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The high-temperature regime and the role of superexchange
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We present a systematic experimental study of the high-temperature susceptibility of diluted mag-
netic (semimagnetic) semiconductors Cdl „Mn„Se,Cd& „Mn„Te,and Hgl „Mn„Se,and we

analyze these together with the previously published results for Hgl „Mn„Teand Znl „Mn„Te.
Despite their variety, all these materials reveal a common and very systematic pattern of behavior,
which displays several interesting features. We formulate a theoretical model for the magnetic sus-

ceptibility in these systems in terms of the theory of a randomly dilute Heisenberg magnet, and we

determine the dominant exchange integrals for each of the alloys by analyzing the available data ac-
cording to this theory. The spin of Mn + ion in the first three compounds is also obtained and is

found to be close to the atomic value of S = 2. We find quantitative correlations between the ex-

change integrals for the three tellurides, and similarity for both selenides, and on the basis of these
observations we argue that superexchange is the dominant mechanism determining the magnetic
behavior of all those systems. Within this mechanism of exchange the p-d (anion-Mn'+} and the
d-d (Mn +-Mn +) exchange integrals can be related. Since in semimagnetic semiconductors both
integrals can be obtained from independent measurements, these materials provide a unique oppor-
tunity for detailed experimental testing of superexchange.

I. INTRODUCTION

The purpose of this paper is threefold. First, we sys-
tematize the magnetic-susceptibility data for a series of
diluted magnetic (semimagnetic) semiconductors in the
high-temperature regime, within the framework of a
theory which takes into account the effect of random di-
lution of magnetic ions in a nonmagnetic AnB ' host
semiconductor. Second, we determine the microscopic pa-
rameters (the exchange integral and the magnetic moment
per magnetic ion) in these materials. Third, we show that
the dominant interaction between the magnetic (Mn +)
ions in both wide- and narrow-gap semiconductors takes
place through the superexchange mechanism.

A characteristic feature' of this class of diluted magnet-
ic semiconductors (DMS's) is the fact that they crystallize
in the structure of the nonmagnetic A ' I3 ' semiconductor
host (e.g., zinc blende for Cd& «Mn«Te, Hg~ „Mn„Te,
and Hg, Mn, Se, and wurtzite for Cd, „Mn„Se).These
structures differ from the corresponding Mn binary com-
pounds MnSe and MnTe, which places an upper limit on

the value of x of the ternary alloys (for example, x &0.75
or Cd~ „Mn«Te and x & 0.5 for Cd~ «Mn„Se).

Although the magnetic properties of DMS's have re-
ceived considerable attention during the last decade, no
coherent microscopic interpretation of these properties
has as yet emerged. While the complete picture of mag-
netic susceptibility in those materials still awaits formula-
tion, we shall show that the behavior of magnetic suscep-
tibility in the high-temperature limit is readily tractable in
terms of a randomly dilute Heisenberg antiferromagnet.
Our principal goal, then, is to present a complete set of
high-temperature susceptibility data for Cd& „Mn„Se,
Cd& Mn Te, and Hg~ „Mn„Sein the full Mn concen-
tration range available, to analyze them in terms of the
above theory, and to extend the analysis to high-
temperature data for other DMS's (Hg, „Mn„Te,
Zn& „Mn„Te)available in the literature.

An added motivation for performing new magnetic
measurements and a careful analysis of the data arises
from the circumstance that considerable inconsistencies
exist in much of the earlier susceptibility results. For ex-
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II. THEORETICAL DERIVATION OP THE
HIGH- TEMPERATURE SUSCEPTIBILITY

In this section we derive the Curie-Weiss law from the
high-temperature expansion of the static magnetic suscep-
tibility. This will give the dependence on the Mn concen-
tration of such parameters as the Curie constant and the
Curie-Weiss temperature, as well as the relationship of
these macroscopic parameters with the effective magnetic
moment and the exchange integrals.

%e assume that Mn + ions in DMS's are orbitally'non-
degenerate (i.e., in the L=O state}, and hence we can
represent the interactions between them through the
Heisenberg Hamiltonian for a randomly dilute antifer-
romagnet:

H = g J;~S; Sg;g~ —gpeH, QS;g;, (2.1)

where sums over i and j run over all lattice sites (i&j ),
and g; is 0 or 1 depending on whether the cation site is oc-
cupied by a nonmagnetic (Cd +, Hg +, or Zn +) or a
magnetic (Mn +) ion, respectively. J;J is the exchange in-

ample, some workers have claimed that in these materials
the Curie-Weiss temperature changes sign as a function of
concentration, indicating a change from ferromagnetic
to antiferromagnetic interaction between magnetic ions
with increasing x. These and other anomalies (e.g., a con-
centration dependence of the effective spin per magnetic
ion ) in the previously reported magnetic behavior of
DMS s are eliminated by taking into account the diamag-
netic contribution to the susceptibility, and by a systemat-
ic analysis of the data in the full concentration range
within the framework of the theory developed below.

