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Two-dimensional spin-flop transition in CoCl&-graphite intercalation compounds
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Two field-dependent susceptibility anomalies are observed in the quasi-two-dimensional spin sys-

tem of CoC12-intercalated graphite. These anomalies are explained with use of the Landau free-

energy functional applied to the magnetic Hamiltonian of CoC1&-intercalated graphite. In the

stage-1 compound, the low-field anomaly at HAs(T) =160 Oe is a signature of a two-dimensional

antiferromagnetic-spin-flop first-order transition, while the anomaly at a higher field HSF(T) =300
Oe is a signature of a spin-flop-ferromagnetic second-order transition. The low-temperature proper-

ties of these three phases are analyzed using the transfer matrix method for their c-axis ordering. A

comparison of the model calculation and the experimental data indicates that the antiferromagnetic

coupling between CoClq layers and the sixfold in-plane anisotropy are approximately 160 and 10 Oe,

respectively, for the stage-1 compound.

I. INTRODUCTION

Multicritical phenomena in magnetic systems have at-
tracted much attention recently. The most notable exam-

ples are MnF2 (Ref. 1) and GdA10& (Ref. 2). The experi-
mental studies of these materials have stimulated a vast
amount of theoretical research, such as the investigation
of the critical properties near the Lifshitz point. ' There-
fore, it is interesting to explore the magnetic properties of
new materials in lower dimensions, where the physics is

simpler.
Recent interest in the magnetic properties of graphite

intercalation compounds (GIC's) (Ref. 5) suggest that
these compounds are good candidates for fundamental
research on magnetic critical phenomena. The theoretical
interest in CoC12 GIC's stems from the approximate XF
nature of the Hamiltonian of CoCli (Ref. 5) and the ex-
perimental interest from the ability to control the spatial
dimensionality in GIC's by controlling the stage of the
compounds. The investigation of the Kosterlitz-Thouless
transition in this system and the connection to the Jose,
Kadanoff, Kirkpatrick, and Nelson (JKKN) (Ref. 6)
model has been reported earlier. It was found that the
antiferromagnetic interplanar coupling plays an important
role in the magnetic order of CoC12 GIC's at low tempera-
ture. *

In this paper, we report the experimental measurement
of the magnetic differential susceptibility X~~ at a finite
in-plane field H, (H, is applied in the c plane and the
probing field of 0.3 Oe is applied parallel to Hi }. These
field-dependent measurements of the susceptibility at
fixed temperature provide a sensitive probe of the magnet-
ic order at low temperature. Two new field-induced
anomalies in the susceptibility of a stage-1 CoC12 GIC are
reported.

The experimental data on the magnetic field profile of

the susceptibility can be understood in terms of two phase
transitions: (i) A first-order transition from an antifer-
romagnetic phase to a spin-flop phase at a critical field

Hzs, and (ii} a second-order transition from a spin-flop
phase to a ferromagnetic phase at a critical field

HsF &Hzs. The qualitative features of the experimental
data can be understood in terms of a Landau free-energy
functional, the analysis of which reveals the three phases:
an antiferromagnetic phase at low field, a spin-flop phase
at intermediate field, and a ferromagnetic phase at high
field. The low-temperature properties of these phases
have been studied using the transfer-matrix method. The
theoretical calculations are in qualitative agreement with
the experimental data. The susceptibility anomalies can
be explained by a Landau-type model in terms of a com-
petition between two symmetry-breaking fields as well as
the effect of the antiferromagnetic interplanar coupling.
The experimental work, as well as the theoretical model-
ing, provide a new system for studies of multicritical phe-
nomena.

In Sec. II we report the discoveries of two field-induced
susceptibility anomalies in a stage-1 CoC12 GIC. From
these measurements an experimental phase diagram is ob-
tained. In Sec. III a Landau free-energy functional based
on the magnetic Hamiltonian of CoC12 GIC's (Refs. 5 and
7) is written down and discussed for its possible ground
state. A low-temperature analysis using the method of
the transfer matrix is given in Sec. IV. Finally, in Sec. V
the interpretation of the experimental results of Sec. II for
the field-induced susceptibility anomalies is presented in
terms of the theory given in Secs. III and IV.

