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Vortices and strings: Phase transition in anisotropic planar-rotor systems

S. Tang and S. D. Mahanti
Michigan State Uniuersity, East Lansing, Michigan 48824

{Received 3 September 198S)

%e have investigated the phase transition of a two-dimensional system described by the Hamil-

tonian H = —I gNN cos(8; —81 }—K g~ cos(8;+81+Pi ), for J,K & 0 and 0 &K/J & 1, and where

NN denotes nearest neighbors, which has both Ising-like domain-wall {string) and XF-like vortex

excitations. Migdal-Kadanoff and Monte Carlo renormalization-group studies indicate that there is

only one transition which is Ising-like. The roles of string and vortex excitations in the phase transi-

tion are discussed by an energy-entropy argument and are found to be consistent with Monte Carlo

quench results.

In recent years there has been considerable interest' in
two-dimensional (2D) or quasi-2D physical systems con-
sisting of molecules adsorbed on a surface. Under certain
physical conditions, the intermolecular interaction V~~

can be written in the form

V„=V, J,, c~(e—, e, ) K,,—cos(e—, +e, +y,, )

A,J[c—os(8;+p;;)+cos(8J+p,l )],

where 8; is related to the orientation of the ith molecular
axis and p;~ is an angle describing the orientation of the
intermolecular bond with respect to a preferred anisotropy
axis. The simplest Hamiltonian arising from VJ is of the
orm

H = Juncos(ei —8J) Kgc—os(8;—+8, +P;J) .
NN NN

(2)

The above Hamiltonian reduces to the well-known isotro-

pic planar-rotor (classical XF model) model for K=O. It
was used to study the properties of Ni molecules on a gra-

phite substrate for particular values of J and K.' Howev-

er, a detailed study of the properties of H in the entire pa-

rameter space is lacking and should be extremely interest-
ing from a theoretical point of view because of the role of
topological defects in the phase transition of 2D systems.

In this paper we discuss the nature of the phase transi-
tion for H given in Eq. (2}. For simplicity we choose
J&0, K& 0, and @=K/J & 1 and assume the rotors to be
on a square lattice. A special feature of (2) for this case is
that it allows for vortex excitations and yet has the sim-

plest, namely two, domain pattern. In particular, we in-
vestigate (a) the effect of the interaction anisotropy
(K&0) on the Kosterlitz-Thouless (KT) transition, (b} the
physical mechanisms underlying the order-disorder transi-
tion for 2D anisotropic rotors, and (c} the interplay of
vortex and domain-wall excitations. The study of this in-

terplay as a function of anisotropy is particularly impor-
tant because of the role the domains play in the two phase
transitions seen in XFmodel with single-site anisotropy of
the form H~ cos(p8), and isotropic p-state clock models

(Zz) for p &p, &4. For the latter systems, Einhorn
et al. have argued that in the low-T ordered phase
vortex-antivortex ( V-A) pairs are bound to each other via
strings (domain boundaries) which become fioppy at a
temperature Ti. This results in a loss of long-range order
but the V-A pairs are bound to each other through a loga-
rithmic potential leading to a KT-like phase which is then

destroyed by the unbinding by V-A pairs at a higher tern-

perature T2. However, for the Zz models, the two-
domain system (p=2) does not have vortex excitations,
and when the vortex does appear (p & 4), the domain-wall
structure is quite complicated for simulation studies. 6

Therefore, Zz models are not ideally suited for studying
the interaction between domains and vortices.

The ground state of H is a doubly degenerate ferromag-
netic state with (cose;) =+1 (or —1) for all i At low.

T, the orientational correlation function g(r) between the
rotor at i and i +r can be obtained by spin-wave approxi-
mation. For K=O, g(r)~0 as r~oo but for K&0,
g(r)~rl as r~ac, where rl is the long-range order
(LRO) parameter. We find that rlcce cT for K=J and
cc (K/J)D for K=O, where C and D are constants.

To get a general idea about the phase diagram for H we
have used the Migdal-Kadanoff renormalization-group
(MKRG) procedure. We first move the vertical bonds
and decimate the horizontal ones by integrating the parti-
tion function directly, and then move the bonds horizon-
tally while decimating the vertical bonds. After these two
operations, we take an average to restore the symmetry of
the renormalized Hamiltonian H'. As a check of the reli-
ability of the above procedure, we have applied it to the
model with single-site anisotropy. When hz ——0, there are
two regions of J: in one the coupling iterates to zero
directly, but in the other, it first increases to a certain
value, then decreases very slowly to zero. For @=6,it ap-
pears that there are three regions: one in which J goes to
zero but h6 goes to a fixed value, in the second both J and

hz grow to infinity, and in the third (intermediate region)
J first increases and then decreases slowly. This is con-
sistent with the findings of Jose et al.

