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This paper investigates the role of statistical fluctuations about the equilibrium value of the order
parameter in the vicinity of a phase-transition temperature. The systems under consideration are as-
sumed to be of finite size, but the behavior in the thermodynamic limit is also described. Our objec-
tive is to examine the simplest exactly solvable model of non-Gaussian static fluctuations for sam-
ples of finite size. To this end a Landau form is employed for the model Hamiltonian and various
expansions are analyzed in order to describe first- and second-order phase transitions, field-induced
transitions, and liquid-vapor critical phenomena. The approach differs from previous treatments
primarily in the application of a quartic non-Gaussian model for statistical fluctuations which re-
dresses some of the shortcomings of the standard Gaussian approximation. In particular, it is found
that for finite values of ¥V (volume) no singularities exist even at the critical temperature. The treat-
ment is generalized by examining a class of non-Gaussian distribution functions, and particular em-
phasis is placed on strict adherence to the uniform convergence criterion so that general conclusions
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can be drawn.

I. INTRODUCTION

As is well known,! the approach to criticality is associ-
ated with a rapid growth of spatial fluctuations in the or-
der parameter. It has been emphasized®> that because of
the prominent role of fluctuations, the often used Gauss-
ian approximation inevitably fails in the vicinity of the
critical temperature. This paper is intended as a study of
the feasibility of improving upon the standard Gaussian
approximation. The various mathematical models adopt-
ed here are of a non-Gaussian form and are formulated so
as to satisfy the uniform convergence criterion for the
resultant partition function. The results for one particular
case which permits exact solutions, namely, the quartic
non-Gaussian distribution, have recently been published.*
In this paper a class of non-Gaussian models is introduced
as a logical generalization of the Gaussian approximation
and emphasis is placed on the rigor of the mathematical
procedures. These models are applied within the mean-
field framework of the Landau theory. The system is ini-
tially assumed to be of finite size (¥ < ) but a behavior
in the thermodynamic limit (¥V— o) is also discussed.
Hamiltonians relevant to first- and second-order phase
transitions, both temperature- and field-induced are inves-
tigated. The special case of liquid-vapor transitions pro-
vides a background for making contact with recent experi-
mental results>® for molecular nitrogen.

II. STATISTICAL FLUCTUATIONS

It is a well-known precept of statistical mechanics,’ that
while the measured values of bulk quantities which
describe a macroscopic system in equilibrium are always
very close to their thermal averages, fluctuations about
these average values nevertheless do occur in all situa-
tions. For example, in the canonical ensemble the average
fluctuation in the energy of an equilibrium system can be
calculated as®
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where the mean energy is E=—Z ~(3Z /3p), the parti-
tion function is Z =Trexp(—BH), H is the Hamiltonian
of the system, B=(kzT)~}, and kjp is the Boltzmann con-
stant. Given the definition of the heat capacity at con-
stant volume ¥, C,=(3E /3T)y, it can be easily shown”®
that the average energy fluctuation is proportional to Cy,
ie.,

((E-E?®)=B"%*Cy, ()

) (1)

which essentially is the content of the fluctuation-
dissipation theorem. Similarly, in the grand canonical en-
semble, the average fluctuation in the number of particles
N is expressed by another form of the fluctuation-
dissipation theorem, namely,

((N=N»®*)=v"'N%;, (3)

where v=BV, kr=—(1/V)(OV /0P)r is the isothermal
compressibility, and P is the pressure.

Assuming in general that the macroscopic state of the
system can be determined by a set of (n +1) extensive
thermodynamic variables x; (0<i<n) whose intensive
variable counterparts are X; = —(3E /9dx;), then statistical
fluctuations can be denoted by Ax;=x; —X;. This natur-
ally leads to the consideration of a probability distribution
function for these fluctuations known as the Boltzmann
distribution, which is a consequence of the principle of
equal probability.® Therefore, the probability of creating
a fluctuation is given by

P(Ax;)=Aexp(—BAW), 4)

where A is a normalization constant and AW denotes the
work done in the process. We now adopt the notation
xo=—3S, Xo=T and expand the energy fluctuation AE in
a Taylor series. Truncation of this series at the second-
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order terms yields the first approximation for the proba-
bility distribution, i.e.,

172
det(X ,‘j“])

P(Ax;)=
) (2m)"

exp

-£ S Xy Ax Ax |,
2 &

(5)

which is of a Gaussian form. Here, the generalized sus-
ceptibility is defined as X;; =dx; /3X;; X;; ' is its inverse.
As a result, the average fluctuations are once again found
to satisfy the fluctuation-dissipation theorem

It should be emphasized that the validity of the Gaussian
approximation is quite limited. Whereas in general the
approximation is known to work very well in the noncriti-
cal region, its results are quite unsatisfactory close to the
transition point. A brief discussion of these inadequacies
is presented in the next section.

III. THE GAUSSIAN APPROXIMATION

The Gaussian probability distribution function is com-
monly applied throughout the field of statistical physics
and is usually written as

P(x)=(2my)~2exp[ —(x —%)*/2y] . €

It expresses the condition that the statistical variable x is
permitted to assume values which are symmetrically dis-
tributed about a most probable value X, which in this
(Gaussian) case coincides with the mean value X,

x= [ xP(x)dx =% . ®)

The extent to which deviations from X, i.e., statistical
fluctuations, exist in the system is indicated by the magni-
tude of the width parameter ¥ (see Appendix A),

y=J "7 x—2P(x)dx . ©)

Because of the increasing role of fluctuations in the ap-
proach to criticality>* the Gaussian approximation leads
to serious difficulties in describing the critical phenome-
na. It is apparent, for example, that the large spatial ex-
tent of fluctuations is instrumental in driving the system
into cooperative behavior which, in turn, signifies the on-
set of order.” The ordered state can be regarded as an ir-
reversible fluctuation which cannot be accommodated by
the Gaussian approximation. The Gaussian approxima-
tion is also associated with the unphysical divergence of
some important quantities at criticality. This fact is illus-
trated by the following brief excursion into the mean-
field theory.

