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Internal-field distribution in spin-glasses with dipolar interactions
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We analyze the internal-field distribution functions for dipolar coupling and for dipolar and
Ruderman-Kittel-Kasuya-Yosida interactions together. First a totally random spin system is con-
sidered. After this a local correlation between the spins is taken into account, which causes a cavity
to appear within the internal-field distribution functions. We also analyze the cavity-depth-
modification problem and present an application in the p+ relaxation domain.

I. INTRODUCTION

In recent years many theoretical and experimental pa-
pers have analyzed the spin glass (SG) phase in different
materials. The interactions which exist in these materials
are diverse. The most frequently analyzed interaction of
these is the Ruderman-Kittel-Kasuya-Yosida (RKKY)
coupling' which causes the appearance of the SG phase in
the greatest part of the materials within which the frozen
phase takes place. Other interactions are overshadowed
despite the fact that many of them play an important role
in diverse situations. One of these is the dipolar interac-
tion. This interaction contributes in an essential fashion
to the occurrence of the SG phase in general, and in insu-
lators in particular, determines the muon-spin relaxation
in most of the frozen and random systems, infiuences the
NMR line broadening, and cannot be neglected in many
situations in which the stronger RKKY long-range cou-
pling cannot be realized or is damped in the analyzed ma-
terials. 6 All of these applications necessitate a reanalyza-
tion of the dipolar interaction, especially its internal-field
probability-density function, taking into account the new
results concerning the internal-field distribution problem
for SG.

The possibility of existence of the SG phase caused by
dipolar interactions was demonstrated theoretically, io and
it seems to have been proved experimentally too. " The
internal-field distribution was first analyzed in connection
with the NMR line broadening. A Lorentzian shape for
dilute dipole-dipole broadening was derived for S = —,

from statistical arguments, ' and by the method of mo-
ments. ' Walstedt and Walker have generalized this re-
sult to higher spin values and have analyzed the dipolar
interaction in the high-field approximation. ' They con-
jectured that in the dilute limit the NMR line shape is
Lorentzian for any coupling which varies as R
Describing a mathematically analogous situation, Klein
et al. ' considered a set of electric-dipole impurities, ran-
domly distributed in a medium. The dipoles were as-
sumed to be orientated only in the six equivalent cubic
directions. Using a comphcated approximation (mean-
random-inolecular field, denoted by MRF in Ref. 15),
they obtained a double Lorentzian distribution for the
internal electric field. The internal-field distribution for
dipole-dipole coupling is reanalyzed in other papers, ' but

without giving qualitative new results.
As can be seen, the description of the dipolar internal-

field distribution is relatively poor considering the impor-
tance of this interaction in the interpretation of many
physical situations concerning random systems.
Furthermore, physical applications 6 have been claimed
to take into account the new results obtained in these
directions. Dasgupta, Ma, and Hu, Ma, and at approxi-
mately the same time Walker and Walstedt, directed at-
tention to the fact that one obtains the classical internal-
field distributions when one considers a totally random
spin system. But this model is static and neglects the
dynamic processes which allow each spin to accommodate
to others. In this way, the supposition of totally random
spin-direction distribution is incorrect. One consequence
of local correlations is the appearance of a cavity within
the field-distribution function, the shape of which is
greatly modified, especially in the low-field domain. This
is confirmed also by Monte Carlo simulations. '

For the RKKY interaction the above-mentioned effect
is already taken into account. ' The purpose of this pa-
per is to reanalyze the internal-field distributions for the
dipolar coupling from this point of view. To extend the
applicability of the paper, in all the described cases we
analyze the RKKY-dipolar combined coupling too. We
consider vector spins.

The paper is organized as follows. In Sec. II we
analyze in the most general case the internal-field distri-
bution for the totally random distributed spins, taking
into account dipolar coupling alone and the dipolar and
RKKY interactions together. In Sec. III we analyze the
minimization conditions. These will be taken into ac-
count in Sec. IV, to correct the field-density distributions
deduced in Sec. II. In Sec. V we analyze the cavity-depth
problem, and in Sec. VI we present a discussion and an
application in the p+ relaxation domain.

