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%e present theoretical studies of basic magnetic response characteristics of superlattice structures

formed from alternating layers of ferromagnetic and antiferromagnetic materials, each described

through use of a localized spin model. The geometry explored here is one in which the antifer-

romagnet consists of sheets parallel to each interface within which the spins are aligned ferromag-

netically. The study of the classical (mean-field) ground state as a function of magnetic field shows

that a sequence of spin-reorientation transitions occur, particularly for superlattices within which

the antiferrornagnetic constituent consists of an even number of layers. For the various phases, we

present calculations of the spin-wave spectrum, and also the infrared absorption spectrum.

I. INTRODUCTION

An exciting aspect of solid-state physics is the
discovery or exploration of new classes of materials,
whose physical properties may differ dramatically from
textbook descriptions of simple solids. During the past
decade, there has been considerable effort devoted to the
synthesis and study of composite materials, and af super-
lattices formed from alternating layers of different ma-
terials. One may create new materials in the laboratory,
with properties distinct from those of any single constitu-
ent.

Superlattices of extraordinary quality may be formed
from semiconducting materials. In these samples, the
boundary between adjacent materials is perfectly sharp, on
the atomic scale. These systems also have been studied in
great detail. Superlattices may also be formed from a
variety of other materials, and while the sample quality at
present is inferior to that realized with semiconductors,
we see the appearance of superlattices formed from new
combinations of materials, and the sample quality (e.g.,
the sharpness of the interfaces between adjacent media) is
improving steadily.

From superlattice structures made from magnetic ma-
terials, one can fabricate materials with microwave or in-
frared response characteristics subject to design. As we
shall see, such systems have intriguing physical properties,
in that for certain geometries magnetic-field-induced
spin-reorientation transitions may occur for externally ap-
plied magnetic fields of modest magnitudes.

In magnetic superlattices, elementary excitations such
as spin waves are collective excitations of the structure as
a whole, and as a consequence have properties distinctly
different from the modes associated with any one constit-
uent. %e have one example in hand where collective exci-
tations unique to a magnetic superlattice have been stud-
ied experimentally. Schuller and collaborators have fabri-
cated superlattices from alternating films on Ni and Mo,
the thickness of each film can range from 100 A to
several hundred angstroms. ' In an isolated Ni film placed
in a static Zeeman field Ho parallel to its surface, there
are surface spin waves which propagate along either the

upper or lower surface. In the long-wavelength limit,
these are the waves discussed many years ago by Damon
and Fshbach. 2 Their excitation energy receives its dom-
inant contribution from the Zeeman and dipolar interac-
tions at the long wavelengths studied so far. In a super-
lattice, surface spin waves on different Ni films may in-
teract through the dipole fields generated by the spin
motion, and this leads to new modes that are collective ex-
citations of the superlattice structure as a whole, and
which may transmit energy normal to the interfaces be-
tween the films. ' If the superlattice is terminated, and
only if the thickness di of the Ni films is greater than
that af d2 of the Mo film, one realizes a surface mode of
the superlattice structure as a whole, which is in fact a
linear cambinatian of surface waves in each Ni film.
The mode has been studied by the method of Brillouin
scattering af light, and its properties correlate nicely with
the earlier theoretical predictions.

A rich variety of behaviors may be expected if one
forms superlattices from alternating layers of ferromag-
netic and antiferromagnetic material. This paper is devot-
ed to a theoretical study of the properties of superlattices
formed from such materials, and our theoretical model
exhibits rich behavior. We have no specific combinations
of materials in mind from which one may realize an
analogue of the model system studied here. Our intent is
to present a basic theoretical study of the class of phe-
nomena one may encounter in such systems.

For selected structures, one can easily appreciate that
interesting spin-reorientation transitions can occur in
rather low externally applied fields. Consider the case
(the only geometry considered in the present paper) where
the antiferromagnet consists of sheets of spins within
which there is ferromagnetic alignment of the moments.
Then form a superlattice from alternating layers of fer-
romagnetic and antiferromagnetic material. For the mo-
ment, let the antiferromagnetic constituent consist of an
even number of layers, with ferromagnetic coupling be-
tween the spins in the antiferromagnetic and the spins in
the ferromagnetic material. Thus in zero external mag-
netic field Ho, the ground state is illustrated in Fig. 1(a).
Note that the ferromagnetic moments alternate in sign as
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one moves down the superlattice, and the length of the
unit cell is 2(d I+di ). As a magnetic field is applied, one
sees that the configuration in Fig. 1(b) drops below that in
Fig. 1(a) in energy, by virtue of the Zeeman energy gained
by reorienting the ferromagnetic spins. In appropriate
units, one gains the energy XFMHO, where XFM is the
number of layers in the ferromagnetic film, and one loses
H,'„",, a measure of the exchange energy between adjacent
sheets of spins at the interface between the two materials.
The field requirixi to reorient the ferromagnetic spins is
thus H,'„"I'/N, and can be quite small if N is large. Furth-
ermore, the transition field is subject to control through
appropriate design of the superlattice structure.

Section II of the present paper explores the field depen-
dence of the ground-state spin configuration for superlat-
tices such as those illustrated in Fig. 1, within which the
antiferromagnetic constituent consists of sheets spins each
with ferromagnetic alignment. The basis of our treatment
is a localized spin model, with nearest-neighbor exchange
interactions of appropriate sign in each material. We add
uniaxial anisotropy in the antiferromagnetic medium.
The superlattices we examine are here all of infinite ex-
tent, so we are not concerned with surface phenomena. In
Sec. III we examine the nature of the spin waves in the su-
perlattice structure, for the various ground-state spin pat-
terns examined in Sec. II. A subset of the modes are col-
lective excitations of the entire superlattice system, and
then we have eigenmodes confined nearly exclusively to
one constituent, with character similar to the standing
spin-wave resonances of thin films. Section IU presents
studies of the magnetic field variation of the microwave
and infrared absorption spectrum.
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FIG. 1. For the sublattice geometry of interest in the present
paper, we show (a) the zero-field ground state when the number
of layers in the antiferromagnet is even, (b) possible high-field
ground state when an external Zeeman field Ho is applied, when
the number of layers in the antiferromagnet is even, and {c)the
zero-field ground state when the number of layers on the anti-
ferromagnet is odd.