The understanding of magnetic susceptibility in DMS's
is important not only because of its inherent interest as a
problem in magnetism, but also because it bears on electri-
cal and optical behavior of these systems, such as ex-
tremely large Faraday rotation, ' giant negative magne-
toresistance, the bound magnetic polaron, and other ef-
fects involving exchange interaction between the localized
moments and band or impurity electrons.

The structure of the present paper is as follows. In Sec.
II we give a short derivation of the equations for the sus-
ceptibility using the high-temperature expansion for a
randomly dilute Heisenberg magnet. In Secs. III and IV
we describe the experimental procedure and give a de-
tailed analysis of the data on the basis of the theory
developed in the preceding section. In Sec. V we deter-
mine the microscopic parameters: the value of the spin of
Mn + ions and the dominant exchange integrals for
Cd, ,Mn, Se, Cdi, Mn, Te, and Hgi, Mn Se. We also
compare these results with the exchange integrals for
Hg, ,Mn„Te and Zn, ,Mn„Te obtained from the data
already available in the literature. ' In Sec. VI we exam-
ine the values of the dominant exchange integrals for
those systems, and we show that they are consistent with
the predictions based on the superexchange mechanism.
In that section we also relate the d dand p-d e-xchange
integrals, and we point out certain unique features afford-
ed by DMS's for testing the superexchange process.

tegral, and S; is the atomic spin of the magnetic ion locat-
ed on the ith site. The last term in Eq. (2.1) is the Zee-
man term, with H, denoting the applied field. A given
sequence (g; J of two-valued operators g; =0, 1 determines
a specific distribution of magnetic and nonmagnetic
atoms on the lattice sites. Hence, we have to average the
results derived for the Hamiltonian (2.1) for a given distri-
bution [g; j with respect to all equivalent configurations
of the two sets of cations. For a substitutionally disor-
dered mixture of nonmagnetic and magnetic cations, such

an averaging procedure yields g; =P=x.
The static longitudinal susceptibility per unit volume is

defined by

a'F
dH,' (2.2}

where V is the volume of the system, and P is its free en-

ergy, given by

4) C2 4g

P (g„g2,. . . , /pe }lnTre

(2.3)

In this expression P(gi, (2, . . . , g~) is the probability dis-
tribution of having a given sequence (gi, g2, . . . , gz), Tr
denotes the trace over all spin degrees of freedom, Z is the
partition function for a particular configuration f g; j, and
p=(k+T) ' is the inverse temperature in energy units.
Substituting Eq. (2.1) into (2.3) and performing the
derivatives in Eq. (2.2), one obtains the expression for X of
a paramagnetic system and for H, =0,

X= g (g;gjs; SJ )r;a =0
(Wa)'

l,J
(2.4)

and subsequently make the following expansion:

( Szsz) Tr[S; S (1 PH+ ,P'H'+. .—. }]—
Tr(1 PH + ,' P H + —)—(2.6)

Noting that TrH=0, we then have, to first order in pH,

Tr(S; SJi) Tr(s; Sj H)
Trl Trl

—= (s, s,')„—p(s,'s,'H)„, (2.7)

where g is the Lande factor and }ue is the Bohr magneton.
This is our starting equation, in which ( ) denotes the
quantum average for a given sequence (g;], S; is the z

component of the spin S;, and ( ) denotes a configu-
ration average.

Expression (2.4) is exact, but difficult to analyze in gen-
eral. In order to perform explicit calculations, we there-
fore resort to the high-temperature expansion. That is to
say, we write the relevant correlation function as

z z Tr(SSJe ~ )
(g, g,s,'s,') =g, g,

' ', =g, g, (s,.'s,'. ), (2.5)
Tr(e -i'~)
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where ( ) „means the statistical average taken at in-
finite temperature. The advantage of expressing (S; SJ )
through the averages ( . )

„

is that then the coefficients
of the expansion (2.7) can be calculated directly, since at
T = ao spins on different sites can be regarded as com-
pletely independent. Starting with this notion, one can
evaluate the traces and get

( s s, )„=s,j ((s,')')„=—,
' s(s+ i)s,, (2.8)

(s; s, H )„=g g Jkigkg, (s; s, sksl )
„

kl' a= 1

=
9 [S(s+1)]'JgCJ (2.9)

where S is the magnitude of the atomic spin (S= —,
' for

the atomic 3d5 state of Mn2+). Substituting Eqs. (2.8)
and (2.9) in Eq. (2.7), we finally abtain an expression for

J"g g
(gpa) S(S+l)x N 2[S(S+1)]2

3kji T V 3k' T Nxs(s +1)

(2.10)

where x is the atomic fraction of magnetic ions, and N is
the total number of cation sites in volume V. Further-
more, for a random arrangement of magnetic ions

g;=g;=x for i =j,
g;g)

——x for i~j . (2.11)

we recast Eq. (2.10) in the form of the Curie-Weiss law

C(x)
T —O(x )

with the Curie constant per unit volume

(2.12)

Making use of this fact and noting that, to first order in
A/kg T,

A A

C(x) and 8(x) for a hypothetical magnetic semiconduct-
or with x= 1, and with the crystallographic structure of
the host semiconductor A 8 (i.e., MnSe and MnTe in
the wurtzite or zinc-blende structures). The susceptibility
X itself does not scale linearly with x, but according to

Coxx=
Q~~

(2.15)

where

A (x)=[8(x)] + —,[S(S+1)]g Jpzpx
P

(2.17)

In the special case of one (nearest-neighbor) exchange in-
tegral, this equation reduces to

A (x)= [8(x)]~2z+2
Z

(2.18)

where z is the number of nearest neighbors. It is then evi-
dent that [8(x)] &A(x), and hence the higher-order
correction is negative. This means that the inverse sus-
ceptibility will bend downward with decreasing tempera-
ture, as is observed experimentally in all cases studied by
us, as well as in Refs. 2 and 6.