In the mean-field approach to phase transitions the ef-
fective Hamiltonian of the system is assumed to be a
function of the equilibrium value of the order parameter
7. Statistical fluctuations about & are then calculated by
expanding the Hamiltonian in a Taylor series around &
(Ref. 1) which, in this (Gaussian) case, is truncated at the
quadratic term

H(o)=H,G(G)+Vay(c—&)>+ -+ , (10)

where Hyg= f dPr % is the Landau-Ginzburg Ham-
iltonian whose density is

N M
Hio= 3, Aro*+ 3, By(Vo)k, (11)
k=2 k=1

where A, =at, 7=T —T, and D is the dimensionality of
the physical space, i.e., ¥ =LP. For second-order phase
transitions we only need N =4 and 4;=0 when 0——0
under the time reversal. Consequently, we find that®
a;=A,+6A4,5% and 5=+(—ar/24,)"/? when 7 <0 and
=0 when 7> 0. The probability distribution function in
this case has the obvious Gaussian form (see. Fig. 1)

PY(0)=(Z")"'exp{ —v[#g(T)+a,(0—5)*]} , (12)
where the corresponding partition function is given by
Z’=(m/va,)%exp[ —v#(F)] . (13)

These two results are characterized by an unphysical
divergence at r=0 for all values of v. This contradicts
the Yang-Lee Theorem!© which states that for finite-sized
systems, the partition function must be finite, since it is a
finite sum of finite terms. The same type of divergence
exists for all even moments of the probability distribution
function

M=) [ (o—5)rPUo)da

=[m(va,)"]~1/°T (14)

n+1
2

In particular, the second moment which is proportional to
the generalized susceptibility is found to be

’=p((0—5)?)=(2a,)7". (15)

Hence, X" diverges at T, for all values of v and, in fact, it
is size independent. Both of these properties are unphysi-
cal.

(@) A Plo)

(b) AP(o)

T<T<h |

FIG. 1. Supercritical (a) and subcritical (b) behavior of the
Gaussian distribution function.
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The Gaussian approximation has also been associated
with other deficiencies, such as the prediction of incorrect
critical exponents.! It can, of course, be argued that these
difficulties should be attributed to the inadequacies of the
Landau model. This is indeed the case with most of the
critical exponents since all except a and a’ coincide in the
two approximations. However, as has been demonstrated
in this section, the Gaussian approximation ignores the
size dependence at criticality. This is well demonstrated
in the particular case of the critical opalescence
phenomenon. Experiments indicate!' a mean fluctuation
{((c—&)?) ~N~12, while the Landau theory with the
superimposed Gaussian  approximation leads to*
{((cd—5)?) ~N~'. In light of recent interest in finite-size
scaling at criticality'? it is appropriate to undertake an in-
vestigation into non-Gaussian models for critical fluctua-
tions.

We conclude here that the Gaussian approximation
occurs within the Landau theory as an unnecessary ap-
proximation which in itself could constitute a significant
restriction upon the applicability of the theory. Any im-
provement in, or generalization of, the distribution func-
tion is clearly less restrictive and will lead to either of two
results. First, the predictions of the model may not differ
significantly from those obtained under the Gaussian ap-
proximation, in which case it may be suitably concluded
that the restrictions inherent in the Landau model take
precedence. Second, if the predictions are significantly
different, it is apparent that the limitations of the Landau
model are secondary and that an improved phenomeno-
logical description has been achieved. The latter is defin-
itely true in the present treatment because of the qualita-
tive differences between the two models for finite V. The
non-Gaussian models eliminate some unphysical divergen-
cies while converging to the Gaussian result at the ther-
modynamic limit. It is, therefore, apparent that the Lan-
dau mean-field approach is capable of further valuable
contributions.

IV. PROPERTIES OF NON-GAUSSIAN
DISTRIBUTIONS

Consider first a non-Gaussian probability distribution
given by (see Fig. 2)

P(x)=Z'exp[ —Ay(x —X)?—A4(x —%)%] . (16)

The usual technique applied in such cases!* would be to
expand P(x) in a series about the Gaussian factor, i.e.,

Plx)=Z ~lexp[ —Ay(x —X12] 3 [—Aelx =D/ .
k=0

(17)

Provided A, >0, the associated partition function can be
calculated as (see Appendix B)

Ay

A3

T2k +5)

k) ’ (18)

Z=)"2 3
k=0

and the nth moment as

(@) *V(x)
\ V = Xp x2
\ V= )\2X2+ X4X4
/
\ Ly

4’

X
(b) AP(X)

T~
/ \ P=Zlexp(-Apxd

P=Z'exp (-Apx2- Agx4)

ol

FIG. 2. Schematic representation of the exact and approxi-
mate interaction potentials (a) and the corresponding probability
distribution functions (b).

“Pk +(n +1)/2)
Tk

Ay

A3

Mn =Z—1(K2)_("+1)/2 i
k=0

(19)

It has been demonstrated in Appendix B that except for
the special case when A,/A3=0, which means that A,=0
(i.e., the Gaussian approximation) or A,— o [i.e,
P(x)=0], both Z and M, are divergent when expressed
by the series of Egs. (18) and (19), respectively. As is
shown later in this section, the expansion of P(x) given in
Eq. (17) also violates the uniform convergence criterion.