II. DETERMINATION OF THE CLASSICAL
GROUND STATE OF THE FERROMAGNET-
ANTIFERROMAGNETIC SUPERLATTICE:

PHASE DIAGRAM AT ZERO TEMPERATURE

As discussed in Sec. I, we study a superlattice that con-
sists of ferromagnetic (FM) films each with XFM layers,
and antiferromagnetic (AFM) films each with N~FM
layers. Each is a bcc lattice of spins (with the same lattice
constant), and the interface is a (100) plane. Each site is
occupied by a localized spin S; we assume S to be the
same for the FM and AFM, an assumption that has no in-
fluence on the basic structure of our results, which in the
end are phrased in terins of the relevant exchange and an-
isotropy field strengths. We have nearest-neighbor ex-
change interactions of strength JFM within the FM, JAFM
within the AFM, and JI across the interface between the
FM and the AFM. Also, within the AFM, we have uni-
axial anisotropy, modeled by single-site anisotropy of the
form ES, .

Note that for the above geometry, the AFM consists of
ferromagnetically aligned sheets of spins, each with spin
direction parallel to the (100) plane for the case where the
easy axis lies within this plane. In the infinitely extended
material, the ground state in zero external magnetic field
consists of such ferroinagnetic sheets with ferromagnetic
alignment alternately up and down.

The ground-state spin arrangement in the superlattice,
with zero external field applied, depends on whether the
number NiIFM of planes in the AFM is even or odd. We
have the following two arrangements possible, assuming
Ji is ferromagnetic in sign. If NF is even, then the
ground state is that illustrated in Fig. 1(a), and the length
of the magnetic unit cell of the superlattice is 2(di+d2).
Upon adding one more plane of spins to each antifer-
romagnetic layer, one sees that each ferromagnetic film
now has its moment directed in the + 'R direction, instead
of alternating in sign as in Fig. 1(a). Then the magnetic
unit cell of the superlattice structure is (di+12). The
ground-state configuration with NzFM odd is illustrated
in Fig. 1(c).

We shall begin with a study of the stability of the
ground-state spin configurations illustrated in Figs. 1(a)
and (c). We do this by adding a magnetic field of strength
Ho parallel to the z axis, then searching for "soft spin
waves" in the excitation spectrum of the superlattice.
This, then, is an extension to the superlattice geometry of
the discussion presented many years ago by Anderson and
Callen, for an infinitely extended antiferromagnet. (We
believe that some of the results in this paper are not
correct, however. We elaborate on this later on. ) After
we outline the domain of magnetic field within which the
simple ground state is stable, we then discuss the magnetic
field variation of the ground-state spin configuration at
higher fields, to construct a phase diagram of the system
(at T=O). We then present studies of the spin wave and
infrared absorption spectrum of the high-field phases. A
brief summary of some of our early results is presented
elsewhere. '

To proceed, we must choose a set of parameters, and all
of our calculations have been carried out for one particu-
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lar set. The antiferromagnetic is characterized by the ex-

change field HE z——JAFMS and the anisotropy field"
Hz ——2I(S, when K is the anisotropy constant in the
single-ion anisotropy term ES„present for each spin. %e
choose Hz/H@ ——0.05, a value characteristic of MnFz.
%e also choose the exchange constant JAFM in the anti-
ferromagnetic to be equal to that in the ferromagnet, and
the

stains
S are also taken equal. We have chosen

JI——TJFM ———,
'

JAFM for the numerical calculations. We
have no specific magnetic materials in mind for the fer-
romagnetic constituent as we make this choice, but we re-
quire specific parameters for the numerical analyses. It is
useful to partition the remainder of this section into sub-
sections.

A. Instabilities of the lour-field ground state

The regime of stability of an assumed ground state con-
figuration of a spin system may be studied through
analysis of the spin wave spectrum. If all spin wave exci-
tation energies are positive, one is assured the system re-
sides in a local minimum of the energy in the appropriate
parameter space. If the externally applied magnetic field
Ho is varied, and a particular spin wave goes "soft," to
acquire negative excitation energy with further increase in
field, then the system is unstable. This method, used for
stability analyses earlier in other contexts, " will be ein-

ployed here to study the stability of the ground state spin
configurations displayed in Figs. 1(a) and 1(c), for the two
cases Ng~ even and N/FM odd.

In the ferromagnetic films, we begin with the equation
of motion for the operator S+(1), with 1 a particular site
in the film. This reads, with Zeeman field Ho applied
parallel to z,

. 1S+1
t = g J(l,1+5)[S+(1)S,(1+5)—S+(1+5)S,(l )]

dr

+HOS+(1) . (2.1)

+H S+(1)+H„S+(1), (2.2)

while the sign of Hz is reversed in the equation of motion
of the 8 spins.

We linearize these equations by replacing S,(1) by + S
or —S, then look for solutions in which S+(1) has the
time dependence exp( —i Qt) We are then. led to an eigen-
value equation for the frequency Q with the form

QS+(1)—g M (1,1')S+(1')=0, (2.3)

The sum over 5 ranges over nearest neighbors, and in gen-
eral the exchange coupling J has a dependence on site in-
dex 1 because spins at the interface have neighbors in the
antiferromagnet. In the antiferromagnet, we have A and
8 sublattices in the standard manner, and the effective an-
isotropy fields for the A and 8 sublattices are oppositely
directed. Thus we have here for the A sublattice spins

i = g J(l,1+5)[S+(l)S,(1+5) S+(1+5)S,(l )]-. 1S+(1)

where the explicit form of M(l, l') can be constructed
from Eqs. (2.1) and (2.2).

