PHYSICAL REVIEW B

VOLUME 33, NUMBER 5

1 MARCH 1986

Very peculiar properties of kinks in a driven damped anisotropic spin chain
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The motion of kink solitons in a classical Heisenberg chain with a composite anisotropy (an easy-
magnetization-plane anisotropy with an additional easy-magnetization axis along that plane) is stud-
ied. Both the Gilbert damping and a spatially uniform external field applied along the easy axis are
taken into account. For applied fields lower than a certain critical value the velocity of the kink is
constant and its magnitude results from a balance between the external field and the damping. For
fields larger than critical the motion of the kink is a nontrivial superposition of the forward transla-
tional and of the oscillatory motions. The special case of large anisotropy is analyzed in detail. The
effect of damping and of the external field on the motion of the kink is discussed.

I. INTRODUCTION

Recently, one-dimensional nonlinear systems with con-
servative forces as well as dissipative effects have been of
great interest. The coexistence of nonlinearity and dissi-
pation may cause some very interesting phenomena, e.g.,
the ai)pearance of chaos in completely determlmstlc sys-
tems,! or the occurrence of inertial modes.2 On the other
hand, it is a well-known fact that in one-dimensional non-
linear systems without damping, large-amplitude excita-
tions in the form of pulses, kinks, or other solitary waves
can propagate with constant velocities and constant
shapes. For systems which are completely integrable,
these excitations are called solitons.’ It seems interesting
to investigate the motion of such solitary waves in one-
dimensional nonlinear systems with damping and external
forces included.

In this paper we investigate the motion of kinks in a
classical Heisenberg chain with a special double anisotro-
py consisting of an easy-magnetization-plane anisotropy
and a uniaxial amsotro?y with the easy-magnetization
axis within that plane,*—° as well as with both the Gilbert
damping and an external field along the easy axis taken
into account. This problem is formally identical to the
very-well-known problem of domain-wall dynamics in
bulk ferromagnetic materials’~® (also see Refs. 10 and
11). The solutions proposed for domain-wall dynamics
may be easily applied to the problem of the driven and
damped motion of solitons. In such a way some very
peculiar behavior of solitons may be obtained.

II. EQUATIONS OF MOTION
We consider a spin chain with the Hamiltonian

= [-TS;'S; .1+ A(S)?*—C(SH*—BySf], (1
i

' S,~ I =S,
with g the Landé factor, up the Bohr

where the spins S; are treated classically,
ry=—g|lpg|#
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magneton, and ﬁ the reduced Planck constant. The con-
stants J, 4, and C are assumed positive. The first term in
(1) is the nearest-neighbor exchange interaction, the next
two represent the easy-plane and the easy-axis anisotropy,
respectively, while the last term gives the energy of the
spin in the external field B. The spin coordinates are
written in the form

S; =S(sin6;cosg;, sind;sing;, cosh;) .

The continuum version of the Hamiltonian (1) is then ob-
tained if 6; and @; are changed to 6(x,t) and @(x,?):

== "2’ = AL 0P ClS T
—Bysixn |= [ Ehistn] @

where a is the lattice constant. The classical equation of
motion for the spin vector S,

- 8% aSXS
§=_§x v I2X3
SX 55 S (3)
(where a is the Gilbert damping parameter, O <a <<1),
written with the use of the angle variables 6(x,t) and
@(x,t), has the form

- 5h .
Osinf=—S "'+ apsin?6 , 4)
8¢ P
. sing= D g1
@sinf= SOS +ab . (5)

Using the Hamiltonian density A[S(x,?)] expressed in
terms of the angl&s 0 and ¢,

h[S(x, t)]— (t92 +@lsin?0) + AS%sin6 cos’p

—CS?cos*0—yBS cosb , 6
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one finds 3
6sin6—a@sin’6=—J —a;(sinze @x)
—24 sin%0 sing cosg , (7
—@sind—ab= —JO,, +J sinf cosb(g, )
+ 24 sin cosf cos’p + 2C sinf cosd
+Bsind , (8)

where J=JSa?, A =ZS, C =5S, B =§‘y, the subscript x
signifies a spatial derivative along the chain, a dot over a
symbol denotes the derivative with respect to time.