Provided A,> 0, an alternative approach to that of Eq.
(17) is to expand P(x) about the quartic exponential fac-
tor according to

P(x)=Z ~lexp[ —Ag(x —%)*] 3 [—Aslx —2P]*/k! .

k=0

(20)

Then, as shown in Appendix C, the associated partition
function can be calculated as

o A, |*Ck/2+4)
Z =L )—1/4 _ 2 4
2 ,Eo (Ag)1/2 (k) @b
and the nth moment as
M,,=Z_l(%)(}\.4)_—("+”/4
%[ m *Ik/24(n+1)/8) 22)
K=o | (A'? L(k) ‘
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This time, however, both Z and M, are expressed by con-
vergent series, unless A,=0 or A,— co.

The result is, therefore, that the first type of expansions
is convergent for radius R =(A4/A3)=0 and the second
for R=£0. Hence, they are legitimate in mutually exclud-
ed ranges of R.

Furthermore, using a recently published integral,'* we
can provide the following analytical expressions for Z and
M, (see Appendix D) which combine the previous series
expansions

2

A
—Z}D_,,z[xz/(2x4)"2] (23)

Z =020 V*T(3 )exp o
4

and

e DUn +1)/2) D_insnnlha/(209)'7]

M, =02\~
* rd) D_i A/ (200)' ]

(24)

where D _, is the parabolic cylinder function.!®

Finally, we make some comments on the uniform con-
vergence criterion. It is kpown from calcu us'® that if
f0=37 fix), then [’fix)dx =32 [’ filx)dx if
and only if the series Y, ,‘:’afk(x) is uniformly convergent
to f(x) in the entire domain of integration (a,b). This
means that the sequence of partial sums [S,, = > 1" fi(x),
m =0,1...,0] must uniformly converge to f(x). In
our case, f(x)=x"exp(—Ax2—Aux*) and (a,b)
=(—o0,+ ). The two series expansions used here can
be written as

Sp =3 (—Ax2*x"exp( —Ax*) /k!

kME

m
Sm =3 (—Agx ¥ xexp(—Ax?) /k!
k

Since the limits of integration extend to infinity, it is quite
obvious that unless A,=0 or A,— o, uniform conver-
gence of S, to f(x) will not be realized in view of the
fact that no power function can match the asymptotic
behavior of the exponential function. If, however, A,=0
or A;— o, then of course the same conclusion applies to
S

In fact this statement can be generalized to the entire
class of probability distribution functions given by

P(x)=Z'exp(—A,xP—Azx7) . (25)

That is, assuming that ¢ > p, unless A, =0 or A, — «, the
only correct series expansion of P(x) retains A,x? in the
exponential. This, together with formulas for Z and M,
is shown in Appendix E. Moreover, for distributions of
the type

M
- 3 Mlx—x)k

k=m

P(x)=Z lexp

the uniform convergence criterion requires the term with
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the highest power, i.e., Ay (x —x)M, to be retained in the
exponential while all the other terms can be expanded out,
provided Ay 0 or A, . In the opposite case, the
term with the lowest power, i.e., A,,(x —X)™, is to be re-
tained in the exponential while all the other terms are be-
ing expanded.

In this context it should be noted that the reason why
the Gaussian approximation works so well in the noncriti-
cal region appears to be that for all practical purposes
A} >>A, there. The formulas and criteria arrived at in this
section will be applied in the critical region to the various
expansions of the Landau Hamiltonian.

V. APPLICATIONS TO THE LANDAU THEORY

A. Second-order phase transitions

In order to improve the probability distribution func-
tion P%c) of Eq. (12) in the context of second-order
phase transitions, we extend the expansion of Eq. (10) as

HO)=H 1 6(T)+ay(0—F)  +alo—a) + -+, (26)

where, as before, a,=A,+6A4,52 a,=A, and both of
these coefficients are plotted against temperature in Fig.
3. This expansion can be used to calculate the partition
function according to Eq. (23) as

2
Z'=T(5)(2va,) " exp —v%LG(E)+£4— D_,,(x),

(27)

where x =(va3/2a,)"/?. Similarly, the nth moment of
P%) is found from Eq. (24) as

C'((n +1)/2)D_(,,+1)/2(x)

M?=(2va,)~""* , (28)
I'( T)D—I/Z(X)
and, in particular, the susceptibility function is
D_;,(x)
XP=(8a, /v)" A= (29)

D_1/2(x) ’

It is of crucial importance that neither Z* nor M, diverge
at any temperature as long as ¥V < . This is in clear
contrast to the result obtained using the Gaussian approx-
imation. Here, in fact, these quantities approach finite

FIG. 3. Schematic plots of the expansion coefficients a, and
a4 for second-order phase transitions.
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maxima at T, and these values are found by expanding'®
the D functions in the asymptotic limit of x—0 (which
means that T— T, while V < «), i.e.,

Vi
202+ VAD(2 +a /2)

D_a_l/z(ix) exp[l\/ax+0(x)]

as |x | «<1. (30
The resultant maxima are
Z% o =Texp[ —v ¥ g(5)(4va,) "4/ T(5), (3D
T($)T((n +1)/2)

Mv =(8va )—n/4
mmax * L(S(n/243)

) (32)

and

Xax=~(v/8ay)'"%. (33)

From Eq. (30) it is obvious that the approach to these
maxima is along an exponential curve. The value of the
susceptibility maximum increases with volume in propor-
tionality to ¥!/2. Moreover, because of the form of a,
and x, it is apparent that there is no discontinuity at 7.
The approach to the maxima is faster in the low-
temperature (ordered) phase than in the high-temperature
(disordered) phase.

