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Within a tight-binding formalism, we present a Bethe-lattice-type approximation which can be ap-
plied to the whole Hamiltonian or to a hybridization part only and which is expected to be valid in
disordered systems like liquids. In the first case, it gives simple scalar equations for the calculation
of the densities of states and has been applied successfully to some transition-metal alloys. In the
second case, it can be used to study the AM hybridization. We predict a Pano effect on the sp den-

sity of states which can lead to the creation of a pseudogap at the top of the d band. %'e recover an
expression for the sp self-energy which is the basis for an explanation of positive Hall coefficients in
amorphous transition metals and also implies the well-known s-d resistivity proportional to the d
density of states at the Fermi level.

I. INTRODUCTION

In this paper, we are interested in disordered systems
with a great number of nearest neighbors and by means of
a Bethe-lattice-type approximation, we obtain an insight
into two problems. The first is the calculation of densities
of states (DOS's) for which our model gives simple scalar
equations. The parameters are the atomic energies
(charge transfer included) and the second moments of the
Hamiltonian of coupling between the s, p, or d bands of
the constituents which are easily calculated in terms of
the pair correlation functions. We already have success-
fully used those equations in some transition-metal alloys.
The second problem is that of hybridization which is
somewhat more developed here.

It is well known that the hybridization of states of dif-
ferent bands can have important consequences on elec-
tronic characteristics such as the density of states or
transport properties, in crystalline as well as in amor-
phous or liquid systems. In the crystalline state, band-
structure calculations have shown the importance of s-d
coupling in transition metals and particularly the reduc-
tion of the s density of states in the middle of the d band. '

A simple theory of s and p densities of states for impuri-
ties in transition metals has been presented by
Terakura, z ~ the theory predicts a Fano effect and has
been used recently to interpret some magnetic properties
of alloys. ' In numerous metallic crystalline compounds
band-structure calculations have shown that the strong
hybridization leads to repulsion of the bands and to the
creation of a pseudogap. For the composition of the
compound, the Fermi level lies in the pseudogap, and this
is the reason why we observe anomalies in physical prop-
erties such as the conductivity, the thermopower, the
magnetoresistance, the Hall effect, etc. Lastly, let us re-
call that, in some disordered systems like noble metals,
Motts has shown the importance of the effect of s-d hy-
bridization on conductivity. Recently, %Keir et al. ' ar-
gued that it could be the reason for the positive Hall coef-
ficient observed in many amorphous and liquid alloys of

transition metals; they used, however, a quite controver-
sial reciprocal-space analysis.

These approaches to the study of hybridization effects
in disordered systems have been applied to some peculiar
cases and give a partial description. In our paper, we give
a more general description of the main trends of the hy-
bridization effects in disordered systems using a tight-
binding formalism.

In the case of sp-d hybridization, we predict a Pano ef-
fect on the sp density of states and the appearance of a
pseudogap at the top of the d band when the hybridiza-
tion is sufficiently strong. It is worth noticing the simi-
larity to the Fano effect described by Terakura for the
case of an s or p impurity imbedded in a transition inet-
a1.2 ~ Our value of the self-energy due to the hybridiza-
tion is also in agreement with that one used by Weir
et al.9'0 for their interpretation of positive Hall coeffi-
cients and imphes an s-d resistivity proportional to the d
density of states at the Fermi level. s

Our model for the DOS is based on a cluster-Bethe-
lattice-method- (CBLM)-type that we call the scalar clus-
ter Bethe-lattice method (SCBLM), and we establish its
equations in Sec. II. The approximations involved are dis-
cussed and applications are briefiy presented in Sec. III.
In Sec. IV we discuss our approximation when it is ap-
plied to the hybridization only and present our results.

II. THE SCALAR CLUSTER
BETHE-LAl l ICE METHOD (SCSLM}

The CBLM was developed ten years ago, and since that
date it has been used successfully for alloys in its simplest
version, that is to say by replacing the real lattice by a
Bethe lattice saith the same coordination number and
geometrical atomic environment. "'~ Among the applica-
tions are the studies of liquid alloys like Au-Cs, ' of
transition-metal-based sohd alloys, ' and of simple metal
alloys. ' In this section we first recall the basic quantities
of the CBLM and the equations it leads to. Then we in-
troduce a supplementary approximation well suited for
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FIG. 1. Bethe lattice with four nearest neighbors.

disordered systems such as liquids, which allows us to
write the equations in a much simpler form (see Sec. IH).
The aim of the method is the calculation of the Green's
function (of an atom) 6 (z); one can always write G (z) as

6(z)= 1

z —Hp X(z)—
Hp is the Hamiltonian of the atom with charge transfer
and crystalline field included. X(z) is the self-energy due
to the coupling with the lattice. In a Bethe lattice, the
self-energy of atom A is the sum of contributions of each
branch starting from A in direction R& (Fig. 1).