Finally, we would like to comment on the units chosen.
The value C(x) given by Eq. (2.13) is per unit volume.
Since the lattice parameter varies (linearly) with x, hence
N/V will depend an x. To avoid this x dependence, we
find it convenient to introduce in place of C(x) the molar
Curie constant C~(x), related to C(x) through

CM(x) = p(x),C(x)
p(x)

where p(x) is the density far a given x, and p(x) is the
corresponding molar mass for the given A i', Mn, 8 i al-
loy, e.g.,

V(x) =(1—«)Vade. +x) M.r. .

We note parenthetically that Eq. (2.12) was derived in
the asymptotic regime T»

~

8(x)
~

. Extending the
analysis to one order higher in 1!T,one can show that it
leads to the replacement of Eq. (2.12) by

T —8(x)+—[8(x) —A (x)], (2.16)
1

C(x) T

(Wa)'S(s+1) XC(x) =x —=—Cox,3k' V

and the Curie-%eiss temperature

8(x)= ——,'xS(S+1)g Jpzp/kii=—80« .
P

(2.13)
As in the case of C(x), for the molar Curie constant we
have

C~(x) =CM«,

where C~ corresponds to CM(x =1).

In this expression Jp is the exchange integral for a pair
of Pth neighbors, and zp is the number of cations on the
Pth coordination sphere around a given cation chosen as
the central one, since we have replaced the sum g,'. . J,J by
N gp Jpzp.

One sees that, if the distribution of magnetic atoms on
the lattice is truly random, then both the Curie constant
and the Curie-%eiss temperature scale linearly with x.
The values Co and Oo correspond to the limiting values of

III. EXPERIMENT

The static susceptibility measurements were carried out
using the Faraday method, with force compensation' of
the order of 10 7 N. The system was calibrated using a
standard Er203 sample with a known value of g. The
measurements of magnetization M ( T,H, ) were per-
formed in two stages. First, we measured the field depen-
dence of magnetization M(H, ) for a given temperature.
The function M(H, ) was linear in the field range up to
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10 kOe and for r&77 K. The susceptibility X was then

obtained directly from the relation M=XH, . The di-

amagnetic contributions for CdSe, CdTe, and HgSe
(Xd= —0.334X10 6, —0.345X10 6, and —0.30X10
emu/g, respectively" ) were then subtracted from the data
for X. The maximal error estimated was 0.03X 10
mu/g. One can therefore take Xd as —(0.33+0.03)
X 10 emu/g in all cases reported.

Second, we repeated the whole procedure for various

temperatures up to room temperature. The temperature
dependence of inverse susceptibility X '(T) for a given
concentration x of Mn was fitted to the Curie-Weiss law

by the weighted least-squares method. The method of fit-

ting was chosen to give the condition 8(x =0)=0 and

CM(x =0)=0 within the fitting accuracy, since in the ab-

sence of magnetic ions the susceptibility should corre-

spond to that of an ordinary (i.e., nonmagnetic) semicon-

ductor.
The concentration regimes studied were 0.01 &x &0.45

for Cd& „Mn„Se,0&x &0.70 for Cd& „Mn,Te, and

0.057&x (0.18 for Hg, „Mn„Se.The samples were

monocrystalline, prepared by the vertical Bridgman
method described elsewhere. ' The results for crystals

Zni „Mn„Teand Hgi, Mn„Te, used for comparison

with the present data, were also described previously. ' lt
is our experience (based on measurements on scores of
samples) that in the case of the Cd-based alloys the actual
Mn concentration is usually within +5% of the nominal

concentration. For example, a Cd& „Mn„Tesample vnth

nominal x=0.10 can be expected to have x between ().095
and 0.105. Thus, in the case of Cd, „Mn,Se and
Cdi „Mn„Tewe used nominal concentrations in our
analysis. The situation is different in the case of Zn-based
or Hg-based alloys, which display serious concentration
gradients in the process of Bridgman growth. In the case
of those alloys we therefore used the concentrations deter-
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FIG. 2. Same as Fig. 1, but for 0.1 &x &0.45. Note that all
curves here and on the preceding figure have a common inter-
cept on the y axis. The extrapolation of the curves to the nega-
tive temperature axis gives the Curie-%eiss temperature e(x).

mined by electron microprobe analysis or chemical wet
analysis obtained on specimens adjacent to the samples
used in the susceptibility measurements.