II. CLASSICAL FIELD DISTRIBUTIONS

First of all, we determine the distribution function of
the local dipolar field in the most general case. We con-
sider N dipoles randomly distributed in position and
direction throughout the volume V. An arbitrary directed
dipole situated at a distance r; from the origin produces a

33 3483 1986 The American Physical Society



M. GULACSI AND ZS. GULACSI 33

vector potential at the origin given by

A="', . (1)

where p is the dipolar moment.
From Eq. (1), using the relation H=VX A, we obtain

the magnetic field produced at the origin by the analyzed

dipole:

Hi ——

I r, I

(2)

where /=i(I), +jP»+kg, is the angular anisotropy factor
given by

P, =sin8, comp„[cos8„cos8, +cos(y„q&—„)sin&„sin8, ]—sin8„~„,
(I)» =sin8, sin(p, [cos8&cos8„+cos(y& —y, )sin8&sin8, ]—sin8„sing&,

(t), =cos8, [cos8„cos8,+cos((p„—(p„)sin8„sin8, ]—cos8„.
In Eq. (3) the 8 and (p represent the polar and azimuthal angles, for the vectors p and r;, respectively.

We define Po(H) as the distribution, normalized to unity for the local field:

Pc(H)=(5 H —ZH;

(3)

(4)

where H, is given in Eq. (2), and the average is taken over all positions r; and all possible directions of the dipoles. Us-
ing the Fourier integral representation for the 5 function, we get from Eq. (4)

Po(H)=(2ir) i f d3fe '& Hg(e '') . (5)

For C(g)=(e ') we have

C(g}= f r dr f d8, sin8„ f dy, f 18—
& f ddp„exp —i (6)

where p =
I p I, and the lower cutoff ro is the minimum distance between two particles. After some algebra, the expres-

sion of C(g) becomes

C(p=l — ', f '
*, f, de, sloe, f,'dq' f, d()„,—f d„p(i([)((cosz+~s() (id)sl ] ()

where z =
I

g' P I p, lr and zo ——
I g P I p/ro. The integral over the angles from the last term in Eq. (7) vanish, so we ob-

tain

For C(g), the f vector is fixed in space. Then, we can rotate the local coordinate system from the origin, so that its z
axis will coincide with the direction of the g' vector. In this way the integral in Eq. (8) can be performed.

Let us assume in the first case that r0~0. In the large- V limit we get

C(g)=1- "—&y&,
V

where

((t) )=f 18,sin8„ f dq&, f 18„ f—dy„g, .

Returtung to Eq. (5},the g' integral is then easily evaluated to give

Pop, (H) =
ir (Ag)L, +H )

where AnL,
——p(m'/6)n (P ) is the width of the local-field distribution and

Pi =(N/V)
I x-,v

is the volume concentration of the dipoles in the system.
In the second case, we take a small but finite ro. Then, from Eq. (8) we obtain

C(g)=1—— f d8, sin8, f dy, —f d8„ f dp„ I
g' P I Si(zo)+ ——

ZO
(12)
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where Si(x)= —J t 'sintdt, is the sin-integral func-

tion. ' Following the method presented in the previous

case, we get

C(g) 1
1 eu
6 r03 V —Vo

'

where (P ) is defined with the use of Eq. (10), in which

P, must be replaced by P, .
The evaluatian of the g integral in this case leads to an

expression that the central limit theorem would imply:

02
POG(H) =(41rAnG) exp 43~

(14)

where ADG=(p n/6r 0)(P ).
We mention now some aspects concerning the applica-

tions of the deduced local-field distribution functions. As
can be seen from Eqs. (11) and (14), the assumption of a
totally random spin distribution leads to classical proba-
bility functions. Fram these, the double Lorentzian is
usually taken into account, ' ' but this is acceptable only
for nat very high field limit, because Pot(H) defined in
Eq. (11) give rise to logarithmically divergent (,H } and
linearly divergent (H2) for large H. This means that in
the large internal-field limit one had to use the Gaussian
distribution function given in Eq. (14).

In many analyzed systems the dipolar interaction to-
gether with the RKKY indirect exchange couples the
spins. For these cases we must also calculate the density
distribution function of the local field. In the mentioned
situation the internal field is

III. THE ENERGY EXTREMA CONDITIONS

(19)

where H;~ is the internal field acting on site i and which
was created by the magnetic moment situated at the site j.
In the following we will always explicate the n~ depen-
dence of HJ. HJ ——HJ(nj). About HJ(nj) we consider
only that it is linear concerning its variable nj:

Htj A~ gxk Ak ————g xkHiq( Ak),
k k

(20)

The question which now arises is whether the results
given in Eq. (11)or Eq. (14) represent the real distribution
functions. The main assumption that we made in the
preceding section was that all the spins are randomly dis-
tributed in their position and direction. But this assump-
tion seems to be incorrect. The spin directions within the
system are not totally independent, because each spin will
accommodate to others so that the local spin configura-
tion will try to decrease the energy of the system. In ather
words, the spin directions are not totally random, being
infiuenced by the local correlation tendency of the spins.

