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Generalized noii inear Langevin equation for a rotor
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A pendulum {rotor) coupled to a bath of harmonic oscillators is set up as a model for the dynam-

ics of strongly coupled systems. The oscillators can be eliminated from the equation of motion for
the rotor, except for initial conditions. The resulting Langevin equation is exact. Numerical solu-

tions are provided for the poorer spectra of velocity and angular correlation functions of the pendu-

lum for a broad range of the strength of the coupling starting from a weak coupling (hindered rotor)

to the strong-coupling {"free*' rotor) limit, using both the rotor equation of motion and the full

molecular dynamics.

There has been considerable interest lately in the
dynamics of a damped driven pendulum. It serves as a
model system for the Josephson junction' and the rota-
tional relaxation of molecules, among other things.
These studies are based on the Langevin equation in
which the effect of the thermal bath on the pendulum is
taken into account through position and frequency in-

dependent damping and random force terms In .the
present study we have been partially motivated by the ex-

ample of the CN molecular ion in alkali halide crystals,
particularly in KBr. In this case there is a strong cou-
pling between the rotating molecules' and the surround-
ing ions. Following Caldeira and Leggetts we shall
represent this environment, the polarizable lattice, by a set
of harinonic oscillators. We shall not assume however,
contrary to the usual practice, that the actual equations of
motion of the pendulum can be replaced by a Langevin
equation or by some approximation to the Mori
theory. s Thus we derive and solve exactly, albeit nu-

merically, a strong coupling nonlinear dynamic problem
in classical statistical mechanics.

The Lagrangian of our model is
N

L =—8'+D c~8+g —,'M, x,'——,'E,x,'
i=1

A; 8+ Xg slQ
N

potential. The interaction with the oscillatars has such a
form that the customary displaced oscillator transforma-
tion would also yield a potential of the form of cos8 and
could be used to cancel the rigid potential in whole or in

part. We introduce a quantity analogous to a polaron ac-
tivation energy

Wg ———g At /4E;,1

the dimensionless coupling constant a=8'q/D, and the
dimensianless time r=tont, where toD is the Debye fre-
quency associated with the oscillatars. In addition, we de-
fine the dimensionless frequency Q; =cot/con, coordinates

X;=+Mt/D coax„velocities X; =dX;/dr, and moment
of inertia of the rotor is=Ital/D. In terms of these di-
mensionless quantities the equations of motion can be
written as

~ ~ 8
IM8+sin8 —v'n/N g QtXi cos—=0,

2

Xt+Q;X; —2&a/E Q; sin —=0,
2

where we have assumed A; /E; to be independent of i
The harmonic oscillator equations can naw be solved and
their coordinates substituted in the rotar equation. For
the former we use the two-dimensional Debye density of
states, i.e.,

where 8 is the pendulum angle, and the x s are the coor-
dinates of N oscillators. In a molecular rotor realization
of this model one would use 8=M/ for an M-fald cosine

p(Q)=2Q, 0&Q&l,
and obtain

(5)

~ ~ 8(r) ~, . 8(r') 8(r)p8(r)+sin8(r) —2a cos I E(r —r')sin dr' i/a/N cos g[Q,—X;(0)cosQ;r+X,(0)sinQ;r] =0, (6)

where the kernel E for N —+ 00 is given by
l

E(r)=2 I dQQ2sinQr.
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The sum in the last term of Eq. (8) cannot be replaced by an integral because it is over the initial values of the oscillator
positions and velocities and these are chosen randomly from an initial thermal distribution at a dimensionless tempera-
ture T'=ks T/D.

