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Reentrant melting on an imperfect surface
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%e study the reentrant melting, driven by the unbinding of dislocations, of a solid film on a sub-

strate with quenched random imperfections. Phase boundaries are accounted for by an interplay of
strong pair-breaking terms, induced via an interaction vvith substrate-generated random forces, and

a cutoff for maximal separation of dislocations in a pair.
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It should be emphasized that in the case of quenched
random impurities a fluctuation 5c(r} in the local concen-
tration of impurities couples to the elastic dilation,
V u =ukk, as is seen from the free energy

F= T~ Id r (2put~j+A,ukk —2(05cukk ), (1')

where io =(@+A,}Q0, Q0 being the change in the crystal
area due to a defect. Direct coupling of the substrate-
generated random force to the displacement in (1) is much
stronger, which results in the different structural proper-
ties of a solid film.

With use of (1) and (2) it is straightforward to prove
that translational order (TO) and orientational order (OO)
in a solid film on an imperfect surface decay exponential-
ly and algebraically, respectively, at T=O. This result for
TO is equivalent to that for the lack of long-range order

Since a dislocation model was proposed by Kosterlitz
and Thouless, ' a comprehensive understanding of melting
in two-dimensional solids has been achieved. Over the
past few years quenched randomness, e.g., random impuri-
ties and random topography of a substrate, 6 has been in-

cluded into consideration. It was shown that at sufficient-
ly low temperatures dislocation pairs unbind because of
randomness, causing a reentrant transition into a hexatic
phase.

As was mentioned by Nelson, a different type of
quenched disorder, breaking the translational symmetry,
can occur in physiabsorbed monolayers on a glassy sub-

strate. This disorder, similar to the symmetry-breaking
fields in XY magnets, ' has been recently studied by
Chudnovsky by modeling the quenched random imper-
fections of the substrate with a phenomenological
substrate-generated random force f(r} which couples
linearly to the lattice displacement u(r), as is given by the
free energy

F= P 2pQ" + Qkk —2 9 (1)

Here p, and )(, are the usual isotropic elastic constants of
a triangular lattice, u(r) is the displacement field, u;I(r) is
the strain tensor, and a Gaussian distribution for the
probabilities of different configurations of f(r) was as-
slHIled~

and
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where G is a reciprocal-lattice vector and e= —,'e;k();uk,

e;k being the antisymmetric tensor. The angle brackets
denote the conventional thermal average, whereas the
square brackets with the subscript d indicate a subsequent

average over the disorder as described by Eq. (2). The
longitudinal and transverse (with respect to G) correlation
lengths and the exponent ri were found in Ref. 9 and are

given respectively by

(4)
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L is the infrared cutoff in the logarithmically divergent
integral ' and is taken to be the size of the solid film
here. Finally, g~ is the pure-system thermal exponent

in two-dimensional XY magnets with random symmetry-

breaking fields. ' However, as is argued by Goldschmidt

and Schaub, the vortex-unbinding mechanism, excluded

in Ref. 10, is important for an understanding of the low-

temperature phase. Therefore, the motivation for this

work was to generalize the results of Ref. 9 for finite tem-

peratures with subsequent introduction of dislocations in

the model.
Following closely the technique used in the Appendixes

of Ref. 5, it is easy to see that the correlation functions
for TO and OO in the harmonic approximation are given

respectively by

CTO( ) [ ( iG [u(r) —u(0)] ) ]
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kttT ~G~ (3@+ }

4n p(2@+A),

and C(T) in Eq. (3') is the correlation function of the OO
in a pure system (see Ref. 3 for the explicit form}. In fact,
we notice that in the limit o ~0, Eqs. (3) and (3') yield the
pure-system results, whereas at T=O they coincide with

the results of Ref. 9.
To simplify the problem, we neglect the anisotropy by

introducing

(2j'+~} +
2(2 +g)2

and we will also assume that G =2m /ao, ao being the lat-
tice constant. It is obvious then from Eqs. (3) and (7) that
the TO order is confined to a distance of the order of R,
i.e., strictly speaking there is only short-range translation-
al order in the system. However, since 8 -o '/, the re-

gions with crystalline order can be large for weak disor-
der The. refore, it is relevant to ask what will be the effect

of unbinding of dislocations coupled in pairs inside the
crystalline regions.

Evidently, due to the absence of long-range translation-
al order, one cannot expect a true phase transition to be
triggered by the unbinding of dislocation pairs. Neverthe-
less, although the transitions are smeared, they separate
rather distinct phases (as is discussed below} and in view
of the considerable experimental interest in two-
dimensional melting" at least a qualitative description of
the effects of substrate imperfections on the dislocation-
unbinding mechanism is definitely needed.

