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Within a tight-binding formalism, we present a Bethe-lattice-type approximation which can be ap-
plied to the whole Hamiltonian or to a hybridization part only and which is expected to be valid in
disordered systems like liquids. In the first case, it gives simple scalar equations for the calculation
of the densities of states and has been applied successfully to some transition-metal alloys. In the
second case, it can be used to study the sp-d hybridization. We predict a Fano effect on the sp den-
sity of states which can lead to the creation of a pseudogap at the top of the d band. We recover an
expression for the sp self-energy which is the basis for an explanation of positive Hall coefficients in
amorphous transition metals and also implies the well-known s-d resistivity proportional to the d

density of states at the Fermi level.

I. INTRODUCTION

In this paper, we are interested in disordered systems
with a great number of nearest neighbors and by means of
a Bethe-lattice-type approximation, we obtain an insight
into two problems. The first is the calculation of densities
of states (DOS’s) for which our model gives simple scalar
equations. The parameters are the atomic energies
(charge transfer included) and the second moments of the
Hamiltonian of coupling between the s, p, or d bands of
the constituents which are easily calculated in terms of
the pair correlation functions. We already have success-
fully used those equations in some transition-metal alloys.
The second problem is that of hybridization which is
somewhat more developed here.

It is well known that the hybridization of states of dif-
ferent bands can have important consequences on elec-
tronic characteristics such as the density of states or
transport properties, in crystalline as well as in amor-
phous or liquid systems. In the crystalline state, band-
structure calculations have shown the importance of s-d
coupling in transition metals and particularly the reduc-
tion of the s density of states in the middle of the d band.!
A simple theory of s and p densities of states for impuri-
ties in transition metals has been presented by
Terakura,>~* the theory predicts a Fano effect and has
been used recently to interpret some magnetic properties
of alloys.>® In numerous metallic crystalline compounds
band-structure calculations have shown that the strong
hybridization leads to repulsion of the bands and to the
creation of a pseudogap.” For the composition of the
compound, the Fermi level lies in the pseudogap, and this
is the reason why we observe anomalies in physical prop-
erties such as the conductivity, the thermopower, the
magnetoresistance, the Hall effect, etc. Lastly, let us re-
call that, in some disordered systems like noble metals,
Mott® has shown the importance of the effect of s-d hy-
bridization on conductivity. Recently, Weir et al.>!° ar-
gued that it could be the reason for the positive Hall coef-
ficient observed in many amorphous and liquid alloys of
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transition metals; they used, however, a quite controver-
sial reciprocal-space analysis.

These approaches to the study of hybridization effects
in disordered systems have been applied to some peculiar
cases and give a partial description. In our paper, we give
a more general description of the main trends of the hy-
bridization effects in disordered systems using a tight-
binding formalism.

In the case of sp-d hybridization, we predict a Fano ef-
fect on the sp density of states and the appearance of a
pseudogap at the top of the d band when the hybridiza-
tion is sufficiently strong. It is worth noticing the simi-
larity to the Fano effect described by Terakura for the
case of an s or p impurity imbedded in a transition met-
al.2=* Our value of the self-energy due to the hybridiza-
tion is also in agreement with that one used by Weir
et al.>!° for their interpretation of positive Hall coeffi-
cients and implies an s-d resistivity proportional to the d
density of states at the Fermi level.?

Our model for the DOS is based on a cluster-Bethe-
lattice-method- (CBLM)-type that we call the scalar clus-
ter Bethe-lattice method (SCBLM), and we establish its
equations in Sec. II. The approximations involved are dis-
cussed and applications are briefly presented in Sec. III.
In Sec. IV we discuss our approximation when it is ap-
plied to the hybridization only and present our results.

II. THE SCALAR CLUSTER
BETHE-LATTICE METHOD (SCBLM)

The CBLM was developed ten years ago, and since that
date it has been used successfully for alloys in its simplest
version, that is to say by replacing the real lattice by a
Bethe lattice with the same coordination number and
geometrical atomic environment.!""'> Among the applica-
tions are the studies of liquid alloys like Au-Cs,'* of
transition-metal-based solid alloys,”'* and of simple metal
alloys.!® In this section we first recall the basic quantities
of the CBLM and the equations it leads to. Then we in-
troduce a supplementary approximation well suited for
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FIG. 1. Bethe lattice with four nearest neighbors.

disordered systems such as liquids, which allows us to
write the equations in a much simpler form (see Sec. III).
The aim of the method is the calculation of the Green’s
function (of an atom) G (z); one can always write G (z) as

1
Z—Ho—z(Z) ’

H, is the Hamiltonian of the atom with charge transfer
and crystalline field included. 2(z) is the self-energy due
to the coupling with the lattice. In a Bethe lattice, the
self-energy of atom A is the sum of contributions of each
branch starting from A in direction R; (Fig. 1).