Integrating the third term of Eq. (6) by parts we can rewrite it as a generalized nonlinear Langevin equation

~ ~ 8(~) 8(w') . 8(r)
@8+(1 a—)sin8(r)+a cos

0
H(~ ~'—)c os 8(~')dr' ~a cos E(r)=0,

2 2
(8)

where
1

H(r) =2J dQ Q cos(Q~)
0

E(r)= g[Q&X&(0)cos(Q;~)+X;(0}sin(Q;~)] . (10)
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The initial conditions for the rotor are invariably chosen
as 8(0}=0and 8(0)=0. This choice gets rid of a tran-
sient that would otherwise appear in Eq. (8). The rigid
force gets renormalized to (1—a }sin8(r ). Thus, a = 1 cor-
responds to a "free" rotor. The last term represents a
force which is deterministic in time after the initial condi-

tions have been chosen randomly.
We have solved Eq. (6) on a CDC Cyber 170 Model 750

mainframe computer for the parameter values a=0.01,
0.1, 1, p=1, 0.25, 4.0, and T'=1.0, 0.5, 0.1. In each
case the Debye period was subdivided into 60 steps and a
total of 43 Debye cycles were run for each of 10 different
seeds, i.e., for 10 different sets of initial values of X;(0)
and X;(0) for N = 1000 oscillators. Power spectra
for sin(8/2), cos(8/2) and of the angular velocity 8
[denoted by P, (Q), P, (Q), and P„(Q), respectively], were
calculated over the last 28 cycles and averaged over the 10
seeds. We checked the equipartition theorem for the rota-
tional kinetic energy being satisfied over these cycles and
found reasonably good results only for @=1 and a&0.
For the uncoupled rotor, a=0, the small amplitude oscil-
lation frequency is Q, =~@,. Q, is equal to the Debye
frequency for)M=1 and this value of p, allows for effective
dynamic coupling to most degrees of freedom. We there-
fore report results for this value of )Lt only. Figure 1(a)
shows P„(Q) for T'=1.0 and a=0.01, 0.1, and 1. For
weak coupling a =0.01, P„(Q) shows high-frequency
peaks corresponding to oscillatory motion inside the well
and a low-frequency peak arising from motion over the
barrier taking place over longer periods. This interpreta-
tion of the low-frequency peak is confirmed by examining
Fig. 2 which shows P, (Q} for T'=0.5. The low-
frequency peaks for a =0.01 and 0.1 are strongly
suppressed. Returning to Fig. 1, (b) and (c) give P, (Q)
and P, (Q), respectively. The results confirm what one ex-
pects from the Mori theorys for small a, namely that the
sine shows an oscillator and the cosine a central peak (the
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FIG. 1. Frequency dependence of the po~er spectrum of {a)
angular velocity [P„(Q)],(b) sin(8/2) [P,(Q)]; and (c) cos(8/2)
[P,(Q)] for (solid line) @=1, T =1, and a= 1, 0.1 (dashed
line), and 0.01 {dotted line).
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FIG. 2. Frequency dependence of the power spectrum of
velocity P„(Q) for p=1, T =0.5. See Fig. 1 caption for detail.
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latter also shows a weak high-frequency peak). Increasing
a to 0.1, the general character of the curves does not
change, but the peaks broaden. For a = 1, both P, (Q) and
P, (Q) show qualitatively similar frequency dependence.

Figure 3 shows the results for a= 1 for three values of
the temperature T', name1y, 0.1, 0.5, and 1. For this case
the equilibrium expectation values of sin (8/2) and
cosz(8/2) can be shown to be equal. This result is con-
firmed by numerically integrating P, (Q) and P, (Q) over
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FIG. 3. Frequency dependence of the po~er spectrum of (a)
angular velocity [P,(Q)], (b) sin(8/2) [P,(Q)], and (c}cos(8/2)
[P,(Q)] for (solid line) p, =l, a=1, and T~=l, 0.5 (dashed
line), and 0.1 (dotted line).