III. SOLITARY WAVES: 7 KINKS

For B =0 and a=0 the system (7) and (8) is completely
integrable® and one-soliton solutions were found in the
form of  kinks:*~°

cos6=+tanh %(x—vt)] , )
y 172 A
p= 1+ECOSZ¢0 , v=:dsin(2<po), (10)

with ¢ =@, =const and d =(J /2C)'/%

If the damping parameter « is different from zero with
B still zero, one may expect that, after adiabatically
switching on the dissipative effects, the solutions (9) and
(10) should evolve to the solutions corresponding to the
static 7 kinks with gy=(2n + 1)(7/2) (such kinks possess
the minimum energy). If, however, the external field B is
also not zero, it may be conjectured that a stationary solu-
tion may be found only if there is compensation of the
dissipative effects by the driving force connected with the
external field, exactly as in the case of Walker’s solution
for domain-wall dynamics in bulk ferromagnetic materi-
als’ (also see Refs. 8—10). To show that this is really the
case, we seek the solution of Egs. (7) and (8) in the form
of the solitary waves (9) and (10), i.e., we now assume that
@=@o=const and that 6(x,t)=6(x —vt). Then Egs. (7)
and (8) lead to the following:

% =24 sin@ sinpycosy , an
u

—J 6, +2(A cos’py+ C)sin6 cosd

+B sin6—av£ =0, (12)
dx

where u=x—uvt. Assuming vs0, Eq. (11) may be in-
tegrated directly, giving as a result 7 kinks with the same
characteristics as (9):

cosf(x, )= —tanh %(x —ut)sin(2gp) | - (13)

Together with (13), Eq. (12) leads to the following:

B —aA sin(2¢g)

2
=cosf J—Az—sinz( 2¢0) —2(A cos’py+C) | . (14)
v

The left-hand side of (14) is a constant and—for
v=const—the right-hand side is just another constant
multiplied by cosf. Hence Eq. (14) has a nontrivial solu-
tion (i.e., one for which cos@ is not a constant everywhere)
only if both constants in this equation are equal to zero.
One then obtains

B=aA sin(2¢y) , (15)

, JA? sin?(2¢,)
vi= .
2 Acos’py+C

(16)

Formula (16) means that the relation (10) also holds when
both the damping and the drive are turned on. From (15)
it is seen that the stationary motion solution (13) may be
obtained for the 7 kink only if | B | <B.=aA. The criti-
cal field B, is then the limiting field above which no solu-
tions in the form of solitary waves propagating with a
constant velocity exist.

For |B t < B, there are two solutions with @o=const,

namely @} and @i’ =m/2—g@}", both given by

21122
’ . (17)

The lower sign in (17) corresponds to an unstable solution
for m-kink motion, i.e., such that any small perturbation
will cause the value of the angle @, [given initially by (17)
with the minus sign] to change (see Sec. VI of this paper
for details). Equations (15) and (16) together yield the
dependence of the velocity v on the external field B. One
obtains, for the stable solutions,

J
a*{A[1—(1—B?*/a’4%)"?]+2C}

1—
aA

cosz(qoo):%

172

(18)

v=1xB

For |B| <«<aAd, or for C>>A, the m-kink velocity v is
thus roughly proportional to B, so that in such a case the
motion of the kink is similar to the Newtonian motion of
a forced damped classical particle. Substituting (15) and
(18) into (13), one obtains

px—u

cosf@= —tanh R (19)

where

172
J

A[1—(1—B%*/a*4%)'?)4+2C

(20)

denotes the width parameter of the m kink propagating
with the velocity (18). It is interesting that the sign in (19)
is a consequence of the sign in (18), i.e., for a given sign of
the field B lower than the critical field B,, the kink moves
in one direction (favoring one region of uniform magneti-
zation lying along the easy axis), while an antikink moves
in the opposite direction. Note also that for B=0 and
a0, the only solitary-wave solution is for » =0 and
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@o=(2n+1)(m/2), n an integer.
For the critical field B=B,=a4, the corresponding
velocity is

|ve | =[JA%/(A+2C)]' 2.