II. FIELD-DEPENDENCE MEASUREMENTS
OF SUSCEPTIBILITY

In order to investigate the effect of the interplanar cou-
pling on the magnetic order of CoC12 GIC's at low tem-
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perature, we have performed differential magnetic suscep-
tibility measurements at several fixed temperatures as a
function of magnetic field. We applied a probing field of
magnitude 0.3 Oe parallel to the finite magnetic in-plane
field Hi. The temperature is determined within an error
of 2%o and the value of Hi has an error of +5 Oe.
Despite these relatively large error bars, the general
features of the magnetic susceptibility as a function of
field are reliable. The details of the experimental setup
and measurement technique are described elsewhere, as is
the sample characterization. '

In Fig. 1, we present the results of the differential mag-
netic susceptibility as a function of field for several values
of the temperature T & 9 K for a stage-1 CoCli GIC!m
pie. We identify two susceptibility peaks as HAs and HsF
as indicated on the figure. The susceptibility at a given
temperature is for convenience normalized by its max-
imum value, which occurs in the low-field limit. Since we
have presented results for the temperature profile of the
susceptibility elsewhere, we concentrate on the field pro-
file in the present paper and assume that the initial values
of the susceptibility [X(H~0, T)] are already established.
To interpret the field-dependent results, we plat the loca-
tions (HAF, HsF) of the susceptibility peaks as a function
of temperature to obtain Fig. 2, which is essentially an ex-
perimental phase diagram in the magnetic field-
temperature plane, the first phase diagram available for
CoC12 GIC's. We discuss the various phases and their
magnetic ordering in the next two sections, where more
insight is obtained by the construction of a Landau free-
energy functional for our system.

III. LANDAU FREE-ENERGY FUNCTIONAL

The total model Hamiltonian, ' " consisting of the
two-dimensional (2D) XY' term, the Ui and Uz perturba-
tions due to in-plane symmetry-breaking fields and the
interplanar antiferromagnetic coupling term, has not been
solved exactly. Therefore, we perform a Landau-type
analysis of the free energy (see Appendix) to attempt a
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FIG. 2. Experimental phase diagram below T,~ obtained by

plotting the values of magnetic field corresponding to the two

susceptibility peaks in Fig. 1 as a function of temperature. Here
the curves labeled HAs and Hsp are, respectively, the magnetic
field values of the lower and upper field susceptibility peaks in

Fig. 1. Between T,~ and T, the system is in a vortex bound

phase in the limit H~0, and above T, the system is in a vor-

tex gas phase in the limit H ~0.

qualitative understanding of the experimental data for the
magnetic field-dependent anomalies. The approach that
has been taken is essentially a mean-field-type analysis of
the effect of the interplanar coupling, so as to obtain a
phase diagram for the system, thereby providing a frame-
work for the interpretation of the magnetic field
anomalies.

The Landau free-energy per unit area for one isolated
layer of CoC12 spins consists of three terms: (i) f2D which
is the contribution from the ferromagnetic exchange in-
teraction between the XF model spins, (ii) —Hi M which
is the Zeeman interaction of the magnetization M with
the external field Hi, where the units are chosen so that
gpz ——1, and (iii) Hsp cos(68—) which is the sixfold an-
isotropy energy, where p is the magnitude of the magneti-
zation and 8 is the angle between the magnetization and
an in-plane crystalline axis. From scaling theory in two
dimensions, we have the two-dimensional free energy f2D
varying with the magnitude p of the magnetization ac-
cording to

f2D cp b

where b is an exponent and c a proportionality constant.
When we consider, in addition, the antiferromagnetic

coupling to the nearest-neighboring plane (J'&0) and
divide the system into sublattices A and 8, we obtain the
Landau free energy as

F„s=fzD+f2D Hip„cos8& Ht—pscos8s—A B

—H6pz cos(68& ) H6pz cos(68'—)
'0 500

H {Qq)
+~'p~ pecos(8~ +8a) .