all frequencies. Thus in this sense the rotor is "free."
However, P,(Q) and P, (Q) differ considerably in their
frequency dependence. For T'=0. 1 the motion of the
rotor is slow; both P, (Q) and P, (Q) are large at small fre-
quencies. The results are near the adiabatic limit, i.e.,
8=0. With increasing temperature the low-frequency
peaks of P, (Q) and P, (Q) broaden and P, (Q) acquires a
small high-frequency peak. P„(Q) is broad at all tempera-
tures (with some indication of two peak structure) which
suggests, at least roughly, that a central peak with a tem-
perature independent damping constant may describe the
dynamics. It is to be noted, however, that the P„(Q) in all
figures has a minimum at zero frequency. This may be
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FIG. 4. Frequency dependence of the power spectrum of an-
gular velocity [P,(Q)] (a) for 100 seeds (solid line) and 300 seeds
(dashed line) for 43 Debye cycles and (b) for 100 seeds and for
43 Debye cycles (solid line) and 86 Debye cycles (dashed line).
(c) Frequency dependence of the power spectrum P, (Q) {solid
line) and P,{Q){broken line) for 100 seeds and 86 Debye cycles.
@=1,T =1, and a=1.0.
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ascribed to the Debye spectrum of the bath of oscillators.
In fact, for a free particle whose dynamics is governed by
the usual Langevin equation (frequency independent
damping) the spectrum of velocity autocorrelation func-
tion is directly related to the spectrum of the bath oscilla-
tors' and P„(0)=0 for a two-dimensional Debye spec-
trum. However the low-frequency behavior of P„(Q) in
the present model will be affected strongly by the frequen-

cy dependence of damping and the nonlinear coupling be-
tween the rotor and the bath oscillators and the correct Q
dependence of P„(Q) as Q~O needs further careful study.

In our earlier paper we investigated the effect of
translation-rotation coupling on CN in KBr based on
the Mori theory using the approximation scheme of de
Raedt and Michel. We found in the range of low barriers
that the correlation functions for Es and T's symmetries
in a cubic potential [which correspond here to cos(8/2)
and sin(8 j2), respectively] both had a central peak when
the temperature was of the order of the barrier height.
There was some doubt as to the validity of this result be-
cause the oscillator dynamics was not fully handled in this
approximation. Our present results suggest (although the
calculations were carried out for a model two-dimensional
system) that this approximation is reasonable in the low-
frequency region because in the a =1 case we obtain low-

frequency peaks both for P, (Q) and P, (Q).
To test the general conclusions discussed above, we

have performed full molecular dynamics (MD) calcula-
tions for the system using Eqs. (3) and (4) with
a=T'=p=1. These were done on an IBM Pc with a
8087 Math Coprocessor. The program used for these cal-
culations were written in Microsoft PORT~N, version 3.3
and ran a factor of 15 times slower than an identical pro-
gram run on the mainframe computer used for the origi-
nal limited (only the central rotor) MD calculations. In
order that the computer runs take a reasonable length of
time, we reduced the number of bath oscillators to 100.
To compensate for this we increased the number of seeds.

Figure 4(a) shows the results for P„ for 43 Debye cycle
runs with 100 and 300 seeds. In general the curve for 300
seeds is slightly smoother than that for 100 seeds, espe-
cially in the low-frequency range. More importantly how-
ever, both follow the same general trend encouraging us
that 100 seeds provides a sufficient "sample" of ensembles
for these simulations. To check for equilibration of the
rotor we ran the system twice as long (86 Debye cycles
with the transforms calculated over the last 56 cycles) for
the same number of oscillators, identical initial conditions
and 100 seeds. The results for P„are shown in Fig. 4(b).
Although somewhat noisier than the curve for 43 Debye
cycles, the 86 Debye cycle result once again follows the
same trend giving us further confidence that at least the
gross features of the equilibrium system have been
correctly determined. By comparing the solid line in Fig.
4(b) with the T =1.0 curve in Fig. 3(a) we find the noise
has been significantly reduced even with the smaller num-
ber of oscillators, suggesting that the number of seeds is a
more important factor than the number of oscillators in
determining the precision of the results. Finally, in Fig.
4(c) we show the results for P, (Q) and P, (Q) for the 86
Debye cycle runs. Note that they both show the same
general structure (although P, is slightly broader), as
would be expected for a nearly "free" rotor (a= 1). By
comparing these with the corresponding curves in Figs.
3(b) and (c) we once again see that the noise has been re-
duced. We also note that the zero-frequency minimum
and the high-frequency peak persist in Fig. 4(c). We are
presently performing additional calculations for different
temperatures, coupling constants and values of p. We
will present these results and further interpretation of the
data in a later paper.
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