G(z)= (1)

S(z)= 3 3(zR;), @)
J
with
3(z,R;))=T"(R;)G(z,R;)T(R;) . (3)

T(R;) is the transfer matrix between 4 and the atom 4;
in the direction R;. G(z,R;) is the Green’s function of
the atom A; located in the auxiliary Bethe lattice (Fig. 2)
which is obtained from the initial Bethe lattice by remov-
ing the bond with A4, placed in direction —R;. In the
same way, one can calculate the self-energy of G(z,R;)
which gives

1

S T'RIGERIT(R,)
Ri(~—R;)

G(z,R;)=
J Z—-Ho-—

4)

This self-consistent equation determines the Green’s func-
tions G(z,R;) that are put in Egs. (3), (2), and (1) to cal-
culate G(z).

J

1

Gi(2)= ,
T 2 —Hy— 3 puTH(R)G(2,R)T,(Ry)
Ry.j

1

G;(z,Ry )=
i k 2 "‘HOi _ 2
j,R’(#—Rk)

PaTH(R)G(z,R)Ty(R,)
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FIG. 2. Auxiliary Bethe lattice for the calculation of
G(z,R,).

In the CBLM, the environment of an atom is described
by a mean field (here a mean self-energy) which is calcu-
lated from pair probabilities pj;. pj; is the probability that
in a given direction R the neighbor of an atom of type i is
an atom of type j. It is determined by the concentrations
of the constituents and by the short-range order (SRO) pa-
rameter S:

p,~,-=x,-+(1——x,- )S, p;,j=,-=(l—xi N1-S),
with
—x
(1—x)
—(1—x)
X

<S<0 forx <y,
<S<0 forx>7 .

In a real system simulation, S is a priori unknown. Its
value is that which minimizes the free energy F(S).!
The contribution of the bond R, to the mean self-energy
of an atom of type i is then calculated with a simple
linear interpolation:

5i(Ry)= 3 pi THRG (2R ) Ty(Ry) . (5
j

T;(Ry) is the transfer matrix from an i/ atom to a j atom
in direction Ry, and G;(z,Ry) is the mean Green’s func-
tion of a j atom located on the auxiliary Bethe lattice de-
fined above. So if one denotes by G;(z) the mean Green’s
function of atom i and by H; its Hamiltonian, (1)—(5)
give the CBLM equations:

(6)

)]
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(6) and (7) are equations between matrices, and it is not
simple a priori to study qualitatively, from them, the ef-
fect of hybridization. We present now the approximation
which allows to write (6) and (7) in a scalar form and
leads to a simple analysis of some effects of hybridization
(see Sec. IV).

As we mentioned above, the Bethe lattice is chosen such
that geometrical arrangement of the neighbors of its sites
is that of the real system. So, for the numerous amor-
phous systems whose local structure is that of a given
crystalline system, the Bethe lattice possesses the point
symmetries of that system. For those atoms which pos-
sess at most one level of each type, sp or d, the Green’s
functions G;(z) are scalar inside the invariant subspaces
and do not couple.them. If one denotes by a those sub-
spaces and by P, the projector on them, the Green’s func-
tion of atom i is

Gi(z)= 3 PyG,(2) . (8)
al(i)

G,(2) is a scalar and the sum is over the subspaces a(i) of
atom i. In order to simplify (6) and (7), one can make a
further approximation, discussed in Sec. III, and consider
that G;(z,R;) possess the same symmetries as G;(z) but
are calculated with an environment of Z —1 nearest
neighbors:

Gi(z,Ry)= 3 P,G,(2) . 9)

ali)

The equations are written in a simple form with some new
notations. We call n, the degeneracy of the subspace a
and g;;(R) the pair correlation function between atoms of
type i and j. One can then define the mean square of the
matrix element between a state of the subspace a of atom
i and a state of the subspace B of atom j.

1

nehg iji

Tlp=Th, = —

d3jo,'(R)
X Tt T} (R)PgT;(R)P,] .