For our model, we find that as long as K+0
(K/J=0.0001), only after 10—20 iterations, the renormal-
ized Hamiltonian H' can be represented by a simple form
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TABLE I. Transition temperature T,*=k~T,/J(1+@) using Migdal-Kadanoff and Monte Carlo
renormahzation-group analysis; critical exponents v are for different values of the anisotropy parameter
a=E/J.

0.01
0.10
1.00

1.02
1.18
1.32

1.04
1.20
1.34

1.00+0.04
0.97+0.09
1.04%0.08

&Ising

1.0
1.0
1.0

H'= —J„' g cos8;cos8; —A'gcos28;, (3)

with a small correction of the form g A& cos(p8), p & 2.
There exists a temperature T„such that for T ~ T„both
J/k+T and A/k~T iterate to infinity (T=O fixed point);
for T & T„A /kz T iterates to a fixed value while J/kq T
approaches zero, suggesting that the system iterates to a
noninteracting Ising spin system. The transition tempera-
tures predicted by MKRG are in reasonable agreement
with those given by Monte Carlo renormalization-group
(MCRG) calculations (see Table I and discussion below).

To study the thermodynamic properties of H and to
substantiate our MKRG results, we have performed
Monte Carlo (MC) simulation of finite NXN systems
with N=16 and 32. The number of MC steps/spin
(MCS/s) were usually 5000—8000. Near the critical tem-
perature 1.1X10 MCS/s were discarded and 1.2X10
MCSls were used to compute thermal averages. Calcula-
tion of thermodynamic quantities such as average magnet-
ization (1)), specific heat (C), and susceptibility (X) indi-
cated that the system shows only one phase transition for
three values of I(.'/J chosen in our simulation (0.01, 0.1,
1.0). We have found that C and X tend to peak at the
same temperature, suggesting that the transition is Ising-
like. In contrast, for E=O, it is believed that C peaks at
a temperature slightly higher than T, =TKT where X
diverges.

Since it is difficult to locate the transition temperature
from the T dependence of thermodynamic quantities in
simulation studies in finite-size systems, we have used the
MCRG procedure proposed by Skenker and Tobochnik'
to find T, . The essential feature of this procedure is the
following: One starts from two systems of different size,
say, 1024 spins and 256 spins; sums the spin around a pla-
quette vectorially; and then normalizes the sum to obtain
the block spin. Next, thermodynamic quantities are cal-
culated and matched for two block spin lattices of same
size but originating from different systems. If Ti is the
temperature of the original larger system and T2 of the
smaller one, when the thermodynamic quantities of block
spins match, then b, T(=T2 —Ti)=0 is a critical point,
AT ~0 is an ordered phase, and AT~0 is a disordered
phase. The correlation-length critical exponent v can be
derived from this information. ~

In Fig. 1 we plot the nearest neighbor correlation func-
tions for 8X8 block spin lattices obtained from the two
systems, the larger one (32X32) denoted by o and the
smaller (16X16) denoted by O. The crossing of the two
curves gives the transition temperature T, and it only
shows one phase transition. In Table I, we give the value
of T, measured in units of J(1+e) for three different e
values. All three values of v are much closer to 1, the Is-

ing value, rather than to pp, the KT value. Therefore, we

believe that a nonzero anisotropy (K&0) makes the tran-
sition Ising-like. " To see physically why a KT-like tran-
sition is absent in our model after the Ising-like transition
takes place, we plot in Fig. 2 the log of the vortex pair
density as a function of 1/T, the reciprocal of the tern-

perature. The slope of this curve which is a measure of
the chemical potential of a vortex-antivortex pair reduces
drastically above T„similar to what happens in the iso-
tropic XFmodel. This suggests that above the Ising tran-
sition, the effective V-A interaction is too weak to allow
an intermediate XF-hke phase.

To understand clearly what types of excitations destroy
the long-range order, we have made a series of MC
quench studies. At a temperature above the critical point,
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FIG. 1. Nearest-neighbor correlation as a function of T us-

ing MCRG analysis for E/J=0. 1; SX8 block spin lattices are
matched starting from 16' 16 and 32&(32 lattices.
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FIG. 2. Temperature dependence of the vortex-antivortex
pair density.
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the density of vartex pairs is considerably high. However,
most of them have only a few MCS/s "lifetime. " From a
topological paint of view, a tightly bound vortex pair is
essentially different from an isolated vortex. " The form-
er can annihilate each other by rearranging spins locally,
but the effect of the latter in the system extends to any re-

gion no matter how far it is from the center of the vortex.
Therefore, an isolated vortex, or a well-developed defect,
would have a much longer MC lifetime in a quench pro-
cess.