FIG. 1. Differential magnetic susceptibility g as a function
of applied in-plane field H~ for various temperatures for stage-1
Cocl2 GIC's. The probing field is applied also in the plane of
the CoC12 intercalate, parallel to HI and with a magnitude 0.3
Oe. The results are plotted by dividing J(H, T) by the max-
imum value of g at the same temperature.

Here pq and pa are the magnitudes of the sublattice mag-
netization Mz and MB and 8&,8& are their directions
with respect to a reference axis. This expression for Fzz
can be minimized with respect to the quartet of parame-
ters (pz, p 8s&,8 )tao obtain the equilibrium configura-
tion. Our first step is to consider the possible equilibrium
configuration of Fzz at zero temperature and then extend
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the analysis to nonzero temperatures by more sophisticat-
ed methods.

At zero temperature, we have a system of saturated pla-
nar rotator spins lying on successive layers that are cou-
pled antiferromagnetically. Thus, pz ——pa ——const and we
can concentrate on the ordering along the direction (z or
c) perpendicular to the plane.

This problem is then reduced to the one-dimensional
classical antiferromagnetic XY chain with in-plane sixfold
anisotropy and an in-plane external field. This one-
dimensional problem without in-plane sixfold anisotropy
has been investigated by Maki' in the soliton language.
A similar problem with classical Heisenberg spins, but no
sixfold in-plane anisotropy, has been studied using the
method of the transfer matrix by Morita and Horiguchi'3
and Lovesey and Loveluck. ' %e will discuss the
relevance of the analysis made by these authors' ' to our
model in the next section.

The zero-temperature analysis, performed by minimiz-
ing Fz~ as a function of 8& and 8s, reveals three possible
ground states. They are the (i) antiferromagnetic phase:
8„=0, 82i n, (ii} ——spin-flop phase: 0&8„=8+&m/2,
and (iii) ferromagnetic (spin-aligned paramagnetic) phase:
8g ——8s ——0.

The phase boundaries between these three phases are
obtained by comparing the free energies. The anti-
ferromagnetic-spin-flop (A-S) phase boundary for small
sixfold anisotropy g:H6ps/J'p—2 can be written as

pie model. Consequently, the S F transition is always
second order in our simple model.

In conclusion, we have found that there are three
phases using a stability analysis of the Landau free-energy
functional of the antiferromagnetically coupled ferromag-
netic XY layers of spins with an in-plane field and sixfold
anisotropy. In the next section we wi11 investigate the
temperature dependence of the critical fields.

IV. LOW-TEMPERATURE ANALYSIS:
TRANSFER-MATRIX METHOD

We use the transfer matrix method to analyze the low-
temperature properties of the Landau free energy. We
summarize the key steps of the transfer-matrix method
before we derive the results for our system.

The transfer-matrix method is useful for one-
dimensional statistical mechanics problems of N particles,
where the partition function has the form

with 18; as phase space volume element, P= 1 /kz T and

X—1~(81»8N ) +I(8N )++F(81)+ g +(8i~8i+1) '

Here, %1 and O'F are the initial state and final state or the
end-point spin states of the one-dimensional chain. The
quantity 8'(8;,8;+, ) is the energy given by

h~s —4VR as g~0, (3) 8'(8;,8;+, ) = ——,
' H ip(cos8;+ cos8;+, )

hsF ——4—36g as g~0. (4)

To analyze the order of the S-F transition, we follow
the method employed by Hornreich, Pension, and Shtrik-
man. '5 We perform a Taylor expansion of the free energy
in the variables 8&,8a around the equilibrium value. The
second-order phase transition line is given by the equation

detÃ =0, (5)

where 4' = (C„„)is the matrix of second-order derivatives
of the free energy with iM =(A,B) and

where h =Hip/J'p and the subscript AS denotes the
(A-S) phase transition line. The (A-S) transition is first
order since the angle 8 changes discontinuously at hzs.
The phase transition line between the spin-flop phase and
the ferromagnetic phase (S-F) for small g can be written