Note that v, does not depend on the parameter a. Also,
v, is not the maximum velocity of 7 kinks, which is equal
to

| Vmax | =[(14+4/C)2—1}(2C0)/2,

and except for the case of A=0,
| Ve | = | Umax | =0, one always has |v, | < | vpax | -
Independent of the above solutions, representing
kinks propagating, in general, with constant velocities,
there is also a static solution representing a 2w kink at
rest. To obtain this solution it suffices to set v =0 in Eq.
(12). As a result, the static version of the double—sine-
Gordon equation is found, which for B0 has a solution
in the form of two coupled 7 kinks'? (for B—0 the dis-
tance between these tends to infinity). Equation (11)
shows that in this case gy=(2n + 1)(/2), but the solu-
tions with @o=2nm correspond to unstable configura-
tions.* Below we discuss only the dynamic solutions in
the form of  kinks.

when

IV. TRANSIENT MOTION OF 7 KINKS

Now it would be interesting to know how 7 kinks
behave in the driven and damped case when the external
field is suddenly switched on. To answer this question we
first assume that B(t)=B e(t), where €(z) is the Heaviside
step function equal to 1 for ¢ >0 and O otherwise. In this
case we look for a solution in the form

cosB(x,t)= —tanh[ +s(2)], ¢=¢(1), (21a)
s(n=2=21) (21b)
8(1)

i.e., in the form (19), but with both the position g and the
width-parameter 8 functions of the time. Because our
equations of motion are formally identical to those used
by Schryer and Walker for the dynamics of a domain
wall, one may apply the results obtained numerically by
them® directly to our problem. Thus, if | B| <B,, then
the velocity of 7 kinks increases monotonically from zero
for the static solution to a value given by (18) correspond-
ing to the stationary-motion solution at t— oo. Simul-
taneously, both the wall width parameter & as well as the
angle @ change from the values they have in the static
solution to those corresponding to a given magnitude of
the field B during stationary motion.

V. OSCILLATORY MOTION OF 7 KINKS

The nature of the solutions which one obtains for
B(t)=B €(t) with |B | > B, is certainly very peculiar. No
motion with a constant angle @ is then possible. The nu-
merical analysis of Schryer and Walker® mapped to our
situation shows that, in this case, the motion of 7 kinks
consists of a running motion with an oscillatory motion
superimposed. Namely, after the external field is turned
on at t=0, the velocity of the kink—assumed zero
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initially—quickly increases to a maximum value. Simul-
taneously, the width-parameter value decreases and the
azimuthal angle ¢ changes monotonically to the value
m/4+nm, where n is an integer. In the next phase of the
motion, the kink velocity slowly begins to decrease, which
is accompanied by a further decrease of the width param-
eter and a further monotonical change of the azimuthal
angle @. Next, the velocity decreases, rapidly reaching
zero, or even negative values down to a certain minimum
value. During the whole of this last phase of the motion,
the kink moves in the direction opposite to that in the ear-
lier phases. After that, the kink velocity begins to in-
crease again, which is accompanied by an increase of the
width parameter and quick changes of the angle ¢. At a
certain moment in time, say ¢ =T, the instantaneous velo-
city of the kink attains zero, the width parameter has the
value corresponding to the static kink and the value of the
azimuthal angle ¢ differs from the initial by =, exactly.
At that moment the kink looks the same as the beginning
of the motion except for two features. First, if the kink
had at ¢ =0 a right (left) handedness, at ¢t =T it now has a
left (right) handedness. Second, the kink has moved for-
ward under the influence of the external field from its
starting point to a new position. Between ¢t =T and
t =2T the kink again moves forward under the influence
of the field—in much the same way as between ¢ =0 and
t =T—however, its left (right) handedness changes to the
right (left) one. The motion of the kink then has, to some
extent, an oscillatory character; however, a net forward
motion results. The physical reason for such a character
of the motion lies in the interplay between the external
field, the anisotropy, and the damping. The situation here
is exactly the same as in the case of domain-wall dynam-
ics in bulk ferromagnetic materials. It is interesting that
the very peculiar behavior of domain walls in bulk materi-
als was confirmed experimentally.!®