A simple model of this process can be obtained in the
following way: Let us consider a system of randomly
oriented N ~&1 magnetic moments p, ;, with unit vector
n;. For simplicity we take (during this section)

~ p; ~

=1
and so the total energy of the system can be written as

H, =H~+H~

where HD is given in Eq. (2), and

Ha gtt y, , q
——=cos(2kFr) .

P

~here Ak is an arbitrary vector set.
We consider that our system has a configuration In; I

which represents a stationary point of the energy surface,
so we can write

We denote the p vector components in the local coordi-
nate axis by p;, i =x,y,z obtaining the following expres-
sion for the local field at the origin:

(17)

N

g H,~(n~)=A, ;n;, A,;= ~H; (,
j=l
j+i

where H; is the total internal field acting on site i:
N

H;= g Hj(nj) .

(21)

(22)

In this way, the density distribution functions can be
determined replacing p in Eq. (6) with f=p+qglitp, and
taking into account in the average a supplementary in-
tegral over the density distribution of q

P(q) =—1 1

( 1 q2)1/2

Using this method one reobtains Eqs. (11) and (14) with
the remark that in the expression of AnL, and AnG in
place of (P) and (Pz) will enter (f) and (P), respec-
tively.

The image presented up to now gives the classical distri-
bution functions for the internal fields.

As we mentioned above, the spins are not totally in-

dependent, but correlate locally each other, so that the lo-
cal spin configuration will try to decrease the energy of
the system. To describe this process mathematically we
choose p spins and impose that its configuration give a
minimum energy contribution in the total energy of the
system. To do this first we renote the spin indices to en-

sure the first indices for the chosen p spins and rewrite
the total energy from Eq. (19}as

(23}
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I I I
H, (, nn

—H,. +H„H, (;nn
——$ H„(n)),

j=1
j+i

(24)

Let us now perturb the analyzed p group of spins by a
small displacement m; (

I m; m; I
«1, n;.mi ——0); then

for i &p we may write

Q 1 Q
n; =ni +m( —T(m; m()n( + ' ' '

H; ~;(n
—— X Hn(ng), H&=H, —$ Hn(nn) .

I =p+1 k=1

H; and H; are the two components of the internal field

acting on the chosen p sites: The first (H; ) is created by
the spins other then the p spins (it is an "external" field
from the point of view of the chosen spins), and
the second (H;) is the field created by the p particles
themselves (it is an "internal" field from the point of view

of the chosen group). Hi is a truncated field which acts
on the magnetic moments situated outside of the chosen
magnetic moments and which can be obtained by subtrac-
tion of the first p contribution from the total internal field

H(.
The first term from Eq. (23) gives the contribution in

the total energy of the p spins:

E~ = —g n; Hn+ g H;,. (25}
i =1 j=l

j+l

Introducing n; from (26) in Eq. (23) and using the proper-

ty (20}we get the second-order change in the energy as

iE2= (mi m;I —g gm;H;, (m))
i=1 i=1 j=l

m; =a;a;+P;bi, (28)

+ 2 sli mj niH" n.1 0 0

i =1 j=l
j+i

Furthermore, the p spins will give a minimum energy
contribution in E (in other words will minimize E~}if E2
is positive definite.

Introducing unit vectors a; and b;, with a;n, =b;n;
=a;b; =0 at each p sites, we can put

where

a&+ad) + — (ag+P))hj —$(aa(nnyppy; yap)n, ~pa. n, )
i=1 j=l j=l

9+i j+i

0 0
h;1 =n; H~J(nj), x,j ——a; H;J.(a)),

y)g ——b; H,J(bg), ui)
—a,"H,J(bj ),

ups
——bi H,g(a]) . (30)

Now E2 is a quadr«i«orm in 2p variables &;,p; which must be positive definite.
If we take Jp =2, the eigenvalues of the Hessian matrix associated with E2 from Eq. (29) can be obtained from the

equation (Ak stands for the eigenvalues of the Hessian matrix)

Ai+h A2+h
k

}L,i+ h

2
—Ak

A2+h 2 2 2 2 2

2
—Ak (x +y +u +u )+(xy —uu} =0, (31)

and must be positive definite. We used the notations
& —&12=&21& P =/12=/21& + =Q12=V21~ U =V12=Q21,
and k = 1,2. After some algebra this condition leads to

zation is governed by the first term. So we must have

I,".Hi )O. (33)