%'e assume that the coordinate system is arranged as il-
lustrated in Fig. 1(a). The z axis is parallel or antiparallel
to the magnetization directions of the places in the ground
state, and the xz plane is parallel to the interfaces in the
superlattice structure. The y axis is thus normal to the in-
terfaces. A given site 1 has position designated by the
three numbers ( 1„,!z,l, ) and we impose periodic boundary
conditions in the x and the z directions. We thus have
solutions of the Bloch form in the x and z coordinates,

S+(I)=e ' 'e ''P'(1~),

and then 5 (1„)obeys

QA(1, ) —gm(k„k, ;1„1,')5 (i„'~=0,

(2.4)

(2.5)

m(k„, k„'lz, lz )= g M(l, l')e " " e (2.6)

The structure of the matrix M (k„k„l 1' ) is considered
in Appendix A. It is in fact a non-Hermitian matrix, due
to the presence of antiferromagnetic films in the superlat-
tice structure. The eigenvectors which emerge as the solu-
tion of Eq. (2.5) are thus the right eigenvectors, and they
are, in general, distinct from the left eigenvectors. 'i To
discuss the response of the superlattice to external pertur-
bations, we require both sets as we shall see.

We then have 2(NFM+NzFM) eigenvalues Q (Ho),
half of which have positive frequency, and half of which
are negative; the excitation energy of a spin wave is
R

~
Q~(HO)

~

. The stability of the ground state may then
be explored by following the spin-wave excitation energies
as a function of Ho, and finding the first mode which is
driven to zero frequency by application of the field. We
find that the soft mode is always the lowest-lying negative
frequency wave with k =k, =0.

The value of the critical field Ho" differs dramatically
in value, depending on whether one has an odd or an even
number of layers in the antiferromagnetic constituent.
This is illustrated in Fig. 2. In Fig. 2(a), for the case
where NAHUM

——NFM N, and the num——ber of layers in the
antiferromagnet is even [see Fig. 1(a)], we see that the
critical magnetic field decreases to zero as N is increased.
Furthermore, for all values of N considered, the critical
field lies far below the spin-flop field of the bulk antifer-
romagnetic crystal. (The units of magnetic field in Fig. 2
are such that the bulk spin-flop field has the value of uni-
ty. ) For the case where the number of layers in the anti-
ferromagnet is odd Fig. 2(b), the field required to generate
a ground-state instability is always greater than the bulk
spin-flop field, which is approached asymptotically in the
limit N~ Do.

The trends in Fig. 2 may be understood easily by con-
sidering the limit of very large N. For the case where
NzFM is odd, for large N the field-induced instability is
simply the antiferromagnetic spin-flop transition. For N

where the dimensionality of the matrix m(k„k, ;1~,l„')

equals that of the number of layers in the unit cell of the
superlattice. One has
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in the x direction, normal to the Zeeman field Ho and
still parallel to the interfaces. We inay calculate X~, the
static susceptibility that describes the total magnetic mo-
ment induced parallel to x by such a field. The field vari-
ation of X is displayed in Fig. 3, for two choices of
XAFM, one even and one odd. %e see a clear divergence
as the critical field is approached below. Since the critical
fields are rendered very different in value by the addition
of only one additional atomic layer of spina in each anti-
ferromagnetic film, there is a very large influence on the
macroscopic properties of the sample from a small micro-
scopic structural modification. We also show X for
fields a bit above the critical fields for each ease; the nega-
tive values assumed by this quantity above the critical
field insures that the critical field is correctly determined
by the soft spin wave criterion, and the ground state is
indeed unstable with respect to spin rearrangements. A
description of the calculation of X will be provided later
in this paper. We now turn to a discussion of the
ground-state spin arrangements, when the magnetic field
exceeds the critical value.

B. Ground-state spin configuration as a function
of external magnetic field

FIG. 2. Critical field for inducing an instability in the
ground-state spin configuration, as a function of the number of
layers in the films from which the superlattice is fabricated. In

(a), we have NFM ——N~ ——N, with N even, and in (b) we have

NFM ——N, NAFM ——N+ 1, again with N even. The units of field
are chosen so the bulk spin-Aop field on the bulk antiferromag-
netic medium equals unity.

large but finite„ the field required to induce the spin-flop
transition exceeds the bulk spin-flop field by an amount
proportional to llN, because the spina near the interface
are inhibited by exchange coupling to the ferromagnet,
which has spina pinned in the positive z direction by Ho.
Thus, for finite N the field required to induce the instabil-
ity exceeds the bulk spin-flop field, but approaches this
value as %~00.

When N~FM is even, a different picture applies. The
driving force for the transition is the gain in Zeeman ener-

gy in the ferromagnetic film with spins initially down.
The energy gain from this source is 2HOSN in the limit of
large N. Rotation of the spins in the down-spin fer-
romagnet applies a 180' twist to the chain of antifer-
romagnetic spins. The high-field state is then one where a
soliton is formed in the middle of the antiferromagnet.
The initial spin configurations of the antiferromagnet is
ABAB ABAB, and .t.h. e final configuration (for N~FM
large) is ABAB. ..(soliton). ..BABA. For large NAFM, the
field required to induce the transition is then E~~/
2HOSX, with E I the energy required to create the soli-
ton. The critical field thus vanishes as N~oo, and can
be very small for even modest values of N

At this point, it is clear that the properties of the super-
lattice structure are controlled importantly by the detailed
arrangement of the atomic planes. Such microscopic de-
tails thus influence the macroscopic properties of the ma-
terial. Suppose, for example, we apply a small static field

Particularly when the number of spins in the antifer-
romagnetic film is even, the magnetic field dependence of
the ground-state spin configuration on magnetic field is
complex.
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FIG. 3. The transverse static susceptibility P as a function
of (normalized) external Zeeman field, for the case (a) of an even
number of layers in the antiferromagnetic film
(NFM ——N~ ——4) and (b) an odd number of layers in the anti-
ferromagnetic film (XFM ——4, X&FM ——5). In both cases, there is
a divergence in g as the first critical field is approached from
below.
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It is perhaps useful to recall the behavior of the bulk
antiferromagnet at T=O before we begin. As Ho is in-

creased from zero, one first encounters the spin-flop tran-
sition at the lower critical field of (2HEH„)'~ when

HE &&Hq. The spin-flop transition is a first-order phase
transition. As Ho is increased, the spins on each sublat-
tice rotate into the field Ho, until a second critical field is
reached where they are aligned fully with the field, in a
configuration of ferromagnetic character. At the point
where the spins just align, one has a second-order phase
transition. The high-field phase is referred to as the
paramagnetic phase.