VI. APPROXIMATE ANALYTICAL SOLUTIONS
OF TRANSIENT AND OSCILLATORY MOTION
OF 7 KINKS FOR A SPECIAL CASE

As an illustration of both Secs. IV and V, we consider a
special case which is easy to treat using an approximate
analytical method. We assume that, during nonstationary
motion of a kink, the angle ¢ is constant across the kink
(¢ =0), similar to the case of solitons without damping
and no external field,*~¢, or for the undercritical station-
ary solutions for the driven damped kink (or a domain
wall in bulk ferromagnetic materials). We now look for a
solution in the form (21) where, for simplicity, we choose
a definite sign—the positive one. Substituting this solu-
tion into Eqs. (7) and (8) gives two new equations,

sin?6s(¢) —ag@ sin’0= — A sin*@sin(2¢p) , (22a)
. N J sin(26) .
—@sinf—as(t)sin@= — ——— 4+ Bsinf
¢ 2[5 (t)]2 + B sin
+ (A cos’p+C)sin(26) , (22b)

with
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s =8(0g(n) +8(r)g (1)
[8()]?
Setting the coefficient of sin’@ in Eq. (22a) and the coeffi-

cients of both sinf and sin(26) in Eq. (22b) simultaneously
equal to zero, we obtain

(23)

—S+ap=Asin(2¢) , (24)
¢+as=—B, (25)
J 172
8= | =——5—— (26)
2(A cos’p+C)

Equation (26) shows that for nonstationary motion the
dependence of the width parameter § on the angle g is the
same as for the soliton solution described by Egs. (9) and
(10). Taking into account (23), we see that both Egs. (24)
and (25) are not consistent because ¢ does not depend on
the variable x but s does. However, these equations may
be made consistent if one neglects, in (23), the term pro-
portional to 8(z), i.e., if one treats the kink as a rigid ob-
ject. This is acceptable if C/A4 >>1 because, due to the
relation (26), 8(¢(?)) in this case is practically a constant,
ie., 8(p(t))=~d=(J/2C)'"? (a more rigorous condition
2C/aA >>1 was considered in Ref. 8, but it is consistent
with ours as we have assumed a <<1). With such an ap-
proximation it is easy to transform the pair of equations
(24) and (25) to the following;:

. —B+aAdsin(2p)
1+a?

(27)

a=qo+ L (Br+o(n], 28)

where we set § =~ —¢/8~ —¢/d. Integrating (27), we ob-
tain, for |B | <B.=a4,

e=tan"'{b~ 14 (b~2_1)12

Xcotanh[(t—14)/7]} +nm (29a)
or
e=tan~'{b~ 14 (b 2-1)1"2
Xtanh{(t —t9)/7]} +nm, (29b)
where
leBc(:—J_rl‘;‘;m , (29¢)

and b =B/B,, while n is an integer [depending on the ini-
tial conditions, we obtain (29a) or (29b)]; for |B|
=B.=aA,

_ 1+a?
=tan~! |14+ ——— , 30
@=tan +(t—to)Bc +nw (30)
and for |B| >B,=aA,
—1|p -1 —2\122 =t
@=tan" |b~ +(1—b"%)/“cotan , (31
T2
where

r=(1+a?/[B.(b*— 1] .