IV. EXPERIMENTAL RESULTS

A. Cdi ~Mn„Seand Cdi Mn Te

The results concerning the inverse susceptibility in the
high-temperature regime for Cdi, Mn„Se are given in
Pigs. 1 and 2, and those for Cd& „Mn„Teare shown in
Figs. 3 and 4. The fit to the Curie-Weiss law is good in
the full range of Mn concentrations available. '3 In partic-
ular, the straight lines in the figures verify the interesting
prediction of the theory that at r=0 the intercept of the
extrapolated high-temperature values of X ' is indepen-
dent of x [cf. Eq. (2.15)].

The values of the effective Curie-Weiss temperature
8(x) and the molar Curie constant C~(x) were fitted to
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FIG. 1. Inverse magnetic susceptibility per unit mass for
Cd~ „Mn„Seas a function of temperature, for various concen-
trations 0& x &0.1.
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FIG. 3. Same as Fig. 1, but for Cdl „Mn„Teand for
0.005 & x &0.15.
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FIG. 4. Same as Fig. 1, but for Cd~ „Mn„Teand for
0.2&x &0.7. The extrapolation of the curves to the negative
temperature axis gives the Curie-Weiss temperature e(x). 01 0.2 Q3 0.4

the straight lines ax +b. The value of b was in each case
equal to zero within the fitting accuracy. The data con-
cerning 8(x) and Csr(x) are shown in Figs. 5 and 6 for
Cdi, Mn, Se and in Figs. 7 and 8 for Cdi, Mn, Te,
respectively. From these data the values of So and Csr
were determined from the slope of e(x) and Csr(x),
respectively, and are given in Table I.

One notices in Figs. 7 and 8 that at the highest concen-
trations the results for Cdi, Mn„Te deviate appreciably
from the corresponding straight lines. In Sec. VI we pro-
pose a natural explanation of this behavior. However, an
upward bending of CM(x) for x & 0.4, as shown in Fig. 8,
is inconsistent with the strict requirements of the present
model, in which the Curie constant should be proportional
to the number af magnetic ions in the system.

A possible explanation of the deviation of Csr(x) from
the straight line in Fig. 8 may be as follows. For x=0.65

Mn CONCENTRATION x

FIG. 6. Molar Curie constant C~(x) for Cd~ „Mn,Se as a
function of x. The solid line is the fitted straight line which
gives C~(x =0)=0 within the fitting accuracy.

the value of 8(x)=—300 K, comparable in magnitude to
the maximal temperature at which the measurements were
done. Strictly speaking, representation of the data via the
Curie-Weiss law should be valid anly when

~
e(x}

~
is

substantially smaller than the measurement temperature
T. The observed deviation of CM(x) from the linear
behavior C~(x)=Cirx may thus be due to the fact that
for x&0.4 the value of ~e(x)

~
&200 K, too large to

satisfy the expansion conditions on which the present
analysis (Sec. II) is based. In the follawing discussion we
therefore determine the microscopic parameters (such as
the effective spin per Mn + ian and the doininant ex-
change integral) using the data from the region of concen-
trations where e(x}and Csr(x) scale linearly with x.
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FIG. 5. Magnitude of the Curie-gneiss temperature O(x)
(which itself is negative) for Cdl „Mn Se as a function of x.
The crosses (+ ) are taken from Ref. 4 and are drawn for com-
parison.

FIG. 7. Same as Fig. 3, but for Cdl Mn„Te. The solid line
is the fitted line which gives a good representation of the data
for x &0.2. The dashed line shows that fitting of the data to a
straight line in the whole range of x (0.7 leads to an unphysical
result where the fitted line does not pass through the origin {for
an explanation, see the text).
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FIG. 9. Same as Fig. 5, but for Hg~ „Mn„Se.

8. Hg~ ~Mn„seand Hg~ „Mn Te

Since we are going to compare wide- and narrow-gap
setniconductors from the point of view of the nature of
exchange interactions involved in those systems, we have
reexamined the high-temperature data for Hg&, Mn, Se
and Hg~, Mn, Te as well. Figures 9 and 10 represent the
concentration dependences of 8(x) and C~(x) for
Hg& „Mn„Se,together with the theoretical straight lines.
From those figures we have again determined the values
of 80 and CM given in Table I. On the other hand, the
value of 80——( —500+10) K for Hg~ ~Mn„Te is taken
from the data of Nagata et al.

C. Zn~ „Mn„Te

We have also reexamined the data of McAlister et al.
concerning the concentration dependence of the Curie-
Weiss temperature for Zn& „Mn,Te. The data of 8(x)
versus x is shown in Fig. 11, the solid line being a
straight-line fit 8(x)=80x. The slight curvature down-
ward of 8(x) for higher concentrations (not marked in
Fig. 11) is similar to that shown in Fig. 7 for

Cd~, Mn„Te,and will be dealt with in Sec. VI.
Summarizing this section, one can say that our data for

all DMS's with Mnz+ ions can be represented by the
Curie-Weiss law. In the regime of concentration in which
8(x) is substantially smaller than the temperature range
over which the measurements were performed, the con-
centration dependence of 8(x) and C~(x) is linear, in
agreement with the prediction of the theory which as-
sumes a completely random distribution of Mn atoms on
cation sites. We have also studied the deviation from the
straight line 58—=8(x)—80x as a function of x for
Cd~ „Mn„Te.The deviation can be represented by the
function b,8=371x, as shown—in Fig. 12. This particu-
lar behavior is discussed in Sec. VI, where we introduce
the concept of superexchange in a tetrahedral configura-
tion of cations surrounding a distorted anion position.
The value of 8(x) is negative for all concentrations of
Mn, contrary to what has been claimed by some earlier in-
vestigators for low concentrations, x &0.05 (cf. Refs. 2
and 4). The opposite sign of 8 for low Mn concentrations
would indeed arise when the diamagnetic contribution due
to the filled shells of the host semiconductor is not taken
into account. This is very likely the reason why these au-
thors' observed a change of sign of 8 for x &0.05.

