing the
experimentalist to work with very fragruented sheets.

A seesningly simple solution is obtained by randomly
drilling holes in a cube of material: We take one of the
orthogonal planes, say xy, and generate a 2D percolating
pattern, namely, we detex~ine at which points we would
punch holes if this would be a 2D problem. Then we drill
holes at those points through the entire sample in the z
direction. The entire procedure is then reptmted for the yz
and xz planes. Such a process generates a random 3D
structure, which differs from a regular percolation struc-
ture, since it introduces correlations between different
parts of the object. In this work I analyze this problem
using both analytical techniques and a large-cell MC re-
normalization group (RG) and present evidence that it be-
longs (or is very close) to the same universality class as the
regular (uncorrelated) 3D percolation (R3DP).

I consider a 3D site percolation problem on a cubic lat-
tice in which entire lines of sites {pointing in the x, y, or z
direction) are selected at random and removed from the

lattice. Percolation with removed lines of sites (PRLS) is
the lattice analogue of the 3D table-top problem defined
above. If we removed only lines of sites pointing in, say,
the z direction and the concentration of the removed lines
was q, then in the xy plane we would have a regular 2D
site percolation on a square lattice with a fraction
p =1—q of sites present, with a percolation threshold at
p, zD ——0.5928. If we remove a fraction q of lines in each
of the three orthogonal directions, then a site will be
present only if none of the orthogonal lines passing
through that site have been removed, i.e., it will be present
with probability P p . In subsequent discussions I will
use both the 2D variable p, and the 3D variable P: Since
the removed lines are the independent objects of PRLS,
the probabilities of finite configurations will be polynomi-
als in the variable p (or q), but will contain noninteger
powers of P (or Q

—= 1 —P) if expressed in teams of the 3D
variables. However, we will see that it is more natural to
use P in the RG transformations. Clearly, PRLS has
long-range correlations: If a site (xp,yp, zp) is present,
then the probability that sites (xp+ n,y p zp),
(xp,yp+n, zp), or (xp,yp, zp+n), where n=+1, +2, . . . ,
are present is pz, which is greater than P. While such
correlations do not even decrease with the distance be-
tween the sites, they are limited to particular directions in
space, so that out of -r sites located at distance r from a
given present site, only six sites will be correlated. Since
the directionally averaged correlations decay as 1lr, ap-
plication of the extended Harris criterion may lead to a
conclusion that the critical exponents of PRLS differ
from those of R3DP. (In particular, Ref. 8 predicts that
the correlation-length exponent v= 1.) However, it is not
clear whether this criterion can be used for such "deter-
ministic" correlations as three of PRLS, since it can also
be applied to the complementary problem (percolation of
lines of sites) or to the 2D percolation with removed lines
af sites, and the behavior of both these problems is not
consistent with the predictions of the theory of percola-
tion with long-range correlations.

The method of construction relates PRLS to the usual
2D percolation: If two sites of the 3D problem belong to
the same cluster, then if we consider only the removed
lines pointing in, say, the z direction and disregard all the
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others, the projections of these points on the xy plane be-

long to the same 2D cluster. This means that the percola-
tion threshold p, (:—P, } of PRI.S satisfies p, )p, 2D.

The converse, however, is not true, since there are config-
urations in which two points of the 3D problem do not
belong to the same cluster, while in some of the "project-
ed" 2D problems they do belong to the same cluster. For
these reasons, we expect a sharp inequality p, )p, 2D.

Note also that the number of different configurations in a
cubic cell of linear size L in PRI.S is 2, in contrast to
2 configurations of a R3DP. Moreover, for finite L,
several different configurations of removed lines may pro-
duce an identical site configuration. Thus, for large L,
the configurations of PRI.S are a negligible subset of the
possible configurations of the R3DP.