Letting x — o0 and applying the other asymptotic ex-
pansion® for D_, _; ,,(x), we obtain

D_4_ypp(x)~exp x 7 V140(1/x)]

asx—ow . (34)

The following two situations can be investigated: (i)
V< o and |7| >>0, i.e., finite-size, noncritical systems,
or (i) ¥— o and 7540, i.e., the thermodynamic limit.
Note that in the thermodynamic limit the volume expan-
sion precedes the transition to criticality.

It is readily found from Eq. (34) that under these condi-
tions (x — o0 ) the quantities in question, i.e., Z%, M,, and
X’, approach their Gaussian estimates which are given in
Egs. (13)—(15). Figure 4(a) illustrates the gradual steepen-
ing of the nth moment M, as x changes from a finite
value (solid curve) to infinity (dashed curve). Note the
convergence of the two curves for large values of 7. Fig-
ure 4(b) is a close-up for X’ with an exponential fit close
to x =0. From Eq. (13) with the definition of x the free
energy per unit volume is calculated as

f= lim

Vowx

v

_Lan»‘

Ina, Inv

v

1 In[(5)

+ X (T)

=#16(5) (35)

which leads to the classical critical exponents obtained in
the thermodynamic limit.

(a)

i
Mn
/
/
1
’
’
7/
4
'd
4
(b)
X ! 1. V<o
\ 2 :
\/ 2.V=-o
\ 3. exp(-%4)

FIG. 4. (a) The gradual steepening of the nth moment M, of
the quartic Gaussian distribution function as the volume of the
sample tends to infinity. (b) The plot of X’ for ¥V < o (solid
curve), ¥— o (dashed curve), and an exponential fit (dotted
curve).

B. First-order phase transitions

In order to properly describe the first-order phase tran-
sitions, the Landau-Ginzburg Hamiltonian must be taken
with N=6 and A44<0. Then, the series expansion of
J¢(o) around & is

H(0)=H1(T)+a(0—F)P+alc—a)*
+aglo—5)°+ -, (36)
where
HL6(F)=A,02+ A5+ 4456,
a,=A;+6A4,52+154,5°20,
a,=A,+1544,57,
and
ag=Ag .
The value of & is found by minimizing % g as
F=t{[—As—(A4}—3ad¢7)'?]/346}'? 37

for TST? and =0 for T >TF. The transition tem-
perature is TS =T,+A2/4ads. A couple of points
should be emphasized in this connection. First, the range
of stability of the equilibrium phases overlaps since the
ordered phase is stable for T<Ty=T.+A;/3aA¢ and
the disordered phase is stable for 72 T,. Hence, there ex-
ist ranges of metastability for the two phases which coex-
ist between T, and T,. This is illustrated in Fig. 5.
Second, depending on the type of the sample there can be
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STABLE

— — — — METASTABLE
—<->—— REVERSIBLE TRANSITION
—-=<——— |IRREVERSIBLE TRANSITION

FIG. 5. Plot of the order parameter as a function of tempera-
ture for first-order phase transitions.

two different temperature behaviors. If the sample is in a
single-domain form (e.g., a monocrystalline solid), then it
will stay within a given state until the loss of stability.
Therefore, both absolutely stable and metastable situations
are admissible and two singular points are expected to
manifest themselves at T, and T,. The changes are ir-
reversible and are accompanied by the phenomenon of
thermal hysteresis. If, on the other hand, the sample is
composed of many domains of local order (e.g., a poly-
crystalline solid), then a statistically averaged effect will
be observed with the actual transition taking place at 7T,
The change is reversible and 7. is the only singular point
along the temperature path. The sample is always in the
state of absolute stability. In order to distinguish the two
types, we will henceforth label the relevant quantities with
a prime if they represent the single-domain situation and a
double prime if they represent the multiple-domain situa-
tion. Figure 6 shows the temperature dependence of the
expansion coefficients a; in both cases and it will have an
impact on the corresponding probability distribution and
its moments. It is evident that the coefficient a, tends to
zero as the given phase approaches the end of its stability,
i.e, at T, and T, for the disordered and ordered phases,
respectively. The probability distribution corresponding
to # of Eq. (36) is
P0)=(Z")"'exp{ —v[H#gl0)+a,(0—5)*
+a4,(0—5)+aglc—5)°]} (38)

MP=3(Z") " 'exp[ —v# ' g(T)(vag)~ " +1/®

m
a,

X i[—(u/a%)’”a,,]k i (vag)

w3 D((4k —2m +n +1)/6)
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(a)

a2
\
7\
/k N
fT
(b)
G4
N
A A
<— — T
(c)
—TI.