2 2

X IH I & 2 gn,'.H';- (32)
From Eq. (33) for p =2 we get

With the Im('&t I «1 small displacements we can
perturb only infinitesimally the I ni J stationary configura-
tion. If we wmt to b sure that Ep has an absoluteml™~value we must ch~k also for grmt p ~ur
bations, for example with momentum inversion

—n(, i =1,2, . . . ,p (which cannot be obtained with
small displacements). This inversion leaves the second
te'm «om Eq (25) unchanged, and so the energy minimi-

g;, = —,(n,'H, +n, H,. )&0.

If there exists one site in the system where
I H; I

=0,
then for all j&i one obtains

I HJ I & g;J. . But the existence
of the

I H; I
=0 case, in a stationary point of E, leads to

an energy variation which is proportional with 5nj and
decreases the energy of the system. So

I H; I
must be a
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strict positive number for every site. This gives the neces-

sary condition for the local energy extremum requirement

obtained for the RKKY case by Walker and Walstedt in

agreement with other authors' results, ' and shows that
the probability of finding zero local field must be zero and
not a maximum value as the classical distribution func-
tions in Eqs. (11) and (14) predict. This is the reason why
the local energy extremum condition modifies the
internal-field distribution functions.

If we denote (=min[/, j ) and ri=max[n; H,J ] for all

i,j =1,2, . . . ,N, then

I H; I.
I H, I Q &(n;.H;,.)(n,'HJ;), (35)

where Q =ri/g is a positive, finite number. This inequali-
ty exists for any kind of interaction between magnetic mo-
ments which satisfy the relations from Eqs. (19) and (20).
In the case of RKKY interaction for any pair of spins H;,
H;, H, 2, and Hii lie in the same plane. In this situation
one reobtains the relation (3.12) from Ref. 8, deduced by
mathematical artifacts, obtaining for this case Q =1.

For p & 3 a general formula is obtained to describe the
local energy minimization condition:

(36)

'2
ni 'nj

Returning to Eq. (35), for dipolar interaction we find

(gag ) (n; rj)(nj rp)
Hi H) & 3

Furthetmore, taking into account the RKKY and dipolar couplings together, one gets

2
' '2

(gp&S) (n; re)(n~ rjf) ni nJ+(«a I)-
r,

&

In the next section we will use these results to deduce the
corrections to the classical distribution functions.

IV. THE CORRECTED DISTRIBUTION HJNCTIONS

As we mention in the preceding section, the energy ex-
tremum condition modifies substantially the classical dis-
tribution functions. From the physical point of view this
modification means that at the impurity sites, it is not the
H =0 internal-field value that is the most probable, but
on the contrary the probability of finding a vanishing lo-
cal field is greatly diminished. In this condition a cavity
appears in the distribution function around the value
H =0. The effect of the cavity was analyzed by many au-
thorss' ' in the case of RKKY interaction. The purpose
of this section is to generalize the cavity calculations for
other then RKKY couplings.

From a mathematical point of view the presence of the
cavity means that the classical distribution function is
multiplied by a correction term which modifies its shape
for not very high H values.

First we will exemplify the calculation of the mentioned
correction term for dipolar coupling. If we use in Eq. (37)
the notation r~=ruj. , po=gpa~/v Q and

I « I
=Hi

one obtains

where

1 for x &0ex=
0 forx &0,

gD
—go[3(n; uj )(nj'u;J ) —(n;.nj )] (41)

Taking the average of this product over the random distri-
bution of H;, we obtain

PL, (H) =it."L Por (H)CoL, (H),

where

(42)

Co (H) =g (e(H; g /Hr 6)}— (43)

ln Cor, (H) =g lngL,
D

Hr6

where

is the correction factor and EL is the constant which ac-
complish the normalization to unity. In order to calculate
the correction factor one can write

2

H~HJ. & [3(n;.u,&)(nJ"uJ ) —n;.nj ]p6
(39) Cng, =(e(H; g /H ')}-

Hr

For a given HJ =H the restriction introduced by Eq. (39)
in the space of all H, is

=f, PoL( H)dH.
Hf =g~/Hr~ (45)
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Integrating in Eq. (45) we find