TABLE I. Values of parameters determined from susceptibility data.

Material Oo (K}
cm3K
mole

Spin S 2JI/kg (K)
Crystal

structure

Cd) „Mn„Se
Cdl Mn„Te
Hgl „Mn„Se
Hgl „Mn„Te
Zn~ „Mn„Te

—743%15
—470+34
—739+47
—500+10
—831+63

4.81+0.1
4.27 +0.17
4.26+0.35

2.64+0.06
2.47+0.05
2.46+0.12

21.2+0.4
13.8+0.3
21.8+1.4
14.3+0.5
23.7+0.5

wurtzite
zinc blende
zinc blende
zinc blende
zinc blende
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(
Lie

~

=371xi.

FIG. 10. Same as Fig. 6, but for Hg~ Mn, Se.

V. MICROSCOPIC PARAMETERS S AND J

3 CsrkgS(S+1)=
(Wa }'&~-sd-

(5.1)

where N~„,s~ is the Avogadro number. We assume
that Mnz+ ions are in 1.=0 state, and therefore one can

-500

From the values of the molar Curie constant C~ one
can determine the effective spins per Mn + ion, since

assume g=2. This assumption is fully supported by EPR
measurements. ' One then obtains S =2.62+0.06,
2.47+0.05, and 2.54+0.05, for Cd& Mn«Se,
Cdi «Mn„Te, and Hgi «Mn«Se, respectively. Only the
first value is about 3% larger than the atomic value
S=—,

' for the 3d configuration of d electrons with
Hund's rule fulfilled. Thus, to a good approximation one
can take S=—', as the value of S in the regime where

Csr(x} varies linearly with x. Oseroff calculated the
value of S for each concentration x separately and found
it growing with x. We do not observe such a dependence
when we limit our analysis to the concentration x &0.2,
where the Curie-Weiss law is applicable (cf. the discussion
in Sec. III A).

From the values of Sp listed in Table I one can estimate
the dominant exchange integral Ji between the nearest
neighbors,

3ep
zS(S + 1)

(5.2)
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The factor "2" in Eq. (5.2} arises from the fact that, when
summing over all possible pairs (ij } in the exchange part
of Eq. (2.1), we count each pair twice. Taking the number
of nearest neighbors z=12 for both wurtzite and zinc-
blende structures, we get the values of 2Ji/ks listed in
Table I. These values will be correlated ~ith the cation-
cation distance and with the type of anion in the next sec-
tion.

We should remark here that the value of Ji given by
Eq. (5.2} neglects the effect of the exchange integral be-
tween the next-nearest neighbors. Recall that, in general,8-Jiz+ J2z2 [cf. Eq. (2.14}]. Hence, the value Ji deter-
mined here is, strictly speaking, equal to

00 Q2 04 06 08
Mn CONCENTRATION x

FIG. 11. Same as Fig. 5, but for Zn~ „MnTe (after Ref. 6).

Ji(1+J2zzlJiz) .

Since for a half-filled d shell we expect that the superex-
change integrals are antiferromagnetic, our value of Ji in
Table I is then expected to be an upper estimate.
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VI. DISCUSSION AND INTERPRETATION
OP RESUI.TS

A. Comparative analysis of DMS's
and the role of superexchange

In this section we would like to systematize the results
presented above, and to show that the exchange integrals
of the various systems can be correlated when the superex-

change mechanism is invoked. In order to compare the
exchange integrals, we use the data on cation-cation dis-

tance in DMS's provided by Yoder-Short et al. , ' which
are plotted in Fig. 13. The convenience of this plot arises
from the fact that the tetrahedral configuration of nearest
cations surrounding an anion is the same for both wurt-

zite and zinc-blende materials. Thus, from the point of
view of nearest-neighbor cation (or anion) distances, these
two classes of materials can be discussed together.

From Fig. 13 we see that for the pairs
(Cdi, Mn„Te,Hgi, Mn, Te) and (Cdi, Mn„Se,Hgi
Mn, Se) this distance is quite close. We observe that the
corresponding exchange integrals Ji from Table I are also
close within each pair, i.e., we obtain the values

(2/i /kii ——13.8+0.3 and 14.3+0.5 K) for the pair
(Cdi „Mn,Te, Hgi „Mn~Te), and (21.2+0.4 and
21.8+0.5 IQ for (Cdi „Mn,Se, Hgi, Mn Se), respective-
ly. Note that in the case of each pair the alloys yield close
values of the exchange integral, irrespective of the fact
that the band gap is strikingly different for the two
members of each pair, particularly at low x. Hence, one

4.7

is forced to conclude that the Bloeinbergen-Rowland
mechanism of exchange' (which should of its very nature
be highly simsitive to the band gap) cannot be dominant in
those systems. Instead, as we shall show next, the results
correlate very well with the predictions based on the no-
tion of superexchange involving filled p shells (valence
band) of the anions.