FIG. 6. Plots of the expansion coefficients a, (a), a4 (b), and
ag (c) for first-order phase transitions. The temperature points
are the same as in Fig. 5.

and it is obvious that it is unsuitable for exact calcula-
tions. However, given the conclusions of the previous sec-
tion, we can apply approximate methods of calculation
which differ depending on whether V<o or V— .
Each of these cases will be treated in turn. In the finite-
volume case, the highest-power term must be retained in
the exponential and the following series expansion results:

k=0 m =0

ik —m)! (39;

This is an exact result which is an infinite but convergent series for all T (as long as ¥ < ). In the lowest order of ap-

proximation we have

Z'= 1 exp[ —vH#5(5)](vag) "I [T(+)—(va,y)(vag) T (+)—(vas)vag) "2 ’T($)+ - - ] (40)
and
,  (vag)™"/ s | TUn +1)/6)T(7)
M= : L'((n +1)/6)+(va;)vag)™ : —I'((n +3)/6)
r(+) r($)
2 | LGOI Un +1)/6)

I(+)
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In particular, the susceptibility function has the form
23 713
X'= 10 {3—(va6)‘1/3[va2+va4(va6)"1/3]

+ . (42)

As shown in Fig. 7(a), Eq. (42) yields two branches: X7,
and X” which correspond to the two possible phases.
These branches tend to zero on either side of T, and at-
tain their finite maxima at T, and T, respectively. The
discontinuity between X", and X” at T, which is mea-
sureable in the multiple-domain samples is

y ¥

AXP=(X% =X ) _pa=3 e Al/4q, (43)
¢ ¢

and it grows with volume as ¥*/3. As expected at the tri-
critical point corresponding to A,=0 the discontinuity
AX" disappears. The maximum value of susceptibility can
then be approximated as

4/3

3 051/3 , (44)

10

14
kT

anax=(XUi)T=T:E

and it grows in proportionality with ¥*/3. When com-
pared to the corresponding expression for second-order
transitions described by sixth-order expansions [see Eq.
(42) with 44 >0 instead of 44 <O used before], the sus-
ceptibility is less steep around its (comparatively lower)
maximum as a result of the change of sign in 4, and the
shift from T, to TS. It is also interesting to compare Eq.
(44) with the corresponding result for the quartic expan-
sion, i.e., Eq. (33) because the two are characterized by en-
tirely different volume scaling, i.e., ¥*/> and V'/2, respec-

M =(Z")"Nvay)~ " +V 2exp] —vH# 1 6(5)]

is convergent (for ¥— «). On applying the lowest-order
volume-scaling corrections, Eq. (45) yields

Z'=exp '—U%LG(E) ](vaz)_‘/2

a a
X [N -T(P) =5 T =+ | @6
ay ay
and
M? =(va,) -2 L +1D72)
" (L)
X 1+@a4(m§)“+n- 47

In particular, the susceptibility function can be approxi-
mated by
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(@) v<oo x?
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X2 x\
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AXY]
0 T T T
(b) v— V~(T—T¢)'r'| ~(To-T "
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\ |
x: \ |
\\ / x?
AxY &(/D\\L
0 T % % T
STABLE
— — — — METASTABLE

FIG. 7. Plots of X' for first-order phase transitions when (a)
V<wand b) V- .

tively.

In the case of the thermodynamic limit, i.e., when
¥V — w0, it has been demonstrated in the preceding section
that the correct method of calculating M, must retain the
lowest-power term in the exponential. The resulting series
expansion

i d m L(3k — 1)/2
3 (—as/ad 3 Caras/ae —m i+ L/2) @5)
r
6a
X"§(2a2)"[1——4+"' : @8)
va,

which is in agreement with the result of the mean-field
theory. A plot of X” versus T in the thermodynamic limit
is shown in Fig. 7(b). The discontinuity in X” at T =T/
is

454,
— 4+ .-
UA4

NELY

= , (49)
243

where the first term is volume independent and the second
decreases as ¥ ~!. The two branches of X’ i.e., X", and
X" now diverge at the two points T, and T, in the
single-domain situation. These divergencies signify the
loss of stability by the respective metastable phases. We
can symbolically write it as

Xl ~A (T—=T.) "+, X" ~A_(To—T)" "=, (50

where A, A _ are the critical amplitudes and it is evident
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from Eq. (48) that the critical exponents ¥,y _ are both
1. The remaining critical exponents will, for both T, and
T., be equal to the mean-field exponents, since the free
energy per unit volume is

~, kT, eV el
H16(T)+ 6Vln T + for V< o,
f= (51
kT, |a2V

%LG(a)‘i‘—z'Fln + - forVoow .

kT

Once again we emphasize at this point that one of the pri-
mary objectives of the present method is to ensure that the
uniform convergence criterion is satisfied. This has led to
the identification of the two branches of X’ and to the
correct volume scaling by appropriate choice of the ex-
pansion coefficients, a;.

C. Field-induced phase transitions

For field-induced phase transitions’ the simplest
Landau-Ginzburg Hamiltonian is obtained when 2 g of
Eq. (11) is taken with N =4 and A43;=0. A term describ-
ing the interaction with an external field (4) is also added
to yield

H=A,0*+ A0t —0oh . (52)

The equilibrium condition (35#°/30)
in the equation of state

2a(T —T,)G+4A4,5=h , (53)

=0 then results

which, in turn, determines the plots of & versus A as
shown in Fig. 8. Depending on the temperature, there can
be two situations. (i) If T > T,, then there is only one

a) T<T
( ) Cc T
op
~
!/ STABLE
o = - = — — METASTABLE
-hcl ol - .lhc h UNSTABLE
; ——— IRREVERSIBLE
I TRANSITION
/ -
(b) T>T1¢
5 >h

FIG. 8. Plot of the field dependence of the order parameter
for(a) T<T.and (b) T >T..
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stable phase and —0 as h—0. (ii) If T<T,, then there
exist two stable phases in the range — h, <h <h_, where

he=(3)%a |T—T,|)P"2/(4,)'*.