4 2 zt kn 2 4
gL 6

——I+—
2 2

——Rrctarj.
Hr6 n' zri+gn n' zL,

(46)

where zL —An—t,Hr . Now we transform the sum over i in
Eq. (44) in an integral over r, for which (bouse of the
fixed H& ——H) one takes the polar angle 8/ defined as

nj.utt =cos8i. The obtained result must be than averaged
over all possible directions of n;, after which, changing
the integration variable r in zL, one gets

inc„(H) = —H-'"
(A )1/2

' —1

de 2 zt gn 2 gn
&

sjg,
&

1n 1+— ——arctan
3 0 0 0 (zt }1~ n' zt+fn n' zL,

It can be checked that the constant BDL, always has a positive value. Now from Eqs. (42) and (47) we obtain

Eg Ag)LPL(H)=, z z 2 exp —H 1/2
(Ant, +H ) (Ant, )

(48)

Analytically it can be shown that Kt is always a positive, finite number. '

In the case of Gaussian distribution the correction term can be determined using the same method. Integrating over H
within the gg function

I'

ga 6 =,~oe
Hp H& =g&/Hr

we obtain

gn kn
gg

Hr 6 zg

2 Cn 4
exp

Vw zg zg
I

where zg ——2AngHr and

P(x)=2/ n J exp( t )dt-
is the error function. 's Using the same procedure as above, one gets

(50)

(5 l)

C0g(H) =exp H—
T

8~= f d8; f drain&, f,~ hi 2—d
3 2 0 ( )1/2

So, the corrected Gaussian distribution function becomes

4
exp

zG

Pg(H) =Kg(4nAng) i/ exp
H $/2 DG

2 8
4Ang (Ang )'/2 (54}

The normalization constant Kg can be easily determined. '

If we take into consideration the dipolar and RKKY interactions together, one must start with Eq. (38) and must take
into account a supplementary average over P(q) given in Eq. (18). The corrected internal-field distributions do not have
a qu~Jitative new shape, so we exemplify the correction term only in the double Lorentzian ease:

C0(H) =exp H-+DM.

(AnaL, }'" (SS}

where

3& —1 (I q&)1/& 0 ' 0 1 0 (56)
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gDg =}}i(}[3(n;uj )(nJ'uj )+(qga —1)(ng 'nj)] (57}

(H;+K )(HJ+Kq'}
r

(n} 'u}J )(nj 'u}J )
)po 3 (60)

The correction function which was obtained in the
preceding section gives a vanishing probability for zero lo-

cal field. But this is not a necimsary characteristic for the
cavity. There exist different physical situations which

modify substantially the cavity shape and depth. These
contributions are usually connected to the local anisotro-

py. This fact has been taken into account in Ref. 8 to
describe the metastable states of the nucleus. It was

shown qualitatively that the nucleus field distribution,
while it presents a cavity centered around zero field,
nevertheless gives a nonzero probability for vanishing

field. In other situations the cavity became so large that
we can find vanishing probability for the field distribution
below a finite H value. ' We try in this section to obtain
an analytic description for this effect, which can be used
for the correction of the classical field distributions. For
this purpose, because of the mathematical complexity of
the problem, we take into consideration an extremely sim-

ple local anisotropy expression, which enters in the energy
contribution as K,

"
~ p; ~

. In this case the total energy of
the system can be written as [see Eq. (19}]

E=—$ p"H. , (58)

with

N
H=&H- —X - .IJ/I l

j=1
J+l

(59)

Using the same procedure as described in Sec. III, for the
dipolar interaction we get

where A~~ can be obtained from the expression of ADL

in which, as we mentioned in Sec. II, (4 & is replaced by

(

V. THE CAVITY DEPTH MODIFICATION

C;(H) =g &e(H, g, /—(H+K')r'+K') & .
i

(61)

The g (x} function, for example, in the double Lorentzian
case becomes

x=, 6
—K . (62)(H+K')r6

In Eq. (62} the lower limit of the integral can be explained
in the following way: Because POI. depends only on

~

H
~

as an independent variable, the integral limits have been
given for the field modulus. A modulus cannot have neg-
ative value, so if x &0 for the integral we must take into
accaunt zero lower limit. But if x & 0, then in conformity
with the restriction prescribed by Eq. (61),

~

H
~

can be
taken only above x. From Eq. (62) we abtain

gL, (y) =1+—
2

——arctany,
2 p 2

(63)
n' $+y2 m

where y =(x/AnL, )8(x /A~L, ) & 0. The praperty
0 & gL, (y) & 1, as in the previously analyzed cases, guaran-
tees that ln(gL') ' will be a positive function. Taking
z =

ADL (H +K')r, we get the correction term as

CD (H) =exp (H +K' )—
(g )1/2

where

(64)

where for simplification we have K =KJ'=K'. The
correctian can be obtained with the procedure described in
Sec. IV. One obtains

Jsin J ln 1+— ——arctan zn ~ ~ . ~ dz 2 f(z) 2

z n 1+f (z}
(65}

and

f(z)= CD

tions. But these cases will not give qualitative new results,
so we do not analyze them here in detail.