(10)
From Tg one can also define
oas=Zp;ngTls . (11

0‘2,,; is the part of the mean second moment of the DOS on
a state a due to the coupling with states 8 of the neigh-
bors. Finally, if one denotes by E, the atomic energy of a
state a (including charge transfer and crystalline field)
and

Y4 z 1 a,z,ﬂ ,

(Oup)’=
(6) and (7) give

G,lz)=

1
, (12)
z—E,— 3 af,ﬁng(z)
B
1

Gplz)= .
B I —Epg— 3 (050G (2)

(13)
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III. DISCUSSION AND APPLICATION
OF THE SCBLM

It is interesting to compare results obtained with the
SCBLM and the usual CBLM for the same physical sys-
tem. We have studied the DOS’s of pure Co, pure Al, and
CospAlsy within the SCBLM [(12) and (13)] and the
CBLM [(6) and (7)]. We took the same tight-binding pa-
rameters and short-range order in both cases and, follow-
ing Moruzzi et al.'® and Nguyen-Manh et al.,'” we chose
a bec lattice for all those systems although Co and Al are
fce. Figure 3 gives a comparison of both methods for the
alloy CospAlsy; whose chemical order is nearly complete
S(=—0.95). It appears that the SCBLM reproduces well
some structures but gives neither the first peak of the
DOS on the left nor the first pseudogap on the left. On
the contrary, in the case of pure Co [Fig. 4(a)] and pure
Al [Fig. 4(b)], the CBLM predicts DOS’s which are not as
structured as in the alloy and the SCBLM is a good ap-
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FIG. 3. Comparison between DOS calculated with CBLM

( ) and SCBLM (— — —) for Co (a) and Al (b).
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proximation. Note that in the case of Al, the tight-
binding treatment cannot fit well the real electronic struc-
ture. We have also compared the two methods for the al-
loys Cu,Zr,_, (x=0.33,0.5,0.66), whose local fcc struc-
ture is more compact than bce and is a priori more suited
for the use of the SCBLM. Figure 5 shows that the agree-
ment is actually better, and this is important since the
compactness of the fcc structure is typical of numerous
amorphous. Thus our study confirms the validity of
SCBLM in disordered systems whose DOS’s presents few
structures.

Let us now apply it to the same alloys in the liquid
phase. For those systems, the angle between the bonds of
an atom and its neighbors varies, and one no longer has to
consider that the local structure is that of a crystalline
system. So we assume that the mean local environment is
isotropic. Under this assumption, there exists a spherical
point symmetry for our mean-field model and the invari-
ant subspaces a are simply the s, p, or d bands of the con-

N(E) (states/eVatom)

(b)

N(E) (states/eV atom)

0
EleV)

FIG. 4. (a) Comparison between s and d DOS of pure Co
calculated with CBLM ( ) and SCBLM (— — —). (b)
Comparison between s and p DOS of pure Al calculated with
CBLM ( )and SCBLM (— — —).
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stituents of the alloy. Figure 6 and 7 give the comparison
of the DOS’s calculated with and without this isotropic
symmetry. It appears that the difference is rather small
and the geometrical local environment does not play a
major role in the electronic structure for our model. On
the contrary, the chemical local environment (i.e., given
by the short-range order parameter S) introduces strong
modifications of the DOS.

Recently,” we have used this model to calculate the
DOS’s in NigTigy, and Ni,Zr,_, (with x=0.35,0.5,0.65)
for which the number of nearest neighbors is about eleven
and which are consequently good candidates. Combining
it with a variational method and a hard-sphere Yukawa
system'® as a reference model we have been able to deter-
mine also partial structure factors in good agreement with
experiment.

Let us finally point out that some of the features in-
duced by the hybridization effect seem to be quite depen-
dent on the crystallinity of the material. In the case of
Co-Al alloys studied, for example, the pseudogap which
occurs just at the Fermi level in the crystalline compounds
does not exist in the liquid phase. Only the one that is in
the unoccupied band appears.
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FIG. 5. Comparison between DOS calculated with CBLM
( ) and SCBLM (— — —) for several amorphous
Cu,Zr,_, alloys.
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FIG. 6. Comparison between DOS of the alloy CospAls, cal-
culated with the SCBLM for two symmetries. The upper figure
corresponds to the symmetry of the bec lattice. The lower fig-
ure corresponds to the spherical symmetry. The SRO parameter
is § =—0.95.

IV. HYBRIDIZATION IN DISORDERED SYSTEMS

A. Expression of the self-energy

In order to study the effect of hybridization in disor-
dered systems, it is possible to apply a Bethe-lattice-type
approximation, analogous to the SCBLM, to the hybridi-
zation only, whereas the rest of the Hamiltonian is treated
in a mean-field approximation (mean isotropic environ-
ment) on the real lattice. We show in the appendix and in
Ref. 19 that, under this condition, the hybridization gives
to each state of the a band a self-energy,

S (2)= 3 0%6Gpl2), (14)
B(+a)

and that the Green’s functions of the different bands obey

Gal2)=Goglz —24(2)], (15)
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FIG. 7. Same comparison as in Fig. 6 for S=0.