Quite clearly, for the superlattice, when Ho is so large
that both exchange and anisotropy energy is overwhelmed

by the Zeeman energy, we shall realize an analogue of the
paramagnetic phase, with all spins aligned fully along Ho.
We find two distinctly different phases at intermediate
fields for the case where XAAM is even, however. (For
XAAM odd, there is only one. ) Before we describe these,
we comment on the computational method used to con-
struct the magnetic phase diagram.

We begin by supposing the unit cell of the structure is
2(d i+12). (This places a constraint on our ability to in-

vestigate one point, as noted below. ) Then the number of
planes of spins in the unit cell is 2(N&M+NAqM). We al-

low the spins in the ith plane to rotate away from the z
axis by the angle 8;, always confined to the xz plane, '~ so
the spin configuration is described by this set of
2(NrM+NAtM) angles. The task is to find the set of an-

gles which minimize the energy of the spin system. We
do this by an iterative procedure. We begin with an arbi-

trarily chosen set of angles. Each spin is then not parallel
to the local effective field generated by the spins in neigh-
boring planes, and that associated with the single-site an-

isotropy energy XS,. We then rotate each spin into its lo-
cal field, a step which insures that the energy of the sys-
tem is lowered. We continue until we achieve a configura-
tion in which each spin is aligned with the effective field,
and we achieve the set of angles which satisfy the set of
energy minimization equations generated by the criterion
B(EI8J. I }/88; =0.

As remarked above, when NAr M is even we find a se-

quence of two phase transitions, each second order in
character, between the zero-field ground state displayed in
Fig. 1(a) and the high-field fully aligned state.

The first phase transition is to a configuration we refer
to simply as the unsymmetric state. The spins in the
down-spin ferromagnet twist away from the —z direction,
and this film thus acquires a net magnetic moment paral-
lel to the x direction. This Zeeman-energy-induced twist
is resisted by the antiferromagnetic film since, as we see
from Fig. 2, we are well below the bulk antiferromagnetic
spin-flop field. An exchange torque is exerted on the anti-
ferromagnet, and this is transmitted through to the up-
spin ferromagnetic film, with the result that these spins
are canted away from the + z direction, by angles smaller
than those which describe the twist in the down-spin film.
For the case N~ ——%A~M ——4, and a particular choice of
Zeeman field, we show the spin configuration in the un-
symmetric phase in Fig. 4(c). Each circle is supposed
parallel to the xz plane, and the orientation of the spins in

(a) PA RAM AGNE T I C P H AS E

(b) SUPERLATTICE SPIN-FLOP PHASE

(c) UNSYMMETR IC PHASE

(d) AFM PHASE

I—FM —I L-AFM I I—FM I I—AFM —j

FIG. 4. For N~ ——XA~ ——4, we show the spin arrangement
in (a) the high-field paramagnetic phase, (b) the superlattice
spin-flop phase, (c) the unsymmetric state, and (d) the low-field
ground state. Each circle lies in the xz plane, and the arro~ in-
dicates the orientation of the spins in a given plane.

each plane of the unit cell is indicated by an arrow.
Note that each unit cell of the structure has a static

transverse moment parallel to the x axis. Our periodicity
condition that the unit cell of the superlattice be
2(d i +de) prohibits us from inquiring if all the transverse
moments of the various unit cells are parallel, thus pro-
ducing a broken symmetry state ~ith macroscopic mo-
ment parallel to x (demagnetizing fields not considered
here would render such a state energetically unfavorable),
or whether the transverse moments alternate in sign as
one moves down the superlattice, producing a unit cell of
size 4(di+d2}. The energy difference between these two
configurations would be very tiny for our model Hamil-
tonian, and it would prove difficult to explore this ques-
tion.

As the Zeeman field is raised, we encounter a second-
order phase transition to a new phase we call the superlat-
tice spin-fiop phase. The spin configuration here is illus-
trated in Fig. 4(b). The spin configuration in one fer-
romagnetic film is obtained from the second in the unit
cell by just a reflection of the spin arrangement through
the yz plane. A consequence is that the unit cell now has
zero net transverse moment. The structure also has
glide-plane syinmetry. If the spin arrangement is translat-
ed parallel to the y axis by half the length of the unit cell
(di+d2), then reflected in the yz plane, we recover the in-
itial state. Note that the bulk antiferromagnetic spin-flop
arrangement also has glide-plane symmetry. When me
study the spin-wave spectrum of the superlattice spin-flop
phase, we shall find the existence of glide-plane symmetry
will have a striking effect on the dispersion relation of the
modes.

Finally, at high fields, we realize a paramagnetic phase
similar in nature to that in the bulk antiferromagnet. The
transition from the superlattice spin-flop state to the
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paramagnetic state is second order, as in bulk antifer-
romag nets.

For NFM =4, and values of N~FM ranging from 4 to
20, we give the phase diagram of the structure in Fig. 5.

remains in the x and z directions, ere may apply periodic
boundary conditions in these two coordinates. Thus, we
have solutions of the Bloch form, in a more explicit nota-
tion,

S'+(1„1„,!,)=e "e ''A+(l~) . (3.1)

III. SPIN-%'AVE EXCITATIONS
OF THE SUPERLAx-j. ICE STRUCTURE

PARAMAGNET 1 C STATE
(PM)

6.50-
6.00
5.50
5.00 I

SF~PM
(BULK AFM)

SUPER LATT I CE AFM AFM
0.22 — SPIN-FLOP STATE

(SF) FM FM

0.21

0.20

0.1 -UNSYMMETRlG STATE
AFM

(UNSYM)
FM FM AFM

0. 1 8-
AFM AFM"tl lt

(AFM) FMFM0. 1 7—

0.00
4 IQ 12 14 16 18 20

FIG. 5. For the case XFM ——4, and various values of NAFM,
we plot the critical fields required for the various phase changes
discussed in the main text. The inset gives the magnetic fields
at which phase transitions occur in the bulk antiferromagnetic
material. There is no hysteresis in the superlattice transitions as
there is at the bulk antiferromagnetic phase transition, since the
superlattice phase transitions are second order in character.

This section is devoted to an analysis of the spin-wave
spectrum of the superlattice structure. We have carried
out detailed studies of these elementary excitations as a
function of the externally applied Zeeman field Ho, as the
field is swept through the phase diagram displayed in Fig.
5.