To establish the role of superexchange, we analyze the
mutual arrangement of neighboring cations and anions as
follows. The tetrahedral radii of Cd and Mn (or Hg and
Mn) ions are different. ' ' Hence, the tetrahedra formed
by both magnetic and nonmagnetic cations surrounding a
given anion distort the anion position. One can expect
that the superexchange in this case' will be infiuenced

by this distortion. Direct evidence for the distorted con-
figuration of the anion relative to the neighboring Mn +

cations comes from the work of Balzarotti et al. ,
2' who

have shown that in Cd& „Mn„Tethe Mn—Te bond
length remains almost constant, independent of the Mn
content x.

A simple way of representing the distortion of the
anion position inside the tetrahedron is through the angle
8 which the anion makes with two neighboring Mn + ions
in a given system, as shown in Fig. 14. One can say that
if the cation at the top of a given tetrahedron (i.e., Cd or
Hg) is larger than the Mn + ion, it forces the anion down-
ward, and thus increases the angle 8 with respect to its
ideal value of 80-109.6', whereas if the top cation is of
small size, such as Zn, 8&109.6'. The amount of distor-
tion 58 will depend on the number of cations of a given
type at the corners of the tetrahedron. For x &0.5 one
can safely say that, if the two bottom cations are Mn +,
then on the average the remaining two will be nonmagnet-
ic. This configuration will be assumed in the analysis

4.5—
o~ Mn Te

44
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o 4.2
I-

I

4~ ~

Mneme

4O-
MnS

0.0 0.2 0.4 0.6 0.8 IQ

MANGANESE CONCENTRATION x

FIG. 13. Cation-cation distance for various DMS's. The ex-
treme points on the right labeled MnTe, MnSe, and MnS corre-
spond to the cation-cation distances in the hypothetical
tetrahedrally bonded magnetic semiconductors MnX (X=S, Se,
or Te) (after Ref. 15).

FIG. 14. The distorted position of the anion X in the
mixed crystal Cdi „MnX. The arrow indicates the amount of
the distortion with respect to the ideal tetrahedral configuration
(8&——109.6') in MnX when it is in the structure of the host semi-
conductor. In Zni „Mn„Xthe distortion will take place in the
opposite direction. The angle 58 determines the corresponding
change of the superexchange integral (see the text).
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J(8)=J(n/2)[J(m) —J(ir/2)]cos 8, (6.1)

where J(m/2) and J(m) are the superexchange integrals
for 8=90 and 180', respectively. It is also known that
usually' J(n/2)=2J(m), so that J(8) decreases as 8 in-
creases with respect to the ideal tetrahedral configuration
80.

In order to calculate the amount of distortion b,8 from
8p lt is reasonable to assume that b,8 should depend on
the difference ha between the cation-cation distances for
x=0 and 1. That is, the difference between the cation-
cation distance of the two binary compounds provides a
measure of the distortion 68 with respect to the ideal
tetrahedral configuration of magnetic ions in a hypotheti-
cal compound MnX (X=S, Se, or Te), which is the limit-
ing case for the semimagnetic semiconductor A I',Mn, X
as x~1. These cation-cation distances are 4.484, 4.175,
and 3.971 A for MnTe, MnSe, and MnS, respectively, as
shown in Fig. 13. One should emphasize that those dis-
tances are the same for both wurtzite and zinc-blende
structures, and therefore we do not need to specify the
particular type of crystal structure in subsequent discus-
sion.

The relative values of ho/aM~ are quite small (cf. Fig.
13}. Hence we assume that, to a good approximation,
b,8=ha/aM~. Thus, the change M of the superex-
change integral can be expressed as

b,J(8)=ha/aM~[J(m/2) —J(ir)]sin280, (6.2)

where aM~ is the Mni+-Mn + distance in MnX. Since
80——109.6'~90', the function M should be a decreasing
function of ha/a. In Fig. 15 we have plotted the values
of Ji from Table I as a function of the ratio ha/a. A
linear and decreasing function gives indeed an excellent fit
for the teBurides Cd i «Mn» Te, Hg, ,Mn, Te, and
Zni «Mn Te.

On the basis of this agreement one can make the fol-
lowing predictions. Since the selenidcs are expected to
behave in a similar way, one can draw a parallel line
which goes through the points for Hg, «Mn«Se and
Cd& „Mn„Se.This gives us an expected value of
2Ji/k~ ——(32+1) K for Zni „Mn«Se. This value has
been found very recently by Shapira et al. to be about
36 K, which is within 10' of our prediction. Further-
more, the values of the exchange integral Ji for the hy-
pothetical compounds MnSe and MnTe in either the wurt-
zite or the zinc-blende phases will correspond to the
undistorted structure, i.e., b,a=0. Figure 15 predicts for
these compounds 2J, /kz ——28 and 17 K, respectively.

which follows. The discussion for x ~ 0.5 will be given at
the end of this section.