——,
'
H6p (cos68;+cos68;+ i)

+J'p [cos(8;—8;+i)]

for the spin Hamiltonian 4 (8) given by

S—1 N

A (S)=J' g p cos(8; —8;+i)—g Hipcos8;
i=1 i=1
S

—g H,p'cos68, , (10)

with 8; =p(cos8;, sin8; ) being the XY spin in the layer.
The transfer-matrix method involves the integral opera-

tor 4 defined in the space of the regular function (Oi) so
that

MV(8; ) = I 18;+&e
" '+' %(8;+,) .

The partition function Niv can be written as
BF

88 B8„si=~i ' (6) Niv ——
& +I,A O'F )

with

(12)

where 8& and O„are the equilibrium valves.
I3y the symmetry of the free energy, the third-order

derivatives vanish. The transition will then be second or-
der, provided that the fourth-order derivative of the free
energy is positive definite. A possible tricritical point will
be present if there is a simultaneous solution to dent@' =0
and the fourth-order derivative also vanishes at (8&,8&).
We have ehe:ked the possibility of a tricritical point for
this case and we find that this does not occur in our sim-

and

4 (8 )=e
and the inner product is defined by

&gl g2&= J&8gi(8)g2(8).

(14)

(15)
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because M%o——Q%'p with (%o,%p}=1.
The problem of finding the free energy for the chain of

spins becomes that of finding the smallest absolute eigen-
value Q of the integral operator W. Once Q is found,
the magnetization and susceptibility can, in principle, be
obtained by successive differentiation with respect to the
field Hi.

To obtain the low-temperature properties of the Landau
free-energy functional in our competing field model, we

can perform a harmonic analysis around the ground state
and solve the harmonic integral problem, the lowest eigen-
value of which has an eigenfunction of Gaussian form,
thereby allowing analytical computation.

We compute the correction to the spin-flop state as an
example. We define the angular deviation from the
ground-state spin direction specified by the spin-fiop an-

gle Hp as

4z. =82m —Ho A.+i=82.+i+Ho (17)

The spectrum of the integral operator W can be shown to
have an eigenvalue Q with the smallest absolute value.

Denoting %0 as the normalized eigenstate corresponding
to Q, we have the free energy f per spin

I
Pf—= lim —1n&N ——+in+,

and expand the energy 8'(Hz„, 82„+i) of Eq. (9) to second
order in P to get

0@'(Hz. Hzn+i }=PN'o(Ho)+0
2
(0' —0zn+i }

J

Nl+ (4',„+P',„+,)+O(P'), (18)
2

where N'o(Ho) is the ground-state energy given by

N' (8 )= J'p cos(28 ) H,—pcos8 H—pscos(68 )

+f2D+f 2D (19)

and the new interplanar coupling J and effective mass m

are defined by

J=—J'p cos(28o) ~0,
(20)

m =—[Hipcos8o+H636p cos(68p)] &0 .
2

Then, the integral operator equation

I d0'~(N 0')'Pp(0') =~o'Po(0} (21)

can be solved in the spin-wave approximation by replacing
the above equation with

Nl' ' f d0'exp P—(P P—')' —(p'+—p') %p(p')=A, pq(p) . (22)

This is the problem of the harmonic-oscillator kernel'6

which has a solution for ihip with the Gaussian form
obtain the magnetization. The magnetization and the sus-
ceptibility are given by

ql (y) ce -( /2)yly (23)
M =Mp+Mi, X=Xp+Xi, (28)

with c and y as the two parameters fixed by the eigenstate
condition [Eq. (21)] and the normalization condition,

J d4"4(4')q'o(0) =1 ~ (24)