In Figs. 3(a)—3(d), we give our quench results starting
from two initial temperatures T ~ T, and T & T, . In
both cases, the systems were quenched to T =0.1J/ka
and were monitored up to 2000 MCS/s after the quench.
For the system quenched from T g T„ the vortex-
antivortex pairs annihilated each other after 50 MCS/s.
In contrast, the quench from the high- T ( T & T, ) phase
shows drastically different behavior. In a few MC steps,
again most of the closely spaced V-A pairs which are

trapped inside wide domain walls annihilate each other,
but after a long "time" one finds relatively long-lived de-

fects consisting of V-A pairs connected by relatively sharp
domain walls (strings' on the dual lattice). The total
magnetization is still zero after 2000 MCS/s. This pic-
ture suggests that the LRO is destroyed by the formation
of domains similar to the case of the 2D Ising system for
which the wall tension vanishes at the transition tempera-
ture. Thus, our MKRG and MCRG results that the tran-
sition is Ising-like get further support from our quench
study.

The particular type of long-lived defect structure that
we see can be understood from a simple energy-entropy
argument. The energy of a single vortex &R is found to
be aJ lnX+2EX, where X is the number of spins and a
is a constant. Thus, for a fully developed vortex, &R goes
to infinity linearly with N in the thermodynamic limit as
long as K&0. However, the total energy of a V-A pair
separated by a finite distance I is finite. We find the ener-

gy &E of a wall of width co [see Fig. 3(a)] and unit length
joining a vortex-antivortex pair to be

FIG. 3. Quenching studies starting from T& to Tf (in units of
J/k~ } for K/X=0. 1; 0=vortex and 0 =antivortex. (a)
T& ——1.1&T, (before quench}, (b) Tf ——0, 1 (50 MCS/s after
quench}, {c) T; =1.4& T, (before quench}, (d) Tf ——0.1 (50
MCS/s after quench).

hE =cd 1 —cos +2coK .
2m'

(4)

If K=O, EE decreases continuously as oi~ao, but if
K+0, the minimum of && shifts to a finite co; thus, the
energy cost is linearly proportional to the separation of
the V-A pair, instead of logarithmically as for the isotro-
pic XF model. The entropy associated with the wall is
also linear in I. Therefore, to minimize the free energy, it
becomes favorable to produce these domain walls above a
certain temperature and their fioppiness (wall tension~0)
is the reason for the phase transition. It is also the reason
why the phase transition becomes Ising-like in the pres-
ence of anisotropy. We have shown two possible domain-
wall configurations connecting a V-A pair in Figs 4(a).
and 4(b). The first one [4(a)] is discussed above and in the
second [4(b)] the walls become thinner but the total-
energy cost of the walls is same as in Fig. 4(a). Since the
total wall length is now doubled, the second configuration
has more entropy and is therefore expected to be formed
more easily at high T. Figure 3 shows that this is indeed
the case. In this configuration, the strings have a larger
probability of meeting more vortices than one and it is
indeed the case in our simulation.

To understand why a KT-like phase transition is absent
in the present model we plot the log af the vortex pair
density versus the reciprocal of temperature. We find that
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(b)

Spin Direction

Spin Oirection

the chemical potential ()M) to produce a vortex pair
reduces drastically at the transition temperature. This is
similar to what happens at the KT transition temperature
in the isotropic XF model. %e believe that above the
Ising-like phase transition the effective V-A interaction is
too weak to allow a XF-like phase.

In summary, we have found that in the presence of
nonzero interaction anisotropy given by H of Eq. (2), the
phase transition is Ising-like and the long-range order is
destroyed by the formation of domain walls. Vortex and
antivortex pairs tend to get trapped in the walls suggest-
ing an attraction between these two types of excitations.
Relatively long-lived excitations in this model are V-A
pairs separated by domain walls of the type shown in Fig.
4(b). Our MC quench studies suggest that the nature of
domain growth within the present model should be an in-
teresting phenomenon to investigate. In particular, we
propose to investigate the effect of domain-wall structure
on domain growth kinetics, which is a subject of great
current theoretical interest. '

FIG. 4. Two possible vortex —domain-wall —antivortex con-

figurations.
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