It is well known that the value of the superexchange in-

tegral depends on the angle which the anion makes with
the two neighboring magnetic cations (see, e.g., Ref. 19).
Therefore, the change of the angle 8 between one system
(e.g., Cdi, Mn, Te) and another (e.g., Hgi, Mn„Te}
should be reflected in the difference between the values of
Ji for those two cases. The superexchange integral de-

pends explicitly on the angle 8 in the following manner s
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FIG. 15. The exchange integrals 2I&/kq for selenide and tel-

luride DMS's, specified as a function of the distortion ba/a
from the ideal tetrahedron. The lines predict the values of the

exchange integrals of the hypothetical magnetic semiconductors

MnTe and MnSe, and of Zn~ „Mn„Se,as marked by solid dots
(without error bars).

These results can be compared with the recent empirical
tight binding method (ETBM} calculations for
Cdi „Mn«Te, which yield the value 2Ji/kz ——24 K for
x=0.30 in this compound. One should mention that in
view of the result obtained in Ref. 21, these values should
not depend strongly on x, particularly in the region of x
substantially lower than 0.5.

Summarizing, one notes a linear and decreasing depen-
dence of J& on b,a/a, as predicted. Furthermore, the
values in Fig. 15 for the selenides are higher than those
for the tellurides, which corresponds to the circumstance
that the tetrahedral radius of Se is smaller than that of Te
and hence the Mn-Se distance is smaller than the Mn-Te
distance. Since J& is consistently stronger in the selenide
DMS's than in the corresponding tellurides, these facts
constitute a direct indication of the importance of the su-

perexchange mechanism in these systems. It would be in-
teresting to perform the same type of analysis for the sul-
fides. One should note that the above conclusion, based
on correlating the Mn-X distances, does not depend on the
concentration x. This is because, as shown recently by
Balzarotti et al. ' with the help of extended x-ray-
absorption fine-structure technique, the bond length be-
tween two specific constituents in ternary compounds is
nearly independent of composition.

Finally, one should comment on the deviation of the
Curie-%'eiss temperature from a linear dependence on x,
seen in Fig. 7 for Cd& «Mn«Te and in Fig. 11 for
Zni Mn Te. Namely, for x &0.5 the number of undis-
torted tetrahedrons increases proportionally to x, since
this is the probability of having the remaining corners of
the tetrahedron occupied by Mn + ions. Since e(x) al-
ready contains a factor of x due to the dilution of Mn +
ions, the resultant dependence of the deviation b,O on x is
58-8(x)x, or be-x, as shown in Fig. 12.



J. SPA@.EK et al.

6 =(1+b'} '"(S i+b~~i»

p) =(1+b') '~'(p, +b&g, ) .
(6.3)

In this equation p denotes the unperturbed Wannier
function of the p state, and dq s are the atomic d-wave
functions with spin o in the positions A and 8, whereas b
describes the amount of p-d mixing. For simplicity we
will not separate the d function into es and t2s com-
ponents. The coefficient b is usually called the covalency
factor, which can be written to a first-order approxima-
tion as

S. Rehation between the d-d and p-d exchange integrala

Having demonstrated the importance of superexchange
in DMS's, we can now speculate on some relations be-
tween d-d and p-d exchange integrals within the superex-
change model, which aHows us to test the model further.
The principal idea of superexchange is based on the no-
tion of the admixture of the p-wave function representing
the completely filled anion band to the neighboring 3d
states of Mn2+. The 3d electrons are strongly correlated
since, as we have shown, Hund's rule is fulfilled, i.e., the
spin of the 3d configuration is close to —,'. The narrow
3d band is then split into two Hubbard subbands, with
both t2 and es components half-filled. The width of the
respective 3d bands is determined mainly by hybridization
with the p electrons of the anions, because the direct d-d
overlap should be small (owing to the Mn-Mn distances
given in Fig. 13).

In order to estimate the amount of the p-d hybridiza-
tion, we consider the situation depicted schematically in
Fig. 16. The perturbed anion wave function p~ with spin
cr is given by

&p, iH id, &

«—U,fr

(p, iH id„,)
«—U,ff

(6.4)

4s=b (« U fr}—. (6.5)

The hopping integral, in turn, determines the bare band-
width of the 1 states, W~=2z

~ 4' ~x, where z is the
number of nearest neighbors (12 for both the zinc-blende
and the wurtzite structures). The value of tzz is needed
in order to calculate the suprexchange integral Ji within
the Anderson formalism2 (also called the kinetic ex-
change), given by

2Ji 2tgg ( U fr —«)O

4 4S'k, U,ff zs'U, frk,
(6.6)

Furthermore, one should note a very interesting and
unique feature inherent in the A i' „MnX systems.
Namely, the virtual p = =d transitions drawn in Fig. 16
as dashed lines will determine the magnitude of the anti-
ferromagnetic coupling of the holes at the top of the
valence (p) band with 3d spins of Mn. The p-1 exchange
integral J~ is then

where he=ez e~—is the difference between the position
of the center of gravity of the p band (i.e., valence band)
and the position of the d level, and U,ff is the intra-
atomic Coulomb repulsion energy between the electrons
on the d orbitals, i.e., the energy of the 3d ~3d transi-
tion.