X(z)= g X(z,Ri), (2)
j

X(z,Ri) =Tt(Ri)6(z, RJ )T(Ri) .

T(RJ ) is the transfer matrix between A and the atom Ai
in the direction RJ. 6(z,R&) is the Green s function of
the atom A& located in the auxiliary Bethe lattice (Fig. 2)
which is obtained froin the initial Bethe lattice by remov-
ing the bond with A, placed in direction —R&. In the
same way, one can calculate the self-energy of 6(z,R&)
which gives

16(z, Ri)=
z Hp gT (Rq—)6(z—,Rk)T(Rk)

Rk(+-R~)

This self-consistent equation determines the Green's func-
tions 6 (z,Ri) that are put in Eqs. (3}, (2), and (1) to cal-
culate 6 (z).

FIG. 2. Auxiliary Bethe lattice for the calculation of
G(z, R)).

In the CBLM, the environment of an atom is described
by a mean field {here a mean self-energy} which is calcu-
lated from pair probabilities pi;. pi; is the probability that
in a given direction R the neighbor of an atom of type i is
an atom of type j. It is determined by the concentrations
of the constituents and by the short-range order (SRO) pa-
rameter S:

p,j——x;+(1—x;)S, p; i,.——(1—x;)(1—S),

&S &0 for x & —,',
1 —x
—(1—x) 1&S&0 forx& —, .

In a real system simulation, S is a priori unknown. Its
value is that which minimizes the free energy F(S).'
The contribution of the bond Rk to the mean self-energy
of an atom of type i is then calculated with a simple
linear interpolation:

Xi(Rk)= gpiiTii(Rk)G;(z, Rk)Ti;(Rk) .

Tii(Rk) is the transfer matrix from an i atom to a j atom
in direction Rk, and 6&(z,Rk) is the mean Green's func-
tion of a j atom located on the auxiliary Bethe lattice de-
fined above. So if one denotes by 6;(z) the mean Green's
function of atom i and by Hp; its Hamiltonian, (1)—(&)

give the CBLM equations:

1
Gi(z) =

z Hp; gpp Tp{Rk—)Gi(z—Rk )Ti.(Rg )
Rk,j

1
Gi(z, Rk )=

z H()( gpii Tii (Ri }G—i(z,R—i )Ti;(Ri )
jRl(~ Rk)
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(6) aiid (7) are equations betweell matrices, aild it ls Iiot
simple a priori to study qualitatively, from them, the ef-
fect of hybridization. We present now the approximation
which allows to write (6) and (7) in a scalar form and
leads to a simple analysis of some effects of hybridization
(see Sec. IV).

As we mentioned above, the Bethe lattice is chosen such
that geometrical arrangement of the neighbors of its sites
is that of the real system. So, for the numerous amor-
phous systems whose local structure is that of a given
crystalline system, the Bethe lattice possesses the point
symmetries of that system. For those atoms which pos-
sess at most one level of each type, sp or d, the Green's
functions G;(z} are scalar inside the invariant subspaces
and do not couple. them. If one denotes by a those sub-
spaces and by PN the projector on them, the Green's func-
tion of atom i is

G, (z) = QP.G.(z) .
a(i)

III. DISCUSSION AND APPLICATION
OF THE SCSLM

It is interesting to compare results obtained with the
SCBLM and the usual CBLM for the same physical sys-
tem. We have studied the DOS's of pure Co, pure Al, and

CoiDAlg0 within the SCBLM [(12) and (13)] and the
CBLM [(6) and (7}]. We took the same tight-binding pa-
rameters and short-range order in both cases and, follow-
ing Moruzzi et al. ' and Nguyen-Manh et al. , '7 we chose
a bcc lattice for all those systems although Co and Al are
fcc. Figure 3 gives a comparison of both methods for the
alloy CosDAlq0 whose chemical order is nearly complete
S(= —0.95}. It appears that the SCBLM reproduces well
some structures but gives neither the first peak of the
DOS on the left nor the first pseudogap on the left. On
the contrary, in the case of pure Co [Fig. 4(a)] and pure
Al [Fig. 4(b)], the CBLM predicts DOS's which are not as
structured as in the alloy and the SCBLM is a good ap-