The connectivity correlation length g of a percolation
problem diverges as (P —P, ) ", while the volume fraction
of the infinite cluster vanishes as (P —P, )~-g

~~"=g ",
where A is the fractal codimension9 of the infinite cluster.
The pair of exponents v and A determine all the other
"theaauodynaxnic" exponents, and in that sense they suf-
fice to establish the universality class of a problem.
Nevertheless, there exist additional exponents, both
geometrical and dynamical, which are not directly related
ta the above pair of exponents, and may differ in two
problems having the same "the3~odynamic" exponents.
Therefore, in addition to v and A, I also calculate the ex-

ponent Z, which determines the scaling of the shortest

path between two points on length scales shorter than g.
Following Reynolds et al. ,

' "I will treat the probability
R (P,L) that a given cubic cell of size L percolates in one

(predetermined) direction as the renormalized probability

of a site to be present after the original problem has been

rescaled by a factor L. The fixed point P'(L} of this RG
transformation is determined from the equation

R(P,L)=P . [The trivial (stable) fixed points, P =0
and 1, are excluded from the discussion. ] The effective
correlation-length exponent v(L) will be given by the ratio
lnL/ink, , where A, =dR/dP, . For L~ac, we expect

P'~P, and v(L)~v. For L =2, the polynomial R can
be found rather easily, while for L =3, I resarted to com-
puter enumeration of the 22 -=10 possible configurations
in order to determine R. The resulting polynomials, as
well as the values of the fixed point and the effective ex-

ponent v(L), are presented in Table I. For comparison, I
also calculated the analogous qumtities for the R3DP.
These results, as well as the results for a regular 2D prob-
lem, "are also shown in Table I. Note that far such sinall

cells, both the fixed point and the effective exponent of
our problem are claser ta the corresponding values of the
regular 2D prablem than to those of the 3D problem.
This is not very surprising, since small cells correspond to
a large distance from the percolation threshold in an in-

finite system, where such resemblance to a 2D system can
be expected because of the way in which our system has
been constructed.

TABLE I. Percolation probability, fixed points, and v(L) for PRLS and regular percolation problems

(see text for definitions).

System L

2 p +12p q+58p q +124p q +136p q
+84p q5+28p6q +4p q

P v(L)

0.5743 0.1707 1.782

3 p
27 +27p 26q +35 lp 25q 2 +289 lp 24q 3+ 16804p 23q 4

+72 185p22q +233 716p21q6+576220p20q7

+ 1 092077p 19qs+ 1 61 1 607p 18q9+ 1 879 971p 7q

+ 1 755 591p16q11+ 1 322 238p15q12+ 804494p14q13

+393704p' q' +153252p'2q "+46511p "q'
+ 10644p 10q 17+ 1734p 9q 18+ 180p sq 19+9p 7q 20

0.5893 0.2046 1.679

Regular 2 P' +SP' Q+28P'4Q +56P' Q +54P'2Q
+24p11Q 5+4p 10Q6

0.2818 1.227

30 site

Percolation 3 p27+ 2'7p26Q+ 351p25Q2+2925p24Q3+ 17 550p23Q4

+80730P Q +296010P 'Q +888030P Q
+222075P'9Q6+4684804P'6Q +8410022P' Q'
+12878876P' Q"+16788468P' Q' +18515346P' Q'
+17122490P' Q' +13136990P' Q' +8264191P "Q'
+4208062P' Q' + 1709418P Q"+544436P Q'
+ 132 850p7Q 20+24 QQQp6Q 21+3Q32p5Q 22+ 24Qp4Q 23

+9p3Q 24

0.2978 1.161

Regular 2 p4+4p'q+2p'q' 0.6180 1.635

20 site

Percolation 3 p +9p q+36p q +67p q +59p q +22p q +3p'q6 0.6193 1.624
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For larger cells, PRLS can be analyzed using MC
methods. I performed such an analysis for cell sizes
L =2,3, . . . , 68,80, 100. In addition to P'(L} and v(L),
I also calculated the effective exponents 2 (L )

—=3
—lnM/lnL and Z(L) =—lnL, /lnL, where M is the average
mass of the spanning cluster, and L, is the average shor-

test distance between opposite faces of the cell through
that cluster at P'. For L~oo, we expect A(L)~A
(=P/v) and Z(L)~Z. Note, that these definitions of the
effective exponents, which have been made in the spirit of
the position space RG approach, "may differ by terms of
order 1/lnL from other definitions.