However, for a particular A in that range, one of the
phases is metastable. As h—0, we have &— * o0 where

oo=(a |T—T,| /24"

is the amount of spontaneous magnetization. The two
possible values of the order parameter can be approximat-
ed as follows:

@) If | h | <<h,, then
EEiUo*‘}"Xo'h , (54)

Xo=Qa |T—T.|) 'for T >T,

and

Xo=(4a |T,—T |)"'for TLT, .
(i) If | A | >>h,, then
F=(h/44,)" . (55)

Following the approach adopted in this paper we now ex-
pand #°(o) around 7 as

H0)=H16(F)+a(0—F)+a3(0—35)°

+aglo—ar + -, (56)

where a,=A,+64,5*>0, a;=44,7, and a,=A4,>0.
Obviously, the equilibrium condition precludes the ex-
istence of a linear term in Eq. (56). Furthermore, the cu-
bic term may be neglected since it is neither the highest-
nor the lowest-power term in the expansion and it only
leads to cosmetic corrections. All information pertaining
to the field dependence is contained in the expansion coef-
ficients a; via the expressions for & given in Egs. (54) and
(55). We easily find that a,—0 as h—+h, for T<T,
and a, >0 for all fields A& and temperatures T > T,. This
is represented in Fig. 9. Note that 4,—0 as T—T,.
When the cubic term is neglected in the calculations of
statistical moments, we can simply use the results of Sec.
V A and reinterpret them for the present purposes. Con-
sequently, the nth moment M, is expressed by Eq. (28)
and the partition function by Eq. (27). It should, howev-
er, be kept in mind that in the present case the variable x
is field rather than temperature dependent. Moreover, ac-
cording to the general classification presented in this sec-
tion, different plots result for T<T, and T > T,. Within
each of the two cases further differences arise depending
on whether ¥V < o0 or ¥— . The summary of these re-
sults is shown in Fig. 10. From the field dependence of
a, we deduce that for all T the far wings of X" are pro-
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portional to | A | ~2/3, while in the thermodynamic limit,
the approach to infinity is via X~ |h | ~2. For T<T,,
there exist two singular points of X’ corresponding to +A,
since the symmetry of the system is broken there. The
volume-dependence aspect of the problem is analogous to

]
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that described for second-order temperature-induced
phase transitions discussed in Sec. V A.

The following exact results were obtained by expanding
the cubic term and integrating with the use of known in-
tegrals. The partition function is given by

v — 2 e TGk +73) Voval , 1
Zi=expl—vHio(@lexpluas/8ay)2uaa) k§0 (2k) 2V2(a;)*"? D _sk_1p2 Iz ag | . (57)
Similarly, for even n the nth moment is
M:=(Zv)—lexp[—U%L(}(E)]exp(vai/Saz)(21)a2)_("+”/4
2 1/2
& IBk+(n+1)/2) Va3 »
ngo (2k) 2V2(a, )3 D _sk—n+112 l [-2-‘1? a4] . (58)

The lowest order of expansions, Eqgs. (57) and (58), corre-
sponds to the results of Egs. (27) and (28). The main ef-
fect of including the cubic term is to render the plot of
PY(0) asymmetric with respect to &, since fluctuations in
the direction of the field must be more likely than those
against it.

D. Liquid-vapor phase transitions

1. Theory

The essential features of the van der Waals theory of
the liquid-vapor critical region can be reproduced using a
Landau-type expansion of the phenomenological Hamil-

(@) T<T,
az 4
2/3
~(_h)2/3 ~h
7 N
~h2,’ \\~hz
/ \
1 \ -
‘hc O hc h
(b) T>T.
az “
~(-n)?/3 ~h2/3
Az/‘
) "h
STABLE
o — — METASTABLE

FIG. 9. Plots of the expansion coefficient a, for field-
induced phase transitions for (a) T<T.and (b) T > T.,.

f

tonian’ in terms of the order parameter o =p—p, where p
is the mean density and p, is its value at the critical point:

=—(p—br)o+A,0%+A;0°+ A,0* . (59)

Here, 7==T —T,, Ay=ar, a >0, and A4, can be in general
of arbitrary sign, but we select 43 <0 in order for the
liquid phase to be stable at low temperatures, 4, >0 and,
finally, p=P —P, is the reduced pressure. Note that
(p —bT) plays the role of an external field. Minimization
of 27 with respect to o yields an equation of state which

(@) T>7
Cc va
Ve
// \ _v<wo
// N -2/3
- ~h

STABLE
— — — METASTABLE

FIG. 10. Plots of X* for field-induced phase transitions when
@T>T, b I'=T,and(c) T <T.,.



3432

is equivalent to the van der Waals equation
4 =bT+2aTU+4A4a3 R (60)

since it leads to the classical critical exponents. The criti-
cal isochore corresponds to a straight line p =br on the
PT-phase diagram. The critical isotherms are given by
0=(3p/30),=2a1+ 124,40?, and they also resemble those
of the van der Waals theory. The equilibrium phases
close to the critical isochore are found to be 0y=0 and

0+=[—3A43+(943—-324,4,)'7%]/84, .

The liquid phase o, is absolutely stable for
T <T?=T.+ A3 /4aA,, the gaseous phase o, is absolute-
ly stable for T >T,, and they coexist in the range
T, <T <T}. There is also a gaseous phase corresponding
to o_ which is metastable for T < T,;. The actual transi-
tion takes place when #(o() =#710 ), i.e.,, at T,'. Unless
A3=0, this is always a first-order phase transition. This
transition is illustrated in Fig. 11.