VI. DISCUSSIONS AND APPLICATIONS
From Eq. (64}with K' &0 results the fact that the cav-

ity diminishes the probability density function POL(H}
around the origin, but at H =0 one has Co (H) &0 so
there is a finite nonzero probability to obtain a vanishing
field at the sites. In the case in which K' & 0, Co (H) =0
for H &K', so one reobtains a hole, a result similar to
that predicted by Palmer and Pond. '

By using the presented procedure, a similar effect can
be deduced for the RKKY, or the combined RKKY and
dipolar cases, for double Lorentzian or Gaussian distribu-

In this paper we analyze the internal-field distribution
functions for the dipolar and RKKY-dipolar couplings of
vector spins distributed randomly in a nonmagnetic host.
In Sec. II, we determined for these systems the internal
field distribution in the most general case, taking into ac-
count totally random spin configurations. This assump-
tion leads to the classical field distributions: a double
Lorentzian if the interspin distances are nonrestricted and

a Gaussian if they are restricted, conform with the
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central-limit theorem.
After this description, we took into consideration that

because of the spin dynamics the spins are correlated with

each other, so on the one hand the local spin configura-

tion tries to minimix its energy contribution and on the
other hand, because of the reciprocal spin connections, the

total energy of the system tries to reach a local extremum

point of the energy surface.
Without using a concrete description of the considered

interactions, in Sec. III we gave a qualitative analytic for-
mula for the correlation (or accommodation) between the

spins, which was used to calculate the correction terms for
the classical field-density-distribution functions. The
correction terms cause a cavity to appear within the
internal-field distribution, centered around H =0. Be-
cause of the cavity, P(H) vanishes at H =0 and does not
take its maximum value as in the classical cases. Further-
more, it is not necessary that P(H)=0 for H =0. If we

take into consideration a simple local anisotropy, the cavi-

ty depth decreases, so we obtain a nonzero probability to
get a vanishing field at impurity sites. This happens, for
example, with the field-distribution function of the nu-

cleus and can be interpreted as a consequence of the pres-
ence of metastable states within the system. In some
cases, the shape of the cavity is so modified that one can
reobtain a hole predicted by Monte Carlo simulation. '

Also an analytic description was given for this case, tak-

ing into account a simple anisotropy factor.
The possible applications are diverse and are connected

to the probability density functions usage in different
physical situations. In the Introduction we described this
problem, so in this section we will analyze only one of

HL =$4 Qe

0,2

0

0
o o o 0

TIME (+sac)

FIG. 1. G,(t) relaxation function for HL, ——6400e. The solid
line was obtained for ADL ——30 Oe and Bpr, ——150 Oe using Eq.
(67).

them, from the relaxation domain.
The importance of p+ relaxation2 to experimental

methods and the fact that it is determined by the inter-
nal dipolar field ' is well known. Using the Kubo pro-
cedure, s ~s we have calculated the relaxation function for
a Cu —1'//o Mn spin-glass, in the case of a strong longitu-
dinal external field ( Hl ——640 Oe). We analyzed this situ-
ation because the experimental data2i has not been fitted
well despite the fact that several different theories have
been used.

%e write the longitudinal relaxation as

1 8
G, (t) =—+ Anr, KL, z z cos[y„t (H Hr )]exp —H—

3 3m fADL+(H HL, )'] —" (AD )' (67)

where y js the p+ gyromagnetic ratio.
We mention that the correction term from the probabil-

ity density function used in Eq. (67) is a specific way to
take into consideration dynamic processes within the sys-

tem. Furthermore, bo:ause of its origin, in the exponen-
tial correction factor did not enter the external magnetic
field HL. Despite the relative simplicity of the descrip

tion, the fit agrees well with the experimental data27 (see
Fig 1). We used AnL, ——30 Oe which is in agreement with
the experimental results for CuMn, i~'2s taking into ac-
count that in this case, because of the correction term, the
width of the distribution function is djminished, and in
fact it has been determined by ADL and BDq too. The fit
is n«sensitive to the variation of BDq within 100
Oe—200 Oe. %e took BDL, ——150 Oe.
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