The formalism we have used in this study is described
in Appendix A. In brief, we proceed as follows. If I
denotes the site of a particular spin, with the y axis nor-
mal to the interfaces in the superlattice structure, the spin
at this site is canted away from the 'sI axis by the angle 8i,
with the spin in the xz plane. We erect a new coordinate
system x'y'z' at site I, with the z' axis parallel to the spin,
and the x'z' plane parallel to the old xz plane. We then
obtain linearized equations of motion for the operators
S'+(I)=S» (l)+iS„(l), which describe the spin deviations
away from the z' axis. Since translational invariance

The superlattice is also periodic in the y direction, and
in the cases of interest the superlattice unit cell consists of
2(EFM+N~FM) layers of spins. Thus, if I„' and I» refer
to equivalent planes of spins in different superlattice unit
cells, the solutions also have Bloch character in the y
direction:

P'~(ly' }=e ' ~ ~ A+(ly) . (3.2)

By using Eqs. (3.1) and (3.2), the problem of calculating
the spin-wave spectrum can be reduced to diagonalizing a
4(NFM+NAFM} dimensional matrix. In general, in the
complex canted states, the variable P'+(l~) is coupled to

(l~ ), so the spin precession is elliptical in nature. For
each choice of k, k„and k j we then have
4(NFM+NAFM) spin-wave frequencies, half of which are
negative and half of which are positive. The excitation
energy of a given mode is the absolute value of its fre-
quency 0 (It), where It=xk +$'ki+'lk, .

We have carried out extensive studies of the superlattice
spin-wave spectra, and in the interest of brevity we only
summarize the principal features here. In the next section
we present studies of the infrared absorption spectrum of
the structures. There, only those modes with ki =0 and
which generate a net transverse dipole moment contribute,
as we shall see.

We first begin with the spin-wave spectrum of the low-
field ground states illustrated in Figs. 1(a) and l(c). In
this state, the spin waves have the character of standing-
wave resonances in the constituent films. From the point
of view of a given ferromagnetic film, the surrounding an-
tiferromagnet regions act as a source of pinning, because
the resonance frequencies of the ferromagnetic and anti-
ferromagnetic media differ substantially. A disturbance
in one medium thus does not propagate through the
neighboring film, with the consequence that the spin
waves have the character of standing-wave resonances of
the individual constituents.

There is, of course, a disturbance which decays to zero
in an exponential fashion into the neighboring constitu-
ents, as one of the modes discussed above is excited. Gen-
erally speaking, we find the amplitude of the spin motion
in the first layer of spins in the neighboring films can be
appreciabie, and this then decays rapidly as one penetrates
further. The exponential "tails" which extend into neigh-
boring films lead to interaction betwcx:n modes localized
in nearby films of similar character (say between modes
localized in adjacent ferromagnetic films), and this leads
to dispersion in the superlattice eigenfrequencies, as the
component of wave vector ki normal to the interfaces is
vied.

The magnitude of this dispersion is sensitive to whether
the number of layers NAFM in the antiferromagnetic films
is even of odd. We illustrate this in Figs. 6(a) and 6(b). In
Fig. 6(a), we show this dispersion in ki of the three lowest
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FIG. 6. For k„=k,=0, we show the dispersion relations of
the three lowest frequency spin-wave branches of two superlat-
tice structures. The wave vector k& normal to the interfaces
ranges through the superlattice Brillouin zone. The calculations
assume the external field Ho ——0. The two cases considered are
{a) N~ ——4, N~ ——4, where the ground state is that illustrated
in Fig. 1(a) and (1) NFM =4, N~FM ——5 where the ground state is
that illustrated in Fig. 1(c). The units of frequency are such that
in the bulk antiferromagnet, the zero-field antiferromagnetic
resonance frequency is unity.

quency mode) approaches zero frequency, and plays the
role of the "soft mode" of the upcoming second-order
phase transition. At fields well below the phase transi-
tion, the mode that evolves into the soft mode is localized
in the down-spin ferromagnet. We shall encounter this
mode again in Sec. IV, when we discuss the infrared ab-

sorption spectrum of the superlattice structure.
In Fig. 7(a) we show the two lowest positive frequency

spin-wave branches, again for propagation normal to the
interface, for a magnetic field He sufficiently large to
drive the system into the unsymmetric state. The calcula-
tions are for the case NFM ——NzFM ——4. The lowest
branch has a frequency which vanishes linearly with wave

vector, as ki-+0. This is in fact the Goldstone mode of
the system, which has vanishing frequency as k&~0 by
virtue of the fact that one may continuously rotate the
spins about the z axis, without affecting the energy of the
system. (The existence of this symmetry operation de-

pends on the fact that we have ignored dipolar interac-
tions in the present treatment. ) It follows that this low-

frequency branch is in fact a collective mode of the super-
lattice structure as a whole, rather than an eigentnode lo-
calized in the near vicinity of one constituent. The second
branch in Fig. 7(a), labelled Qz, is also a collective mode
of the structure. As the Zecxnan field is raised to a value
close to that required to induce a transition to the super-

0,24

0.20

O. I 6

0.08

frequency spin-wave branches for k =k, =0, for the case
where NFM ——N&FM ——4. All three modes show very little
dispersion; the choice of frequency scale is such that the
small amount of dispersion present is magnified. The sit-
uation differs substantially when we examine the case
where NFM ——4, but now Np, FM ——5. We see substantial
dispersion here, for all three branches. To appreciate the
origin of the difference, consider a mode localized in an
up-spin ferromagnetic film. When NAFM 4, two adja-——
cent up-spin ferromagnetic films are separated by two in-
tervening antiferromagnetic films, with a down-spin fer-
romagnetic film between them. There are thus twelve
layers of nonresonant spina between adjacent resonant
films. Thus, modes localized in adjacent up-spin fer-
romagnetic films are separated by so many layers of non-
resonant spins that interaction between them is very mod-
est. On the other hand, when XzFM ——5, two adjacent
up-spin ferromagnets are separated by only five interven-
ing nonresonant layers, and cross-coupling effects can be
substantia11y larger.