As usual, we can expand #7(o) around & according to
Eq. (56) with a,=A,+345+6A4,5°% a;=A;+44,7,
and a,=A,. The results can be essentially adopted from
the preceding section with appropriate reinterpretation.
In the present case, the applicable formulas are Eq. (57)
for Z” and Eq. (58) for M;. Their lowest-order approxi-
mations are Eqs. (27) and (28), respectively. The plot of
X’ as a function of temperature is shown in Fig. 12. The
divergent behavior of X’ at T, and T, “grows out” of the
two branches of X, since a,—0 as T—T, for X°. and
a,—0 as T—T, for X,. The volume scaling for each
branch of X is the same as that described in Sec. V A for
continuous phase transitions. In particular, for V < oo,
the approach to the respective maxima is via an exponen-
tial function as shown in Egs. (29) and (30). The differ-
ence is, of course, that now each of two metastable phases
has an associated divergence in the thermodynamic limit.
In fact, it may be of some significance to note that within
the framework presented here one can classify second-
order phase transitions as a limiting case of first-order
phase transitions, when the two singular points (associated
with the first-order case) coincide.

STABLE
— — — - METASTABLE
—<—>—— REVERSIBLE TRANSITION
—>—— |RREVERSIBLE TRANSITION

ql

o,

~

13

V4
%

»
"

4\

FIG. 11. Plot of the temperature dependence of the order pa-
rameter for liquid-vapor phase transitions.
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FIG. 12. Plot of x* for liquid-vapor phase transitions.

2. Experiment

The experimental investigation of inhomogeneities in
the density of near-critical fluids has played an important
role in the development of current theories of the critical
phenomenon. In particular, the techniques of elastic
photon-neutron scattering have yielded information per-
taining to the size and lifetime of these density fluctua-
tions. However, information regarding the probability of
occurrence P(p) of different local densities (p) has not
been accessible to experiment and has not played a signifi-
cant role in theoretical developments.

It is therefore of importance that recent experiments>®
have demonstrated the effectiveness of vibrational Raman
scattering as a probe of the P(p) distribution near the
liquid-vapor critical point in molecular nitrogen. The
technique relies upon the sensitivity of the vibrational
motion in a given molecule to the field created by its
neighbors. This field has a range of about 1 nm, as deter-
mined by the pair potential, and defines a local density p
within a probed volume whose dimensions are orders of
magnitude smaller than the correlation lengths normally
expected near the critical point (see Fig. 13). Given a sub-
stantial background of experiment and theory for the nor-
mal fluid, it is determined>® that as the critical pont is ap-
proached the slow, large-amplitude fluctuations in p give
rise to an inhomogeneous broadening which dominates the
spectrum in particular cases (e.g.,N,,H,). This phenom-
enon is somewhat analogous to Doppler broadening in a
low-density gas, with the difference that the statistical
variable is p rather than the molecular velocity.

The resulting experimental information, which was ob-
tained along the critical isochore, is summarized in Fig.
14. It demonstrates that the second moment of P(p),
which is here designated as M, varies exponentially with
€ as it approaches a maximum value at the critical point.
This behavior is in agreement with that predicted by Eq.
(28) with n =2, or its depiction in Fig. 4, but it must be
emphasized that the comparison is limited to the range
€=<1072 where the experiment is most sensitive. Except
for details which are beyond the scope of both the experi-
ment>® and the mean-field theory, there is also substantial
agreement with recent Monte Carlo simulations!’ of
finite-size effects in near-critical magnetic systems. More
specifically, the proportionality of X5,,, to the square root
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O -

pe-----
o ------1

FIG. 13. Schematic representation of the Raman scattering
experiment described in Refs. 5 and 6. The laser beam with
D ~10—100 um illuminates a small volume within a much
larger (~1 cm®) bulk sample which is maintained under condi-
tions very near the liquid-vapor critical point. Each Raman
event probes the density in a spherical volume whose diameter
(8~1 nm) is much smaller than the correlation lengths
&(~1 pm) normally expected. The Raman signal is integrated
over time.

of the sample’s volume as shown in Eq. (33) is in agree-
ment with the computer simulation result. Certain
features, however, are absent in our model. The plot of X*
has a cusplike shape and the critical temperature does not
shift with volume. These characteristics are undoubtedly
drawbacks of our simple model and they are most likely
caused by the absence of dynamical correlations. This
latter aspect is currently under investigation by the au-
thors and we hope to be able to include it in a future pub-
lication treating dynamical correlations in a non-Gaussian
manner.

VI. SUMMARY AND CONCLUSION

The well-known theoretical model employed in this pa-
per was originated by Landau and Ginzburg.” We have
adopted the position that the Gaussian approximation
which is usually employed with the Landau-Ginzburg
model is an unnecessary approximation which leads to
significant restrictions upon the applicability of the
model, especially in the regime of large fluctuations. The
predictions of the model have therefore been examined for
a particular class of non-Gaussian distributions which is
obtained as a generalization of the Gaussian and which in-
cludes it as a special case. Emphasis is placed upon the
rigor of the mathematics and, in particular, upon strict
adherence to the uniform convergence criterion. In view
of the results obtained, the treatment is justified in two
ways: (i) The non-Gaussian distributions lead to results
for finite-sample volumes which are qualitatively different
from Gaussian predictions and also more plausible, be-
cause the unphysical divergences which are associated
with the Gaussian approximation are eliminated. (ii) For
the particular case of the liquid-vapor transition, the
predicted behavior of P(p) is in qualitative agreement
with recent experimental results.>® Generally speaking,
the predictions of the mean-field theory are also con-
sistent with the Monte-Carlo simulations of Binder!” for

401

In M,
T
/
/

30F S~

L | 1 |
0] 0.02 0.04

€

FIG. 14. Natural logarithm of the square root of the P(p)
second moment, M, (in units of p/py,) versus € on the critical
isochore of fluid N,. The diagram is reproduced from Ref. 6.
The linear fit corresponds to M, =60exp(—23¢) and the dashed
extension indicates the region where the determination of M) is
not considered reliable.

finite magnetic systems in the near-critical regime. The
finer details displayed by these (Monte Carlo) results are
beyond the scope of the mean-field approach and pose a
challenge for future work.