G~(z) is a scalar and the sum is over the sulxipaces a(i) of
atom i In o. rder to simplify (6) and (7), one can make a
further approximation, discussed in Sec. ID, and consider
that G;(z,Rk) possess the same symmetries as G;(z) but
are calculated with an environment of Z —1 nearest
neighbors:

G;(z,Rk)= gP G' (z) .
a(i)

The equations are written in a simple form with some new
notations. We call nN the degeneracy of the subspace a
and g,j(R) the pair correlation function between atoms of
type i and j. One can then define the mean square of the
matrix element between a state of the subspace a of atom
i and a state of the subspace p of atom j.
g2 +2 $

g R
7l~7l p ZPjg

3-

20

I)
I

t '}

1
I

I

I
I
I

sP,

I
I

I

I

I
I
I

I

I
l

XTr[Tjt(R)PpTp(R)P ] .

(10)
i

-5 0
E. (eY)

5 10

From T p one can also define

&Np=+Sji~pTap .2 2 (11)

o Np is the part of the mean second moment of the DOS on
a state a due to the coupling with states P of the neigh-
bors. Finally, if one denotes by E~ the atomic energy of a
state a (including charge transfer and crystalline field)
811d

Z 1(o'p) = o p,

Q 2E

0
U

(b)

(6) and (7) give

G~(z}=
z EN go~pG p(z)— —

-10
I

0
E~eY)

5 10

Gp(z)=
z Ep g(op } G' (z)— — FIG. 3. Comparison between DOS calculated with CBLM

( ) and SCBLM ( ———) for Co (a) and Al (b).
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FIG. 6. Comparison between DOS of the alloy CoioAlio cal-
culated with the SCSLM for two symmetries. The upper figure
corresponds to the symmetry of the bcc 1attice. The lower fig-
ure corresponds to the spherical symmetry. The SRO parameter
is S= —0.95.

FIG. 7. Same comparison as in Fig. 6 for S=O.

G~(z)=Go z —g o~gGp(z)
@~a)

X (z)= g cr~pGp(z),
@+a)

(14)

and that the Green's functions of the different bands obey

G (z)=Gp [z —X (z)], (15)

IV. HYBRID&&ATION IN DISORDERED SYSTEMS

A. Expression of the self-energy

In order to study the effect of hybridization in disor-
dered systems, it is possible to apply a Bethe-lattice-type
approximation, analogous to the SCBI.M, to the hybridi-
zation only, whereas the rest of the Hamiltonian is treated
in a mean-field approximation (mean isotropic environ-
ment) on the real lattice. We show in the appendix and in
Ref. 19 that, under this condition, the hybridization gives
to each state of the a band a self-energy,

cr~ is defined in (10) and (11) and the a bands are s, p, or
d bands of the constituents. Ge (z) is the Green's func-
tion of the a band without hybridization which is a priori
unknown in our formalism.

The question of the validity of the Bethe-lattice approx-
imation for the hybridization is of course important and is
well discussed in the formalism of Movagher et al. that
we intend to use in a further study. We show that for a
system with z ~&1, in a mean-field theory, the effect of
hybridization is to give a self-energy X (z) to the states of
the a biuid [i.e., (15) remains valid]. However, expression
(14) represents only the first term of X (z) in this formal-
ism, and one must add corrections to it. In the case of
amorphous Ni, we have a first estimation of this correc-
tion which is 10—20%%uo for the s-d hybridization. Final-
ly the approximation (14) is expected to be better for s-d
and d-d than for s-s hybridization.

Starting from (15},it is easy to calculate the DGS of the
a band n (E}in terms of its DGS without hybridization
np (E):
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n~(z)= ——Im Go z —g &r Q&(z}
1 2

P(+a)

n (z}=——I no (E)dEIm I

z — o ~ttGti(z) E-
P(~a)

n~(z)= J no (E)L~(z,E)dE, (17)

L (z,E)=
X &'tt tt(z}

+~a)

z —g o'~pReGti(z) +it g o~ttnti(z)
P+~) P~e)

"2 (18)

So the DOS of the a band, tt (z), is the mean-value of the
DOS without hybridization, no (z), weighted by the
Lorentzian L (z,E) whose width is

5 (z)=2m g o ttttti(z), (19}
P(~a)

and which is centered around the energy

Z~(z) =z —g a~tiReGti(z} .
@+a)

(20)

C. The repulsion effect

B. The mixing of states

Because of the hybridization a proper state of energy E
has a nonzero amplitude in each a band and contributes
simultaneously to all the DOS, tt (E). From this, all
bands fall in the same energy range and it is interesting
for our simple model to verify this property.