As the Zeeman field He is raised, to approach the value
required to induce a transition to the unsymmetric state,
the mode with lowest excitation energy (a negative fre-

0.04
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O. I 6

(b)

O. l2

0.08

0.04

2

k„(A ')

FIG. 7. The lowest two positive frequency spin-wave
branches for an external magnetic field Ho which places the
structure in {a) the uns~~etric state and {b) the superlattice
spin-flop state. %e have chosen NFM ——%~M ——4 for these cal-
culations.
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lattice spin-flop state, the frequency of the ki ——0 second
branch spin decreases to zero; this is then the soft mode
associated with the second-order phase transition from the
unsymmetric to the superlattice spin-flop state.

In Fig. 7(b), we show the lowest two positive frequency
spin-wave branches for a field just above that required to
drive the system into the superlattice spin-flop state. The
Goldstone mode remains, as symmetry requires, and we
see that the ki ——0 mode associated with the second
branch has stiffened somewhat. A new feature is the ab-
sence of a gap between the two branches at the Brillouin
zone boundary; the two lowest branches merge, and we
have a twofold degeneracy at this point. In fact, al1 the
spin-wave branches are twofold degenerate at the Bril-
louin zone boundary, in the superlattice spin-flop state.

At higher fields, the behavior of the spin-wave branches
at the Brillouin-zone boundary is illustrated more clearly.
In Fig. S, we show the two lowest positive-frequency spin
branches at higher fields. We see the twofold degeneracy
again, and note that as one moves away from the zone
boundary, there is a linear slope in the dispersion curves.
This behavior reminds one of the behavior of electron en-

ergy bands in graphite along the face of the crystal Bril-
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LLj 0.00
CL
LL

0.50
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louin zone normal to the c axis. One again has a twofold
degeneracy in the branch, and there is a linear slope as one
moves away from this zone face. From group theoretic
arguments, one sees that in graphite, the presence of
glide-plane symmetry' is responsible for this unusual
behavior. Precisely the same argument applies to the spin
waves in the superlattice explored here, for Zeeman fields
II0 which place it in the superlattice spin-flop state. As
noted earlier, this spin arrangement has a glide plane in its
symmetry group. The unsymmetric phase present at
lower fields lacks the glide plane, and a consequence is
that there are gaps between the various spin-wave
branches at the zone boundary, and the dispersion curves
exhibit the standard quadratic variation with wave vector,
in the near vicinity of the zone boundary. This is illus-
trated in Fig. 7(a).

We pause in our discussion of superlattices to comment
on the results obtained in the classic papers by Anderson
and Callen and %ang and Callen which discuss spin-
wave dispersion relations in the spin-flop phase of the in-
finitely extended uniaxial antiferromagnet. In their full
theory, these authors consider in plane anisotropy
described by an anisotropy constant E2, as well as uniaxi-
al anisotropy described by Ei. In the spin-fiop state and
with Kq ——0, these authors find a finite gap in the spin-
wave spectrum at zero wave vector, in violation of the
Goldstone theorem. Indeed, they comment explicitly that
inclusion of Ei, which destroys the continuous Goldstone
symmetry, leads to no qualitative change in the spin-wave
spectrum. Furthermore, their dispersion relation yields a
gap and quadratic dispersion curves near the zone boun-
dary, although the bulk spin-flop state also has glide-
plane symmetry. Through a scheme described only brief-
ly in their paper, these authors incorporate the influence
of zero-point fluctuations on the spin-wave spectrum; this
introduces corrections in the dispersion relation the order
of 1/S. If these zero-point corrections are omitted froin
their expressions, then one obtains spin-wave dispersion
relations consistent with the requirements of Goldstone
and glide-plane symmetry arguments. Since these require-
ments are group theoretic in origin, they apply also to a
quantum system with zero-point fluctuations. It is our
view that the procedure used by these authors to generate
zero-point fluctuation corrections to the spin-wave disper-
sion relations is evidently in error.

This summarizes our studies of spin waves in the vari-
ous phases of the superlattice structure. We see that each
second-order phase transition has a "soft mode" associat-
ed with it, and in the high-field low-symmetry phases the
low-frequency branches have the character of collective
excitations of the entire structure, as opposed to waves ap-
proximately localized to one constituent of the structure.

0.00
I vr

2 d d

k„(a ')

FIG. 8. The lowest two positive frequency spin-wave
branches for an external magnetic field Ho which places the
structure in the superlattice spin-flop state. Again the calcula-
tions are for XFM ——X&PM ——4.

IV. INFRARED ABSORPTION SPECTRUM
OF THE SUPERLATTICE

One means of obtaining information about the spin
configuration of the superlattice is the study of the mi-
crowave or near-infrared absorption spectrum. In Appen-
dix 8, we describe the method of calculating the absorp-
tion spectrum, and in this section we present the results of
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FIG. 9. The infrared absorption spectrum, in arbitrary units,
for two model superlattices and various magnetic fields. In
{a)—(c), me have calculations for the case NFM
=NAFM ——4, while in (d)—(f), we present calculations for the
case XFM ——4, NAFM ——5. The units of frequency are such that
in the bulk antiferromagnetic material, the zero-field antifer-
romagnetic resonance frequency is unity. The magnetic field
Ho is measured in units of {2HEH~ )'~.

our study of the model superlattices explored earlier in the
paper.

In Fig. 9, we show the calculated absorption spectrum
for the low-field ground-state spin configuration displayed
in Figs. 1(a) and l(c). The units of frequency are such
that the zero-field bulk antiferromagnetic resonance fre-
quency is unity. Figures 9(a)—9(c) show calculations for
the case NFM ——NAFM ——4, while calculations displayed in
Figs. 9(d)—9(f) show calculations for the case NFM —4,
N~„M —5. From Fig. 2(a), we see that when

NFM NAFM
————4, the low-field ground state becomes un-

stable for a reduced field H0-=0. 18, while when

N~FM ——5, it remains stable up to a field HO=1.8, sub-
stantially larger than the bulk spin-flop field of 1.0.