To introduce dislocations in the present model we no-
tice that a solid film, subject to a quenched randomness,
can be described in terms of a set of logarithmically cou-
pled dislocations, each being exposed to the random poten-
tial. The latter amounts to the coupling of the substrate-
generated random force to the dislocation-induced dis-
placement. For instance, f, (r) couples to the displace-
ment"

u; '(r)=(aob /2n))[tan '(y/x)]5; +[@/(2', +A)]e; ln(r/a) —[(@+A)/(2@+A)]ok r;rt, /r I,
induced by a dislocation at the origin, simply as f;tt; ", whereupon we conclude that the relevant effective free energy,
F ff—FD +F;„„consists of the pure part '

FD and the interaction part Fi„, given respectively by

and

FD
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Here b is the dimensionless Burger vector at r', +=tan '[(y —y')/(x —x')], nk ——(rk rk)/
~

r —rt ~, the—dimensionless
coup»ng' ' & =4aop(p+&)/[k& T(2p, +A, )], and E, and a are the phenomenological dislocation core energy and size,
the latter being of the order of ao.

Knowledge of the free energy (8) allows us to calculate the correlation function

1 2
C'~~.~= tee[(b(r) 'b(0)&j, ,0

(10)

by performing a perturbation expansion in the dislocation fugacity, y =exp( E, /ktt T). To the—leading order in y the
thermal and disorder averages in (10) commute and the disorder (random force) can be simply integrated out, as if it was
annealed. The effective free energy which results has the following form:
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As is clearly seen, the pair-breaking terms [the second and the fourth terms on the right-hand side of Eq. (11)],induced
via the coupling to substrate-generated random forces, have a very strong r dependence. In fact, they are proportional to
the squared separation between the dislocations r'n a pair, as opposed to the weak logarithmic coupling. However, disorder
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causing a strong coupling provides also a cutoff for the maximal separation ofdislocations in a pair, as is given by Eq. (7).

Making use of the latter we see that o(rz/ao) -(r 1/R) in the pair-breaking terms. This observation will be crucial in

what follows.
Calculation of the thermal and angular averages can be made with the help of Eq. (11) using the methods of Ref. 3.

This yields

C "(r)-exp
T

K r K (2(M+A )C+1 — ln —+
4m 4m' a 16+ ((M +A, )

2 2

r L K (2(u+i, ) r L
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where we used 2E, /ks T =(C +1)E/4n, C being a posi-
tive phenomenological constant, whose value depends on
the lattice structure. ' Below we will use a plausible as-

sumption that C is large, i.e.,

C+1=C pal, (13)

(i) a()p(2@+A )

eke)(p+ A, )ln(R /a)
(14)

A breakdown of the perturbation expansion in the disloca-
tion fugacity is a si~n of proliferation of unbound disloca-
tions. Hence, TsH is interpreted as the temperature of
the reentrant transition into a low-temperature hexatic
phase [the solid-hexatic (SH) transition]. Below TsH cou-

pled dislocations unbind, which presumably forces r
in (3) to be replaced by an exponential exp[ —rig(T}]
with the temperature-dependent correlation length g(T).
Eventually the latter becomes smaller than the exponen-
tially large R, thus taking over as a major factor defining
the range of the TO. No further speculations on the na-
ture of the reentrant hexatic phase will be made here. We
stress though the limit TsH~( —Ino )

' as cr~O, follow-

ing from (7) and (14). It gives dT/der~ 00, which means
that the transition to the reentrant hexatic phase is much
eased in comparison, say, with the case of quenched ran-
dom impurities. This is not surprising provided the

which simplifies the further analysis without affecting its
generality. We also note that the Bessel function Io(x) as-

sumes an exponential form only for the large values of its
argument, i.e., Io(x) -x '~ expx for x~ 00. On the other
hand, as will be explicitly seen below, the argument of Io
should be bound. For this reason we will neglect Io in

Eq. (12) and concentrate on the exponent on the right-
hand side of this equation.