With two unknowns, c and y, and two equations, (21) and
(24},we can show that

' 1/2
2n —&&oieoi

(25)
Qg

dMo= — fo &o=-
dHi

(29)

and the low-temperature correction terms given by

with the zero-temperature magnetization Mo and suscep-
tibility Jo given by

where

a,'= m'( I+y)+13J

fi &i=- fi .
dHi

(30)

and

r =&+ 2

After obtaining A,p, we can compute the free energy f
using Eq. (16). The results are summarized in the Appen-
dix. We split the total free energy per spin f into a
sum of a zero-temperature contribution fo and a
low-temperature correction f, . In the present case of
the spin-flop phase, fp is g'o(Hp), while fi is
(1/2P)ln(a, /2m). By differentiating the free energy, we

In these derivatives, Ho, m, and J are H i dependent. The
calculations of the magnetization and susceptibility for
the other two phases are similar and the results are sum-
marized in the Appendix.

The value of X as a function of h ( =Hip/J'p2} is plot-—
ted for fixed six-fold anisotropy g ( =H@o /J'p ) in Figs
3(a), 3(b}, and 3(c), corresponding to the antiferromagnetic
ground state, the spin-flop ground state, and the fer-
romagnetic (spin-aligned paramagnetic) ground state,
respectively. For these curves, the temperature scale is set
by PJ=100 and X is normalized by setting X =1 for
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FIG. 3. Differential magnetic susceptibility versus reduced
field in the (a) antiferromagnetic, (b) spin-flop, and (c) ferromag-
netic (spin-aligned paramagnetic) phase for various fixed values
of the sixfold anisotropy g—:0~6/J'p~. In (a) the curves are
terminated at field values where the harmonic approximation
breaks down. Likewise, in (c) the curves start at fixed values
where the harmonic approximation becomes valid. Close to hAs

and hsF the harmonic approximation breaks down.

each phase. These curves provide a qualitative picture of
the observed field-induced anomalies.

In the antiferromagnetic phase [Fig. 3(a)], the suscepti-
bility first decreases and then increases. These curves ter-

minate at certain specific values h (g) for a given g, be-

cause the harmonic approximation around the antifer-
romagnetic ground state breaks down for higher values of
h. In Fig. 3(a) we see that the termination value h (g) is
smaller for smaller g values. This indicates that the phase
transition from the antiferromagnetic state to the spin-

flop state occurs at a critical field h As ——h, (g) )h (g), such
that h, (g) increases with increasing g values, according to
the harmonic approximation. A second point to note in
Fig. 3(a) is that near h(g}, the harmonic approximation

fails, since the susceptibility should diverge at h, (g).
Beyond h, (g}, the system is in the spin-flop state. The
harmonic-approximation calculation for X around the
spin-flop ground state is shown in Fig. 3(b). Although the
values of g used in these plots are for illustrative purposes
only, it should be noted that in Figs. 3(a) and 3(b) the
magnitude of X in Fig. 3(a} increases as g decreases, but
the reverse is true in Fig. 3(b). This can be explained by
the following physical argument. If in the antiferromag-
netic state g goes to zero, then the spin-flop transition
occurs at zero h. This is the familiar case where the ap-
plication of a field will flop the antiferromagnetically or-

dered spins in the direction perpendicular to the field. Be-
cause of the sixfold anisotropy, this spin-flop process is
more difficult. On the average, the sixfold anisotropy g
presents each spin and its antiferromagnetic neighbors
with a stiffness, over which the spins must flop; the free-

energy barrier is larger, the larger the value of H6p6;
thereby, the smaller the response, and the sinaller the sus-

ceptibility. On the other hand, in the spin-flop (or fer-
romagnetic} state, the antiferromagnetic coupling J'p
plays the role Hsp plays in the antiferromagnetic state.
J'p provides the stiffness for the spins to rotate towards
the external-field direction. Since g is defined as
H6p6/J'p, the response and thus the susceptibility is

larger, the smaller the value of J'p, or the larger the
value of g. In Fig. 3(c) we see that the values of X can be
calculated only for those values of h where h & h(g) and

h(g) is an estimate of hsF by the harmonic approxima-
tion. This situation is essentially the same as the one il-
lustrated in Fig. 3(a). In Fig. 3(c) the harmonic approxi-
mation around the ferromagnetic ground state is not pos-
sible for h &h(g}. The correct harmonic approximation
for h &h(g) should be made using the spin-flop ground
state [Fig. 3(b)].