In all the above formulas #, is an arbitrary constant.
Equations (29)—(31) combined with Eq. (28) describe the
motion of the kink completely. From (29a) or (29b) in the
limit of t— oo we obtain for the angle ¢ a value

@s=tan"{[1+(1=b"))2)/b} +n7,

exactly the same as Eq. (17) taken with the negative
sign—which corresponds to the stable stationary motion.
Assuming formally that t— — « in the formulas (29a)
and (29b), we obtain a different limiting value for the an-

gle @:
@ns=tan"{[1—(1—b"2)21/b} +nm,

which is equal to the solution (17) taken with the positive
sign and corresponds to the unstable stationary motion.
Relation (29) is depicted in Fig. 1 for two values of the re-
duced external field: b=0.5 (bold curve in Fig. 1) and
b=0.95 (the thin line). It can be seen that for both values
of the field, the curves join at the common value of
@=@, for t—ty——c and then separate into two
branches which, for ¢t —ty— «, achieve either the value
@, (lower branch) or the value @+ (upper branch).!*
For a given value of the reduced applied field b, the lower
branch of the curve in Fig. 1 describes the evolution of the
angle @ of a kink for which, at the moment when the field
b was applied (i.e., at a certain moment ¢ —t,), the angle ¢
was at an initial value @, between @, and @, [Eq. (29a)].
On the other hand, the upper branch of each curve in Fig.
1 describes the evolution of the angle ¢ for a kink for
which the initial value ¢, was between ¢, and ¢; + 7 [Eq.
(29b)]. If, before the given value of the external field b
was applied to the kink, no field had been applied to it,
then @ is at the stable value of —m/2. After the field is
switched on, the angle @ evolves along the part of the

. -
2
,”"'———’_
Vi __
x| e T T T |
— f[——==z—~
© RN
R
-~ AN
o \\ -
S \\
w \ L
S x| A=10 \ "
g 4 0 \\
b «=0.1 \‘
_xp \ N
2 v_
A
| A N N W B N SR S 1

1
-10-8 6 4 -2 0 2 4 6 8 10
TIME (t-t,)/7T,

FIG. 1. Undercritical motion: azimuthal angle ¢ as a func-
tion of the time. Bold curve is for 5=0.5 and thin line is for
b=0.95. 7, taken with b=0.5. For the explanation of the solid
and dashed lines, see text.
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curve appropriate for the given value of b—this is
marked in Fig. 1 by the solid line. On the other hand, if
the previous history of the kink was such that, at the mo-
ment the external field was applied, the value of
o~ —m /2, then the ensuing evolution of the angle ¢ also
follows the curve proper for the given value of b, but the
branch of that curve, along which the evolution will take
place, depends on the range into which ¢, falls. In any
case the end result of this evolution is that ¢ =@, mod.

@s is then, for a given subcritical value of b, the angle
for stable stationary motion, while ¢, corresponds to an
unstable stationary motion. To see the latter it suffices to
assume that at the moment in time at which the external
field was applied, the initial value ¢o=¢,,. From the
shape of the two branches of each curve in Fig. 1, it is
seen that any small perturbation of the angle ¢ will cause
an evolution away from ¢,, along one of the two
branches. Which branch the kink will follow depends on
the sign of the perturbation.

Equation (27) may be treated as a one-dimensional
equation of motion of a dynamical system.'* The solu-
tions @; and @, are then the fixed points of the system.
Their stability is given by the sign of the derivative with
respect to @ of the right-hand side of (27) taken at these
points. It is easy to show that at ¢ =@, the sign is posi-
tive, while at ¢ =g, it is negative. Thus @, is an unstable
fixed. point and @, is a stable fixed point, i.e., an attractor
of the system.