For a meaningful perturbation theory one has to satisfy
an obvious condition that C+"(r) is limited from above

(by unity). Consider first the case of exponentially weak

random forces, that is, in accordance with (7), of an ex-

ponentially large correlation length of TO, C « ln(R /a }.
Then as is evident from (12), the above condition for
C "(r) cannot be satisfied for large K (small tempera-
tures). Since the exponent is maximal at r-R, we

demand that

K ln(R/a)/4)r & E (2(u+X) /[16+(p+&) ],
whereof a rough estimate of the temperature above which
dislocations are paired inside large crystalline regions
("solid" phase} is obtained using the definition of E as

TsH —Tits [1+C/ln(R /a)] . (16)

Since the random force is assumed to be exponentially
weak, the second term in parentheses is only a small
correction to unity. Knowing that R -0. ', we con-
clude that as in the transition to the reentrant hexatic
phase, dT/do~+ ao as o tends to zero and T to TKr.
We note that the slope of the transition line is positive, as
opposed to the case of random impurities, s which is a dis-
tinct effect of the cutoff.

When the substrate-generated random force is not ex-

ponentially weak, i.e., C » ln(R/a), one can neglect the
logarithmic term in the exponential of Eq. (12). There-
fore, at lower temperatures we find the following estimate
for the stability of the solid phase:

EC/4n. &E'(2p, +A, )'1n(L/R)/16&(@+A, )' .

Note that ln(L/R) can be rather large here, unlike the
case of an exponentially large R.

It is exclusively an artifact of the cutoff that the term
-ln(r/a) has been neglected. An interesting consequence
of the latter is the fact that the perturbation expansion is
actually "better off' at higher temperatures. Hence, we
conclude that the inajority of dislocations within the crys-
talline regions stay in pairs until each of them disin-
tegrates into freely moving disclinations. This indicates a
possibihty of a direct transition from a solid to a liquid
phase, as well as of a "tricritical point. "

The latter is also supported by the analysis of the hexat-
ic phase above TsH. Presumably, as below TsH, a
temperature-dependent correlation length suppresses the
exponentially large R, thus destroying the TO even on
shorter scales. However, the OO can persist even in the
absence of the TO. In this ease one would expect a

very-long-range character of the pair-breaking interaction.
At higher temperatures we study the convergence of the

inverse response function' e '(q~0) given by'

e '(q~O) —1 —I dr rC "'(r) . (15)

Since the condition T & TsH is satisfied, one can neglect
the term -E in the exponent in (12). Our first—and
trivial —observation is that in the limit cr~0, (15) yields a
pure Kosterlitz-Thouless condition for the stability of
the solid phase, E &Et' =16m.. Performing the integra-
tion in (15) we obtain that, in the lowest order in o, the
condition of stability of the solid phase becomes
E &EKE/[I+C/1n(R/a)], whereof we find that a tran-
sition to the high-temperature hexatic phase occurs rough-

ly at
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nonzero stiffness Eq to enter an effective free energy for
the OO. Indeed, it was proposed by Chudnovsky that
the free energy of a hexatic takes the following form:

F'„= ,' rC„—J'd'r(Ve)'+ I(.„Jd're, ,f,a,e.. (17)
2p

Apparently, Eq. (17) almost exactly coincides with the
Hamiltonian used by Rubinstein et al in. their study of
XI' magnets with random Dzyaloshinskii-Moria interac-
tions. Taking over the analysis of Ref. 5 we find the
correlation function of the OO,

~T ~o'

C (r)-oo

where ri is given by Eq. (5) and

~NprPip'""'~J l

FIG. 1. "Solid," liquid, and hexatic phases as a function of
temperature and the strength of the substrate-generated disorder
o. Solid refers here to a phase with large crystalline regions, in-
side which dislocations are bound in pairs {see text). The low-
temperature instability of the hexatic phase (Ref. 6) was not
studied in this work.

18k' T
9T g (19)

Making use of (17) we also compute the stiffness K„ in
the approximation of freely moving dislocations (Debye-
Hiickel approximation). The result is

2Ec

1+2o a o Iktt T (2@+A, )
(20)

Evidently E„de cr easeswith the increase of o, indicating
that a hexatic can melt into a liquid when the strength of
the random force is enhanced.

Our findings are summed up in a schematic phase dia-

gram as is sketched in Fig. 1. At low temperatures the
hexatic is predicted to become unstable6 and transforms
into a liquid via a disclination-unbinding transition. The
effect of substrate-generated random forces on the process
of disintegration of dislocations into freely moving dis-
clinations was not a subject of this paper and will be con-
sidered elsewhere. It is also worth mentioning that our

considerations become meaningless when the disorder is
strong enough to reduce the correlation length to the
value comparable with the lattice spacing. Finally, we
emphasize that since the translational order decays ex-
ponentially even at zero temperature, solid-hexatic transi-
tions must be smeared both at high and low temperatures.
Smearing is expected to be larger for a stronger substrate-
generated-random force.
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