Ga(2)=Goy |z2— 3 026Gpl2) | . (16)

B(+#a)

af,p is defined in (10) and (11) and the a bands are s, p, or
d bands of the constituents. Gg,(z) is the Green’s func-
tion of the a band without hybridization which is a priori
unknown in our formalism.

The question of the validity of the Bethe-lattice approx-
imation for the hybridization is of course important and is
well discussed in the formalism of Movagher et al.?° that
we intend to use in a further study. We show that for a
system with z>>1, in a mean-field theory, the effect of
hybridization is to give a self-energy 2,(z) to the states of
the a band [i.e., (15) remains valid]. However, expression
(14) represents only the first term of 2,(z) in this formal-
ism, and one must add corrections to it. In the case of
amorphous Ni, we have a first estimation of this correc-
tion?! which is 10—20 % for the s-d hybridization. Final-
ly the approximation (14) is expected to be better for s-d
and d-d than for s-s hybridization.

Starting from (15), it is easy to calculate the DOS of the
a band n,(E) in terms of its DOS without hybridization
no,,(E ):
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Gou |2— 3 0%pGp(2)

B(+#a)

1
ng(z)=— —1-T-Im

1
z— 3 0kgGglz)—E

na(2)=—~ [ noy(EME Im
o

Bl+#a)
na(2)= [ noa(E)L,(zE)dE , (17
S olpnpl2)
La(z,E)= Bza) o (18)
z— 3 02gReGp(2) | +7*| 3 olpnplz)
B+a) Bl+#a)

So the DOS of the a band, n,(z), is the mean-value of the
DOS without hybridization, ng,(z), weighted by the
Lorentzian L ,(z,E) whose width is

A2)=21 3, olpng2), (19)
B#a)

and which is centered around the energy

Z,(z2)=z2— 3 02gReGg(2) . (20)
Bl#a)

B. The mixing of states

Because of the hybridization a proper state of energy E
has a nonzero amplitude in each a band and contributes
simultaneously to all the DOS, n,(E). From this, all
bands fall in the same energy range and it is interesting
for our simple model to verify this property.

In fact, if an a band has a nonzero DOS, n,(z), for en-
ergy z, the width Ag_,(z) [Eq. (19)] is also nonzero and
the Lorentzian Lg(z,E) overlaps nog(E). So ng(z) [Eq.
(17)] is nonzero which shows that the bands are of the
same energy range.

C. The repulsion effect

We study now the hybridization of a band 1 situated
below a band 2 in the limit of a weak coupling. Then, in

FIG. 8. Real (— — —) and imaginary part (——) for the
Green’s function of a band.

"
(18), it is possible to replace Gg(z) by Gog(z) and ng(z) by
nog(z). Inside the energy region around ngg(z), A,.p(2) is
nonzero and (17) shows that n,(z) is nonzero, which
expresses the mixing of states. On the other, A, 4(2) is
zero outside the energy region around ngg(z) and L,(z,E)
is a & function which leads to

ng(z2)=np.(Z4(2)) . (21)

So if z is below the band ng,(E), ReGy,(z) is negative
(Fig. 8) and Z,(z) >z, which shows a repulsive effect on
band 1. Similarly, outside the energy region around
no;(E) band 2 feels a repulsive effect. So we find a well-
known effect of hybridization which persists even when
the coupling is stronger and can lead to the creation of a
pseudogap between the hybridized bands.

D. The sp-d hybridization

When an s or p band hybridizes with a d band in an
amorphous metal, one can consider in a first approxima-
tion that the d band is weakly perturbed:

Gd(Z)'zG()d(Z) .

Then (16) shows that the s or p states acquire a self-
energy,

3 (2)=054Goq(2) , (22)

which is analogous to the expression obtained by Weir
et al.>'° in a random-phase approximation and by a per-
turbation calculation,

3,(z,k)=0%(k?)Goq(2) . (23)

However, Weir et al. treat the nonhybridized s electrons
as free electrons, and the coupling between a state k and
the atomic d states has a dependence on the energy k2
which does not exist in our tight-binding treatment. This
introduces a dependence of o on the energy of the con-
ducting state. As for (23), the imaginary part of (22)
expresses a finite lifetime of the sp states and implies a
resistivity due to the sp-d hybridization proportional to
the d DOS at the Fermi level.® If one applies (22) to free
electrons, it can lead also to an S-shaped dispersion curve
for E (k) which is the basis for the explanation given by
Weir et al.%1° of the positive Hall coefficient observed in
numerous amorphous and liquid alloys of transition met-
als.
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E(eV)

FIG. 9. s and d DOS without (a) and with (b) hybridization.
The two densities of states are not at the same scale.