For each L and p, I calculated the function R by
checking what fraction of 10000 computer-generated ran-
dom configurations actually spanned the cell. The value
of P was changed in steps of 0.0025. The crossing point
of the R curve with the line R =P ( p ) defmed the
fixed point P'(L). (The value of P' was further refined
by repeating the calculations with even larger samples
close to P'.) The values of P'(L) converge very
fast (they almost do not change for L & 20) to
P, =0.2554+0.0004 (or p, =0.6345+0.0003}. Values of
p' (=—P" ) are depicted in Fig. 1 versus the inverse cell
size. Values of p for which R =0.2 and 0.3 are indicated
as well. Clearly, they also converge to P, . Our choice of
P as the variable of the RG was somewhat arbitrary, since

p could have been used as well. However, a fixed point
determined from R =p converges extremely slowly to p,
(almost all the points would be outside the scale of Fig. 1),
and therefore we can expect to obtain more rapidly con-
verging results using the variable P in the RG transforma-
tion.

Once the values for P' were known, we turned to an
accurate determination of dR/dP at P'. This was done
by calculating the values of R at two concentrations close
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FIG. 2. Effective exponent v(L) of PRLS from Table I (o)
and from MC simulation (0). The error bars (of v) are +0.015
(the symbol size). For comparison, the results of the regular 2D
problem (Ref. 11) (Q) and of a regular 3D problem (0) from
Table I are also shown. The arrows indicate the known values
of v for regular 2D and 3D problems (Refs. 12 and 13) and the
extrapolated value for PRLS.

to P' and finding the ratio of the finite differences
~/EP. Values of R were obtained by averaging over
50000 configurations (for L ( 16, more than 100000 con-
figurations), and for each L, a sufficiently small spacing
M was chosen so that the replacement of the derivative
by a ratio of finite differences introduced a systeinatic er-
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FIG. 1. Estimates of the percolation threshold {in terms of
the 2D variable p) vs the inverse cell size. The estimates are ob-
tained from the equations R =P=p (), R =0.2 (O), and
R =0.3 (Cl). The error bars (of p) are +0.0001 (3 times smaller
than the symbol size).

FIG. 3. Effective exponents A{L) () and Z(L) (0) for
PRLS from MC simulation. The error bars of both A and Z
are +0.002 {5 of the symbol size). The arrows indicate the ex-

trapolated values of the exponents.
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ror [overestimated v(L)] which did not exceed the statisti-
cal error of the simulation. The resulting values of v(L)
are depicted in Fig. 2. For comparison, I also show v(L)
of a regular 2D problem" and the results of R3DP from
Table I. [There are no R3DP results for L & 3 using the
same definition of v(L).] Note that for small L, the
values of v(L} of the PRLS are very large. They are even
larger than the values of v(L) in a 2D problem. However,
for L &7, they become smaller than the 2D values and
continue to decrease very fast with increasing L. The
considerable curvature of the line and rather large scatter
of the data points restricts the accuracy of the extrapola-
tion to 1/lnL =0. We estimate the asymptotic value
v=0.93+0.06, where the error bars represent the variabil-
ity of the results due to different methods of extrapola-
tion. The asymptotic value of v is consistent with the best
estimate' 0.89 for the R3DP, but we cannot exclude the
v= 1 value predicted in Ref. 8.

The fractal codimension A (L) and the exponent of the
shortest path Z(L) are depicted in Fig. 3. Each point of
those graphs was obtained from averages over 50000 con-

figurations. The smoothness of the graphs (compared
with Fig. 2} is a consequence of the fact that both M and
L, change very slowly near I",while dR/dP has a sharp
maximum at (or near) P' .The extrapolated values
A =0.49+0.03 and Z =1.32+0.03 agree very vrell with
known values of the fractal codimension' and the ex-
ponent of the shortest path. '

I have presented numerical evidence that PRLS belongs
to the same universality class as the R3DP. The results,
however, do not exclude the possibility that the problem
has slightly different exponents, and more accurate simu-
lations would be useful. It would be interesting to see
measurements of various physical quantities in percolat-
ing systems generated using this method.
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