The time dependence of the kink position g (z) given by
Eq. (28) is depicted in Fig. 2 for the same two values of
the reduced field b as were used for Fig. 1. In both parts
of Fig. 2, curve a describes the motion of the kink due to
the changes of the angle ¢ which occur according to Eq.
(29a) and curve b—according to Eq. (29b). The value of
qo in Fig. 2 is zero, so that at ¢t —t,=0 the position of the
wall is defined by ¢(t —ty=0). It can be seen that there is
a difference in behavior between a kink following Eq.
(29a) and one which obeys Eq. (29b). In the case of the
latter, the motion is monotonic, while otherwise a single
oscillation occurs before that kink also attains saturation
velocity. From (28) it follows that this velocity is equal to
dB/a, in agreement with Eq. (18) for C >> A. The differ-
ence in the value of the saturation velocity for the two
values of the drive used is evident [Figs. 2(a) and 2(b)].
Note that, when |b | —1—, the relaxation time 7, tends
to infinity and the angle ¢ given by Eq. (29b) becomes a
constant.

For |B| =B, one has ¢;=@,, =m/4+nm and station-
ary motion is unstable. To show this, assume that, at the
moment the external field |B | =B, was applied to the
kink, the angle ¢ was ¢o=m/4+nm+e€, where |€| <.
Then, for €> 0, the angle ¢ will evolve towards ¢, as the
time derivative of @ is negative [cf. Eq. (30)]. On the oth-
er hand, for a negative € the angle ¢ will tend to
7/4+(n —1)m and the system is unstable with respect to
a small perturbation of this sign. The same result may be
obtained by checking the sign of the derivative of the
right-hand side of (27) with respect to ¢ for
¢om/4+nwx|€| and |B | =B,.

For overcritical motion of the kink (|b | > 1) there is
no limiting value for the angle ¢. This may be seen in

| AN N A A R R B B B |
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y 4 d=A =1
V4 «=0.1
-40 7/ -
/
CA o 9
10 -8 6 -4 -2 0 2 4 6 8 10
TIME (t-t,)/ T,

FIG. 2. Undercritical motion: reduced position of the kink
as a function of the time. b=0.5 in (a) and b=0.95 in (b). In
both figures, curve a denotes kink position due to ¢(?) given by
Eq. (29a) and curve b denotes that due to ¢(¢) given by Eq.
(29b). T, taken with b=0.5.

Fig. 3, where the dependence of the angle ¢ on the time
given by Eq. (31) is depicted for several values of the re-
duced field b. It can be seen that, for |b | =1, the angle
@ attains the value — /4 asymptotically. Forall |5 ]| >1
the changes of the angle ¢ with time are running periodic.
Large oscillations are visible in Fig. 3 for |b|=1.1,
much smaller for |b | =3 and smaller than the thickness
of the line used to draw the curve for | b | =10.

The behavior of ¢ for overcritical values of the external
field are reflected in the dependence of the position of the
kink g on the time (Fig. 4). Except for the critical motion
| b| =1, for which stationary motion with constant velo-
city occurs, for all other values of b in Fig. 4 a running
oscillatory motion may be seen. The period of the oscilla-
tions together with their amplitude is seen to diminish
with increasing | b |, so that for b=10 only a straight line
is shown in Fig. 4. The mean velocity of the overcritical
motion is given by
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FIG. 3. Nonstationary motion b>1 and critical motion
b=1: azimuthal angle ¢ as a function of the time. 7, taken

with b=0.5.
dB dA B 2 12
_48 _ 21 . 32
= 1o | lad } (32)

For all |b| >1, p(t+7r)=@(t)—m. When |b|—1,,
7, becomes infinite, while in the limit of large |b |, 7,
vanishes. The lack of stationary motion for all |b| >1
corresponds to the disappearance of the fixed points of the
dynamical system described by Eq. (27). From the
behavior of the fixed points of this system for different
values of the parameters of the motion, it is concluded
that a tangential bifurcation!® occurs at |b|=1 (Fig.
5—compare also Ref. 16 for a similar result).

KINK POSITION q/d

1 1 1 1 11

0 2 4& 6 8 10 12 14 16 18 20 22 24

TIME (t-t,)/7,

FIG. 4. Reduced kink position during nonstationary and crit-
ical motion as a function of the time. r, taken with b=0.5.
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FIG. 5. Tangential bifurcation at the critical value of the
external field | b | =1.