In Fig. 9(a), we show the absorption spectrum for the
case where NFM N~F——M ——4.0, and the external Zeeman
field Ho ——0. The high-frequency feature is the absorption
associated with the lowest frequency mode localized in the
antiferromagnetic film. As remarked in Sec. III, the sur-
rounding ferromagnetic films act to partially "pin" the
spins near the interface, so the spin-deviation associated
with this mode is rather similar to the ground-state wave
function of a quantum mechanical particle in a one-
dimensional, deep but finite potential well. The spins in
the ferromagnetic films immediately adjacent to the anti-
ferromagnets participate appreciably in the mode; this is a
spin analogue to leakage of the quantum mechanical wave
function into the classically forbidden regions. The mode
is shifted above the bulk antiferromagnetic resonance fre-

quency of 1.0 by the pinning, which enhances the ex-
change contribution to the excitation energy of this mode.
We see a weak feature at higher frequency that is the
"first excited state" of the antiferromagnetic film.

The strong low-frequency feature is a mode localized in
the ferromagnetic films. In zero external field, this has
finite frequency by virtue of the pinning provided by the
neighboring antiferromagnetic films. There are modes lo-

calized in the up-spin ferromagnetic films, and modes lo-
calized in the down-spin films, and in zero external field
these involve opposite senses of spin precession. Both
contribute to the calculated absorption spectrum since, as
discussed in Appendix B we assume the driving field to be
linearly polarized along the x direction.

Figure 9(b) shows the influence of a weak Zeeman field.
The modes localized in the antiferromagnetic films split,
in a manner familiar from antiferromagnetic resonance
studies of bulk materials. The feature with origin in the
ferromagnetic film splits also, since application of the
Zeeman field renders the two ferromagnetic films ine-
quivalent. The mode associated with the down-spin film
is the one which softens, and as Ho increases, this mode
becomes the "soft mode" associated with the second-order
magnetic-field-induced phase transition to the unsym-
metric state. In Fig. 9(c), we show the absorption spec-
trum calculated for a field just a bit below that required to
drive the low-field ground state unstable. Note that the
frequency scale in Fig. 9(c} differs from that in Figs. 9(a)
and 9(b}. The critical fields displayed earlier in Fig. 2 are
calculated by finding the field at which the mode just
described becomes "soft." The energy minimization cal-
culations place the phase transition at the same field, as
expected for a second-order phase transition.

Figure 9(d) shows the zero-field absorption spectrum
for the case NzFM ——5, where in the low ground state, all
spins in the ferromagnetic film are directed upward [Fig.
1(c)]. The spectrum in Fig. 9(d} is qualitatively similar to
that in Fig. 9(a) except that in zero external field, the reso-
nance associated with the antiferromagnetic film suffers a
small splitting. This splitting is produced by the exchange
coupling between the antiferromagnetic and the neighbor-
ing ferromagnetic films, both of which are "up," and ex-
ert a net effective magnetic field in the antiferromagnet
through the exchange coupling across the interface.

As the field is raised, the low frequency partner of the
antiferromagnetic resonance doublet is driven downward
and that associated and the ferromagnetic film stiffens, as
one sees in Fig. 9(e). With further increase in field there
is a level crossing and strong mixing between the two
modes, and finally with still further increase in field, a
soft mode emerges on the low-frequency side of the doub-
let. Fig. 9(f) shows the absorption spectrum calculatai for
a field just below that required to drive the low-field
ground state unstable.

From a very qualitative point of view, the picture just
described bears a resemblance to the soft modes associated
with the ferroelectric phase transition. Here temperature
is the parameter which drives the optical phonon soft as it
decreases. Close to the phase transition, the optical mode
softens to the point where it admixes strongly with
acoustical phonons, and in the end the soft inode is an ad-
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mixture of acoustical and optical modes.
We have also carried out calculations of the absorption

spectrum of the high-field, low-symmetry states. Figure
10(a) shows the spectrum of the unsymmetric state, at a
value of the Zeeman field Ho just above the transition to
the unsymmetric state. The absorption spectrum is rich;
the prominent low-frequency feature is the mode labeled

Qi in Fig. 7(a). [In Fig. 7(a), the calculations are carried
out for a larger value of the magnetic field. ] As remarked
earlier, this mode, like the very low-frequency Goldstone
mode, is a collective mode of the whole superlattice struc-
ture. As the magnetic field Ho is increased, to approach
the field required to induce a transition to the superlattice
spin-fiop state, this mode softens, and the higher-
frequency absorption lines progressively weaken in oscilla-
tor strength. The Q2 mode is the soft mode of the phase
transition from the unsymmetric to the superlattice spin-
flop state. In Fig. 10(b), we show the spectrum at a field
slightly below that associated with the transition.

INFRARED ABSORPTION SPECT RUM
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FIG. 11. For NFM ——EAFM ——4, we show the magnetic field
variation of the dominant feature in the absorption spectrum, as
the Zeeman field is swept through the unsymmetric state into
the superlattice spin-flop state. The units are the same as those
in Fig. 9.
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In the superlattice spin-flop state, we find a single
feature in the absorption spectrum. For a particular
choice of field, this spectrum is illustrated in Fig. 10(c).
This feature has a frequency which increases with Ho in a
linear manner. In Fig. 11, we show the field dependence
of this dominant feature in the absorption spectrum, as
the magnetic field is swept through the phase transition
from the unsymmetric to the superlattice spin-flop state,
and then to values well into the superlattice spin-flop
state.

V. CONCLUDING REMARKS
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FIG. 10. For XFM ——XAFM ——4, we show the infrared absorp-
tion spectrum for several fields when the system is in the low-
symmetry ground states. In (a), the Zeeman field is out just a
bit above the transition from the low-field ground state to the
unsymmetric state; in (b} it lies just a bit below that required to
induce the superlattice spin flop state; and in (c) it is sufficiently
large for the system to be within the superlattice spin-flop state.
The units of field and frequency are the same as those used in
Fig. 9.

This paper has been devoted to a theoretical study of a
model of a superlattice fabricated from alternating layers
of ferromagnetic and antiferromagnetic materials. We
find rich behavior; macroscopic properties of the resulting
material, such as the phase diagram and the optical ab-
sorption spectrum, are influenced strongly by microscopic
details of the underlying superlattice.

Our work has confined its attention to model materials
described by the localized spin picture of magnetism. It is
our view that this phenomenology can describe, qualita-
tively, the energy changes associatei with spin rearrange-
ments in media where itinerant electrons carry the mag-
netic moment. As a consequence, we expect rich behavior
in superlattices formed by such materials as well.