We now discuss the connection between the susceptibili-

ty curves of Figs. 3(a), 3(b), and 3(c) for each phase. Since
the susceptibility diverges at the critical fields h~s and

hsF, the exact values of the susceptibility in Figs. 3(a},
3(b}, and 3(c) cannot be determined and only their relative
values have meaning. Thus, the overall picture derived
from Figs. 3(a), 3(b), and 3(c) is the following: at very
small h values, X decreases then increases as h approaches
Ii&s from below and then diverges at hzs, where the sys-
tem goes through a phase transition from the antifer-
romagnetic to the spin-flop phase; in the spin-flop phase,
X decreases as h approaches hAs and eventually increases
without limit as h approaches hsp, where the system goes
through a transition from the spin-flop state to the fer-
romagnetic state; in the ferromagnetic state, 1 decreases
monotonically with increasing h. It is this general picture
that is provided by the harmonic approximation using the
transfer-matrix method. A quantitative comparison of
theory and the experimental data requires much more de-
tailed analysis.

V. DISCUSSION

The field-induced anomalies in the susceptibility of
CoCli GIC's allow the determination of the first experi-
mental phase diagram of Coc12-intercalated graphite. A
simple theory using I.andau's approach can account for
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FIG. 4. Schematic representation of the t~o-dimensional
spin-fIop transition. (Refer to discussion in Sec. V.)

the qualitative features exhibited by these anomalies by
focusing on the c-axis ordering. It is a success of the
theory that these anomalies were first predicted by the
theory and later confirmed by experiments. Sunilar ex-

periments were carried out concurrently on stage-2 NiC12
GIC's by Suzuki and Ikeda. ' The observed field-induced
anomalies indicate that a two-dimensional spin-flop tran-

sition takes place at HAs, and another transition from a
spin-flop phase to a ferromagnetic phase occurs at

HsF &H~s. The 2D spin-fiop phase is new in the sense

that the ferromagnetic XF interplanar coupling is large,
forbidding the conventional 3D spin-flop transition,
where the spin in a field will flop over to the direction
perpendicular to the field. In the 2D case discussed here,
the spina in one plane make an angle 8 with respect to the
spins in the adjacent plane. This behavior is a result of
the sixfold in-plane symmetry-breaking field, since H6
creates the necessary stiffness to counter the tendency of
spins to flop towards the direction perpendicular to the
field. A qualitative understanding of this novel phase in a
two-dimensional magnetic system is summarized in Fig.
4. When H& ——0 (no sixfold anisotropy), the application
of a small external field will flop the spina that are origi-
nally antiparallel along the x direction towards the y
direction by first canting the antiparallel pair. This is in
contrast to the case where Hs+0 and the flopping of the
spins does not occur until H~ ~ H~s. As shown in Fig. 4,
the sixfold anisotropy favors the near 60' angular align-
ment, rather than the near 90' angular order. The flop-
ping of the spins out of plane is energetically unfavorable
since the in-plane ferromagnetic exchange J is very large
(in the tesla range) compared to J', H&, or Hi (in the
oersted range). It would be interesting to look for this

out-of-plane spin flop at high inagnetic fields. Since the
magnetic susceptibility measures the response of the sys-
tem to an external field, we expect another peak in X at a
field of the order of the intraplanar coupling.

The identification of the fields where the susceptibility
is a maximum with the critical fields follows from the
mathematical analysis of the Landau free energy. Physi-
cally, this is also easy to understand since g, the magnetic
response of the system to the external field, is largest near
the phase transition point.

To obtain an estimate of the parameters of the model,
we first extrapolate the experimental critical fields at
nonzero temperature, assuming that there is no new phase
transition. For the stage-1 CoClz-GIC samples, we obtain
values for Hzs and HsF in the neighborhood of 160 and
300 Oe, respectively (see Fig. 1).