Next we will express the d dtr-ansfer (hopping) of an
electron induced by the p-d mixing. The contribution to
the hopping integral t„z=(d„~H

~
dg ) describing the

motion of the d electron between the two Mn + ions
arises from p-d mixing in the second order. It is estimat-
ed to be

U,rr(U, fr —~
«~ )

( U,rr
—

i
b,e'

f ) i
he'

i
S (6.7}

X

A, Mn

FIG. 16. Schematic representation of the closest Mn +-X
Mn + configuration for both zinc-blende and wurtzite struc-
tures, where X is the intervening anion. Only one of the 31
e orbitals is drawn, whereas both m and o types of orbitals for
p electrons are shown. The arrows specify the spin orientation
on a given orbital. The virtual hopping processes lower the en-
ergy of the system if the Mn2+ spins are mutually antiparallel,
and thus lead to the antiferromagnetic exchange of both p-d and
d-d types.

where he' is the distance in energy between the position ez
of the top of the valence band and the position of the 3d5
level e~. This result is similar to that which one gets
when calculating the exchange interactions between the
magnetic im urities in a nonmagnetic metal with the
Wolff model. However, the uniqueness of DMS's arises
from the circumstance that in the present systems both
the d-d (Ji) and p-d (J~} exchange constants can be
determined independently, and with good accuracy.

The approach presented above predicts correctly the an-
tiferromagnetic character of both the d-d and the p-d in-
teractions, through Eqs. (6.6) and (6.7). However, the ex-
change interaction between the conduction (s) electrons
and the d electrons is ferromagnetic. It appears to take
place mainly through direct s-d exchange and therefore
should be calculated separately. This is because the co-
valency factor b, for the s-d interaction is expected to be
smaller than for the g-d interaction, since the d level is lo-
cated in the p band.

It is very important to know the ratio of the bandwidth
fV~ of the d band to the magnitude of the intra-atomic in-
teractions, W~ jU,ff, since this is the quantity which
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determines the nature of the d states in a particular com-
pound. Using the experimentally determined vainest of
J&—0.88 eV for Cd, ,Mn, Te in Eq. (6.7), as well as the
approximate position of the 3d level with respect to the
top of the valence p band, 4e'

~

=3.5 eV (estimated from
the photoemission data ' for that compound), and as-
suming the values of unscreened U,tt=10—12 eV and of
b,e=O, one gets b =0 04 . Th. is, with the aid of Eq. (6.5),
gives Wd 1 eV for x= l. This result is corroborated by
the fact that the same parameters, used in Eq. (6.6), give
2Jt/ks-18 —26 K, which is close to the value obtained
from ETBM calculations for Cd, „Mn Te when we
take Ueff =10 eV, and also close to that determined from
Fig. 15 for MnTe in the zinc-blende structure (17 K) for
U,ff =12 eV. The small value of b also predicts that the
diminution of the value of the atomic spin from S = —,

due to the p-d mixing is small, M =b S=0.1, which is
consistent with our experimental findings. Our value of
8'd disagrees with that obtained by Zahorowski and Gil-

berg, ' who find W4-4. 6+2.7 eV. We feel, however, that
the self-consistency of our result with other microscopic
parameters presented above argues in favor of the smaller
value of Wd.

Probably the most interesting result which can be in-
ferred from the above estimate is the fact that

8'4/U, tt-O. 1 ((1 .

This indicates that the 3d band is quite narrow, and there-
fore the splitting due to the correlations among the d elec-
trons leads to the Hubbard subband structure. Thus, the
narrow d band in DMS's contains the same principal
features as found in the classical Mott insulators MnO,
MnS, MnSe, and MnTe. In DMS's, the band is, of

course, narrowed additionally by the dilution of magnetic
ions.

VII. CONCLUDING REMARKS

We conclude with two remarks. The analysis of the ex-
change interaction presented in this paper gives only one
effective integral J&, associated with nearest-neighbor in-
teractions. It is now being realized that the exchange in-
tegral J2 for next-nearest neighbors, while much smaller
than J&, is nonetheless important in determining the ther-
modynamic properties in the dilute limit x &0.2 at low
temperatures, ' and that it may affect the nature of the
antiferromagnetic ordering for x )0.5. Hence, it would
be desirable to extend the present analysis to lower tem-
peratures, in order to determine Jz explicitly.

Furthermore, an interesting question arises whether the
high-temperature properties can be related to the onset of
spin-glass behavior at low teinperatures. In the next part
of this series we plan to show that for the wide-gap semi-
conductors the spin-glass freezing temperature Tf(x) is
proportional to the Curie-Weiss temperature 8(x) ob-
tained here. This shows again the importance of the
high-temperature regime in revealing the close relation-
ship between the interactions which govern the paramag-
netic and the spin-glass behavior in these diluted magnetic
systems.
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