Equations (17) and (18) lead also to a simple interpreta-
tion of the effect of hybridization on the sp DOS in some
typical cases. We consider the situation represented in
Fig. 9. When z is below the d band, ReG,4(z) is negative
(Fig. 8) and

Zy(2)=z —ale,ReGd(z)

is greater than z. So ng,(z) is the mean value of n¢y(z) in
a region where it is greater than ngg,(E) and the hybridi-
zation reinforces the sp density of states (Fig. 9 and 10).
On the other hand, if z is above the d band ReGy(2) is
positive (Fig. 8) and n,(z) is the mean value of ng,(E) in
a region where it is weak and possibly zero. So when the
hybridization is sufficiently strong, a pseudogap appears
at the top of the d band [Fig. 9(b)]. It is worth noticing
that we obtain results analogous to the Fano effect
described by Terakura? in the very different case of an s
or p impurity in a transition metal. In order to study the
sp DOS inside the d band, one has to take into account
the finite width of the sp band. When one calculates the
sp DOS in the middle of the d band [ReG,(z)=0], one
weights the nonhybridized sp DOS by a Lorentzian cen-
tered on z whose width is ZWUfp_dnd(z). If the hybridiza-
tion is sufficiently strong the width of the Lorentzian is
greater than that of the nonhybridized sp DOS, and an
important part of the Lorentzian does not contribute to
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FIG. 10. s and d DOS in simulated amorphous Ni without
(upper figure) and with (lower figure) hybridization. The two
densities of states are not at same scale. Those figures are taken
from Ref. 9.

(17) which leads to a decrease in the sp DOS inside the d
band (Figs. 4 and 10).

V. CONCLUSION

In summary, we must recall that our Bethe-lattice-type
approximation has been developed within a tight-binding
scheme. On one hand, it can be applied to the whole
Hamiltonian (SCBLM) and gives simple equations to cal-
culate DOS’s in liquid systems including both charge
transfer and chemical order. On the other hand, it can be
used to study sp-d hybridization. It appears that the sp
electrons acquire a self-energy whose imaginary part indi-
cates a finite lifetime and a resistivity proportional to the
d density of states and whose real part can lead to nega-
tive group velocity at the Fermi level and consequently to
a positive Hall coefficient. We also predict a creation of a
pseudogap at the top of the d band for strong hybridiza-
tion.
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FIG. 11. Bethe approximation for the s-d hybridization.
Each circle in S, represents the s orbital of an atom. Each cir-
cle in S, represents the five d orbitals of an atom.

APPENDIX

We consider an ensemble of systems S;, constituted of
orthogonal orbitals | iv) which can be either different or-
bitals (s,p,d) of a given type of atom, or orbitals of dif-
ferent atoms. For example, in the case of the s-d hybridi-
zation in a pure liquid, we consider the system S, of the s
orbitals and the system S, of the d orbitals. The systems
S; are described by the Hamiltonian H; and are coupled
together by the hybridization Hamiltonians V;;. We now
apply the Bethe approximation to the hybridization terms
so that the systems S; formally play the role of the atoms

in the usual Bethe lattice (Fig. 11). Each orbital |iv) is
coupled to the orbitals |ju) of systems S; which belong
to uncoupled subspaces E;, j,. Each subspace E;,, j, itself
represents the system S; which is coupled by the hybridi-
zation to the other systems (inducing S;), but without the
hopping integral between |ju) and |iv). The calcula-
tion of the Green’s function of this lattice is identical to
that of the usual Bethe lattice with a spherical point sym-
metry. The effect of hybridization is to give a supplemen-
tary self-energy 2;(z) to the | iv) orbital of S; [2;(z) is
the same for all | iv) because of the mean-field approxi-
mation]:

2(2)= 2 | <”’| Vij ‘.“L> |2Giv,jp(z) ’
e

where G, j,(z) is the diagonal element of the Green’s
function of the lattice over the state | ju) but without the
hopping integral between |ju) and |iv). When the
number of nearest neighbors is not too small, a given hop-
ping integral has a small influence (in the case of s-d hy-
bridization it corresponds to the coupling of one s orbital
of an atom with all the d orbitals of a neighbor) and one
can consider that

Giv,jp(z)sz(z) .

G;(2) is the diagonal element of the Green’s function over
a state |ju). Finally,

Si(2)= 3 0}G;(2),
D
where Ufj is the second moment of V;; and is given in the
main text in (10) and (11).
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