In fact, if an u band has a nonzero DOS, n~(z), for en-

ergy z, the width b,~ (z) [Eq. (19)] is also nonzero and
the Lorentzian Ltt(z, E) overlaps noti(E). So nti(z) [Eq.
(17}] is nonzero which shows that the bands are of the
same energy range.

I

(18), it is possible to replace Gp(z) by Goy(z) aild tt p(z) by
nott(z) Insi. de the energy region around noti(z), h~gz) is
nonzero and (17} shows that n (z} is nonzero, which
expresses the mixing of states. On the other, b,~+gz) is
zero outside the energy region around nott(z) and L~(z,E)
is a 5 function which leads to

n (z)=np (Z~(z)} . (21)

So if z is below the band no2(E), ReG02(z) is negative
(Fig. 8) and Zi(z) &z, which shows a repulsive effect on
band 1. Similarly, outside the energy region around
noi(E) band 2 feels a repulsive effect. So we find a well-
known effect of hybridization which persists even when
the coupling is stronger and can lead to the creation of a
pseudogap between the hybridized bands.

D. The sp-d hybridization

When an s or p band hybridizes with a d band in an
amorphous metal, one can consider in a first approxima-
tion that the d band is weakly perturbed:

Gd(z)=Goy(z) .

Then (16) shows that the s or p states acquire a self-
energy,

We study now the hybridization of a band 1 situated
below a band 2 in the limit of a weak coupling. Then, in Xg~(z}=og~GM(z), (22)

which is analogous to the expression obtained by Weir
et al.9'0 in a random-phase approximation and by a per-
turbation calculation,

Xg(z, k)=a~(k )Goe(z) . (23)

t
I

I

I
I~I

FIG. 8. Real ( ———) and imaginary part (
Green's function of a band.

) for the

However, Weir et al. treat the nonhybridized s electrons
as free electrons, and the coupling between a state k and
the atomic d states has a dependence on the energy k
which does not exist in our tight-binding treatment. This
introduces a dependence of cr~ on the energy of the con-
ducting state. As for (23), the imaginary part of (22)
expresses a finite lifetime of the sp states and implies a
resistivity due to the sp-d hybridization proportional to
the d DOS at the Fermi level. If one applies (22) to free
electrons, it can lead also to an S-shaped dispersion curve
for E(k) which is the basis for the explanation given by
Weir et al. ' of the positive Hall coefficient observed in
numerous amorphous and liquid alloys of transition met-
als.
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in the usual Bethe lattice (Fig. 11). Each orbital
~

i v) is

coupled to the orbitals
~ jp) of systems S~ which belong

to uncoupled subspaces E;„J„E.ach subspace E;„J„itself
rePresents the system Sj which is couPled by the hybridi-
zation to the other systems (inducing S; ), but without the

hopping integral between
~
jp, ) and

~

iv). The calcula-
tion of the Green's function of this lattice is identical to
that of the usual Bethe lattice with a spherical point sym-

metry. The effect of hybridization is to give a supplemen-

tary self-energy X;(z) to the
~
iv) orbital of S; [X;(z) is

the same for all
~

iv) because of the mean-field approxi-
mation]:

X;(z)= g [ (iv( V;, (jp, ) ['G;„,„(z),

FIG. 11. Bethe approximation for the s-d hybridization.
Each circle in S~ represents the s orbital of an atom. Each cir-
cle in S2 represents the five d orbitals of an atom.

APPENDIX

We consider an ensemble of systems S;, constituted of
orthogonal orbitals

~
iv) which can be either different or-

bitals (s,p, d) of a given type of atom, or orbitals of dif-
ferent atoms. For example, in the case of the s-d hybridi-
zation in a pure liquid, we consider the system St of the s
orbitals and the system Sz of the d orbitals. The systems
S; are described by the Hamiltonian Hot and are coupled
together by the hybridization Hamiltonians Vtj. We now

apply the Bethe approximation to the hybridization tetanus

so that the systems S; formally play the role of the atoms

where G;„J&(z) is the diagonal element of the Green's
function of the lattice over the state

~
jp, ) but without the

hopping integral between
~ jp) and

~

iv) W. hen the
number of nearest neighbors is not too small, a given hop-

ping integral has a small infiuence (in the case of s-d hy-
bridization it corresponds to the coupling of one s orbital
of an atom with all the d orbitals of a neighbor) and one
can consider that

Gt„,Iq(z) =GJ (z)

GJ(z) is the diagonal element of the Green's function over
a state

~
jp, ). Finally,

Xt(z)= g cr,HAGI(z),
j (+i)

where o,z is the second moment of Vij and is given in the
main text in (10) and (11).
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