We now compare these values with the theoretical pre-
dictions. We assume that the value of the sixfold aniso-

tropy is much smaller than the interplanar coupling, so
that we can make use of Eqs. (3) and (4), where hAs and

hsF are given by 4' and 4—36g, respectively. Accord-
ing to the experimental data, the extrapolated critical
fields at zero temperature can be used for the comparison
with the theoretical prediction, as given by the following
equation:

Has 4v g 160+10 Oe

HsF 4—36g 300+10 Oe

The value of g found in this equation is 0.06+0.01. Con-
sequently, the values of h~s and hsF can be obtained.
From the definition of g and Ii, we obtain the approxi-
mate values of J' and H6 as J'= 160+30 Oe (1.07)& 10
K) and H& 10+2 Oe ——(6X10 K), respectively, for
stage-1 CoC12 GIC's.

These estimates of the interplanar coupling and sixfold
in-plane anisotropy are consistent with the estimates of
Suzuki et al. using neutron scattering (J'/J-10 and
H6 =10 to 20 Oe) and by Karimov and co-workers" 2

(10&H6 &30 Oe). It should be noted that Suzuki's esti-
mate is for a stage-2 compound so that J' for the stage-1
compound is expected to be larger. Correspondingly, we
do not expect any significant stage dependence for H6.
Furthermore, the present analysis gives J'/J =3.8&(10
in agreement with the results from the analysis of the
temperature profile of the susceptibility (J'/J =4X10 ),
using the theory of the finite-size generalized JKKN
model ' ' with the Liu-Stanley correction for the inter-
planar coupling.

From the above discussion, we have shown that the
analysis of the field profile of the susceptibility of CoCli
GIC*s allows us to obtain the best values to date for the
interplanar coupling and the in-plane sixfold anisotropy.
By reducing the experimental error in our measurements
and extending the measurements towards lower tempera-
tures, we can obtain a better understanding of the phase
diagram as well as better values for J'/J and H6. Howev-
er, the theoretical model developed in this paper oversim-
plifies the actual system, insofar as the existence of crys-
tallites and finite intercalant islands requires a model that
takes into account the angular dependences of the applied
in-plane field with respect to the sixfold axis. An analysis
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of this complication has been carried out for the case of
the pure two-dimensional model, ' where the competi-
tion effect of the sixfold field and the external field is in-

vestigated at low temperatures. These extensions of the
model can also be carried out using the Monte Carlo
method.

Finally, a most interesting area for future research on
CoClz GIC's is the study of multicritical phenomena by
considering competing interactions along the c axis. Such
effects could involve the occurrence of Lifshitz points. In
this context, the experimental refinement of the phase dia-
gram (Fig. 2) around the triple point will be extremely
fruitful.
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APPENDIX

in which

af=m (y+1)—pJ, rn = —,'p(Hip+36H6p ),

J=—J'p, y =1+z 2PJ
'

Pl

(A2)

The spin-fiop ground state has free-energy expressions

fo ——fzD+ J'p cos(28') —Hip cos8o —H6p cos(68&),

1 ~s
fi —— ln

in which

a, =m (y+1)+pJ,
mz= —[Hipcos8o+36H6p cos(68&)],

2

J=—J'p cos(28o), y =1+ 2PJ
m

(A4)

r 4+2
fo=fzD+J'P +H6P fi =

2
(A5}

in which

The antiferromagnetic ground state has free-energy ex-
pressions

In this Appendix we summarize the expressions for the
free energy f=fo+fi using the transfer-matrix method,
where fo is the zero-temperature free energy and f, is the
correction term at low temperatures. The ferromagnetic
ground state has the following expressions:

A+ ——PJ[1+X+(1+y+}],X~ —— +-2= m' p Hip

J=J'p, m =—(36H6p )
2

(A6)

2
zfo =fzD+ J'p Hip H6p —fi =—

2P 2n
(Al) 2=1 (1+X+)

y+ ——
z (1+X+)—
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