The dependence of the velocity of the kink on the field
is shown in Fig. 6. In this figure, for |b| <1 the stable
stationary-motion velocity is depicted, while for |b| >1
the mean velocity (32) was used. In the low-field range a
linear mobility is manifest. For external fields larger than
critical, the velocity of the kink first decreases sharply
and then slowly increases with the value of the field. The
minimum of the average velocity of the kink occurs at the
“overcritical” field

___ad(l+d’)
m [(1+a2)2_1]1/2 .

An interesting limiting case occurs for zero damping.
Equations (24) and (25) are then reduced to ¢=dA sin2¢
and ¢= — B, respectively. Hence, ¢(t)=¢o—Bt and

q(t)=qo+dA cos[2(¢o—Bt)]/2B ,

(33)

and only pure oscillations of the kink are obtained with no
net motion.
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FIG. 6. Velocity of the kink as a function of the external
field b.
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VII. CONCLUSIONS

We have analyzed the equations of motion of -kink
solitons in a classical Heisenberg chain with a double an-
isotropy, in the presence of a constant and uniform exter-
nal magnetic field and in the presence of damping.

Two different regions of kink motion exist. For exter-
nal fields below a certain critical value, there is a station-
ary motion of the kink with a constant velocity resulting
from a balance between the effect of the external field and
that of the damping. This is in contrast to the behavior of
kinks with no external field and no damping, where, de-
pending on the initial conditions, the kink may move with
any velocity from a certain range ( —v,x, Umax). For the
analysis of transient and nonstationary motion of kinks,
we used an approximate method in which the kink is
treated as a rigid object. We found that, after an external
field is applied smaller than the critical, the kink ac-
celerates or decelerates (depending on the initial condi-
tion), attaining a new equilibrium velocity of stationary
motion after a certain time. This relaxation time depends
on the difference between the value of the applied field
and that of the critical field. The relaxation time tends to
infinity when the external field tends to the critical value.

When the external field is equal to the critical value,
stationary motion is unstable.

For external fields larger than the critical, the motion
of the kink is a nontrivial superposition of the forward
translational and of the oscillatory motions. The period
of oscillations tends to infinity when the external field is
diminished to the critical value and this period tends to
zero when the field tends to infinity. The mean velocity
of the kink has a minimum for a certain value of the field
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in the overcritical range. In the case of zero damping, for
nonzero external fields only pure oscillations of the kink
are obtained.

Apart from solutions in the form of moving 7 kinks,
static 27 kinks, which may be treated as a pair of 7 kinks
coupled by the external field, were also found to be solu-
tions of the problem. When the external field tends to
zero, the 27 kink dissociates into a pair of two uncoupled
m kinks.

One of the most interesting results of this paper is that
some features of the motion of 7 kinks in the system
described here may be expressed in terms of the theory of
nonlinear dynamical systems. In particular, stable sta-
tionary motion of the kinks is shown here to correspond
to the existence of a fixed-point attractor, and the
phenomenon of the critical drive is shown to correspond
to a tangential bifurcation.

The problem of the motion of the 7 kinks described
here is also shown to be equivalent to the well-known
problem of the motion of a one-dimensional domain wall
in ferromagnetic bulk materials. As a result the kinks are
shown to have certain interesting features known from
theoretical and experimental analysis of domain-wall
dynamics. Although the initial idea for this work was to
transplant the solutions for domain-wall motion into the
language of solitons in one-dimensional magnetic systems,
we stress that the results obtained through this procedure
vastly exceed those found in the analysis of domain walls.

Note added in proof. The main points of this paper
have been presented at the ICM-85 in San Francisco and a
digest of that presentation will appear in J. Magn. Magn.
Mater. 54-57 (1986).

*On leave of absence from the Institute of Physics, Warsaw
Technical University, Koszykowa 75, PL-00-662 Warsaw, Po-
land.
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