Our basic conclusion is, therefore, that removal of the
Gaussian restriction leads to further significant contribu-
tions from the Landau-Ginzburg model. It is apparent
that the introduction of the quartic (i.e., first) non-
Gaussian term is the most important step in the generali-
zation process, because higher-order terms do not give rise
to any further significant differences in the qualitative
behavior. As suggested in the context of the
renormalization-group approach,>? the primary effect of
the quartic term seems to be that it more satisfactorily
simulates the physical bounds which are imposed on o.
In liquid-vapor systems, for example, there is the strict re-
quirement that p>0 (i.e., Opin= —p.), While the values of
p greater than the triple point value must be regarded as
extremely improbable [i.e., Omax=(pyp —p.)]. Clearly then
the correct expression for the partition function is

omax
Z= f e~ P94,
% min

The assumption implicit in the present treatment [see Eq.
(21), for example] is that the radius of convergence of
such an integral lies entirely within the bounds of the
physically admissible values of o, so that infinite limits of
integration can be used for mathematical convenience.
While this assumption is consistent with the experimental
result of Refs. 5 and 6, there is no reason to expect that it
is always valid. If, for example, P(0) were not negligible,
then P(p) distribution would be discontinuous at p=0
and an alternative approach would be required.
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APPENDIX A

The statistical moments M, of the Gaussian distribu-
tion are calculated using the following Gaussian in-
tegral'®:

L) if u>0

|p |

® _v—1, —px?
fox e M dx =
as
2

M,= EXZ

1 + o
5o f_w x"exp | —

__1__ 2\n/2
o I'((n +1)/2)2A%)

= 10if n is odd .

APPENDIX B

The partition function Z and the nth moment M, cor-
responding to the series expansion of the probability dis-
tribution function of Eq. (17) are calculated using Eq.
(Al)as Z=I,and M, =1,/I,, where

L= [ xmexp(— A2 — Agxh)dx

= < __1__ ® k. 4k +n 2
=23 4, J, (=R +mexp( — Ayx2)dx

x "exp(

F((4k +n+1)/2)
(k)

=(Ay) (n+l)/22 ‘ 4 (B1)

if nis even and I, =0 if n is odd. A simple quotient test
applied to I, with the aid of the formula'

?—E;—_—_::%;——»z“‘b[l+0(l/z)] as z— oo (B2)
gives
A
lim 5| 424 | fim &
k—w aj )\,2 k— o

which indicates that I, is divergent except when A,=0 or
Ay=+ . For M,=I,/I, we obtain in the asymptotic
limit, since it is a ratio of two divergent series,

~(7»2)—"/2 lim (2k)"”? (B3)

k— o

which diverges unless A,— .

APPENDIX C

The partition function Z and the nth moment M, cor-
responding to the series expansion of the probability dis-
tribution function of Eq. (20) are calculated using Eq.
(A1) and

J. A. TUSZYNSKI, M. J. CLOUTER, AND H. KIEFTE 3

—Ay)kx 2 Hmexp( — Ax Hdx

A Tk 40 +1)/4)
(Aa)72 T(k)

(cn
A simple quotient test performed for I, using Eq. (B2)
yields
— b lim L
2A)V? |k>w VK

A +1

lim
k—>ew Qg

which is convergent unless A,— o or A;=0. Consequent-
ly, both Z and M,, are finite for all values of A, and A, ex-
cept A;=0 and A, = w0, i.e., when A,/(A4)!*— .

APPENDIX D
Recently, Witschel'* published a very useful integral
fow x *v=lexp( —ax* —bx *)dx
=(2k)~!(2a)""*T(v)exp(b*/8a)D _,(b /(2a)'"?)
(DD

where D_, is the parabolic cylinder function.'* In our
case we simply substitute k=1, v=(n+1)/2, a=A,,
b =A,, and obtain compact analytical expressions for Z
and M,

2

Z =24~ *T($)exp ﬁz— D_, 5(A/(20)'2)  (D2)
4
and
172
M, =(2h,)~""2 L((n +11)/2) D—(n+1)/2(}"2/(2k14/)2 )
F('{) D-]/z(}kz/(zk,‘) )
(D3)
APPENDIX E

In the general case of the probability distribution func-
tion given by Eq. (25), and assuming both p and g even,
we find by its series expansion that

L

+
I, =k§0% ST xm(—npxPrkexp(— A xDdx
© (kq)—(n+l)/q 1
=k=0———;~——7(—! AP/‘I F((n +pk+1)/q)
(E1)
Then, the quotient test yields for Z
a A /e
lim —* = |~ 22 | |2 | fim gp/a—t
k—w ai }\,g 9 q k— o

Therefore, we conclude that the series expansion with
p>q is convergent whenever A,=0 or A,—, or
A,/AE’90; the one with p <q converges whenever A »70
and A < oo. It can similarly be demonstrated that the
same criterion applies to M, =1, /I,. In our physical ap-
plications we will be dealing with both cases in various
situations.
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