At the time of this writing, no systems have been fabri-
cated which serve as a test of the predictions set forth
here. There is, however, literature on multilayer struc-
tures formed from alternating layers of ferromagnetic and
antiferromagnetic materials. Examples are Co-Cr super-
lattices (the spin density wave in bulk Cr has a period
which differs from the lattice constant by only a few per-
cent; we expect that in very thin, high quality Co films,
boundary effects will force the system to become com-
mensurate) and superlattices formed from MnFe and per-
malloy. In the examples studied so far, the individual
layers are hundreds of layers thick. Also, we expect the
quality of the interfaces in the materials realized so far is
very poor. We plan further studies of other superlattice
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APPENDIX A: FORMALISM EMPLOYED
TO CALCULATE THE SPIN-WAVE SPECTRUM

OP THE SUPERLA I I ICE STRUCTURE

In the main text of the paper, we discussed the spin-
wave spectrum of the superlattice structure, with em-

phasis on the complex canted states which exist above the
lowest critical field which drives the zero-field ground
state unstable. In this Appendix, we discuss the formal-
ism upon which these calculations were based.

The basic Hamiltonian consists of exchange, Zeeman
and uniaxial anisotropy terms which we write

H = ——,
' g J(l,1+5)S(/) S(1+5)

1,5

Ho +S—,(E) Kg S—~(/AFM) ~

1

(Al}

geometries in which very different behavior may be ex-

pected.

ACKNO%'L EDGMENT

where the uniaxial anisotropy acts only within the antifer-
romagnet. We assume S is sufficiently large that the spin
system can be treated classically throughout.

In general, the ground state is complex in nature, with
spins in each atomic sheet canted away from the 2 axis by
an angle we call 01 . Our energy minimization calculation

provides us with the set of angles 8I associated with each

external field Ho. Recall that in our geoinetry, the inter-
faces between adjacent films in the superlattice structure
are all parallel to the xz plane, the Zeeman field is applied
parallel to + 'k [Eq. (Al)], and thus the y axis is normal
to the interface between adjacent films. Within the sheet

l», all spins lie in the xz plane. We erect an axis 'R' in this
plane, with 0' aligned along the spin direction. The new
coordinate system is obtained by a rotation through the
angle 8i about the P axis.

We erect such a new coordinate system for each sheet
of spins, and we express each term of the Hamiltonian in
terms of the spin components S,' (/), S'+(/), and S' (I) as
measured in the canted coordinate system. Thus, when
considering exchange couplings between spins in adjacent
sheets, we have

S(l ) S(l') = —,
'

[A (/», I»' ) —1][S'+(l)S'+(I')+S' (l)S' (I')]

+ —,'[A(/», I»')+1][S'~(/)S' (I')+S' (l)S+(I')]+A(/», /»')S,'(1)S,'(I')

i B(E» /» )I[S+(/)+S (/)]S (I ) S (/)[S+(I )+S (I )]I

where

A (l„,l„' ) =cos(8i )cos(8&, )+sin(8I )sin(8&, ),r y

and

B(/», I„' ) =cos(8i )sin(8&, ) —sin(8i )cos(8&, ) .
r r r

Also, we have the identity

S, (/», FM)=cos (8i )S,'(/~FM) + —,
'

cos(8~ )sin(8i )S,'(l)[S'+(E)+S' (I)]+—,
'

sin (8I )[S'+(E)+S' (/)]

(A2}

(A3)

(A4)

We used the Hamiltonian transformed in the above manner to generate equations of motion for the operators S'+ (/)
and S' (I ), which are the spin-deviation operators in the canted coordinate system. We linearize the resulting equations
of motion by replacing S,'(I) by S everywhere. The terms in the Hamiltonian proportional to S,'(I')[S'+(/)+S' (I)]
lead to terms in the linearized equations of motion independent of either S'+ (/) or S' (/). These terms vanish identically
if the angles 8i are chosen to be those which minimize the energy of the system. With the 8i so chosen, in effect each

spin is aligned parallel to the effective local molecular field which acts at its lattice site, and no torque acts on the spin
when it is aligned along the 0' axis.

When we examine the linearized equations of motion for solutions proportional to exp( —i At}, we have

QS' (l)=SQ J(l,1+5)IA(l, / +5 )S' (/) ——,'[1+A(/„, I +5„)]S' (I+5)+—,
' [1—A (l, l +5 )]S' (/+5)I

and

+Hocos(8I )S'+(I}+KS(3cos8& —1)S'+(I)—KSsin 8i S' (/), (A5)

QS' (/) = —Sg J(1,1+5}[A(/», I»+5»)S' (/)+ —,[1+A (l», l»+5»)]S' (/+5) ——,[1—A (/», I»+5» }]S'~(/+5}]

Hocos(8i }S' (/) —K—S(3cos 8i —1)S' (/)+KSsin 8i S'+(/) .
r r r
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We now invoke Bloch's theorem. We may do this in

two steps. First, we have translational symmetry in the
two directions parallel to the interfaces, the x and the z
direction. Thus, noting that a given site is labeled by the
three integers I», I„,and l„we have

Sl(I) zz»2~ (I ) (A7)

We assume k and k, are fixed by periodic boundary con-
ditions on the xz plane.

The superlattice is also periodic in the y direction. For
all cases considered here, the unit cell consists of
2(NFM+N))FM) layers of spins, where NFM and NAFM is
the number of sheets of spins in the ferromagnet and in
the antiferromagnet, respectively. We may thus apply
Bloch's theorem in the y direction as follows. We choose
a particular unit cell of the superlattice as a reference cell,
and let l„refer to a sheet of spina of this cell. Then I»

ranges from 1 to 2 (NFM+N», FM }. For a given value of
I„, let I„' refer to the equivalent spin sheet in some other
unit cell, i.e., if ao is the spacing between adjacent sheets,
and d =2(NFM+Ni)FM)ao is the length of the superlat-
tice unit cell, then I» ——I»+md, where t)i is an integer.
We may then write

(A8)

where ki lies in the first Brillouin zone of the superlattice
structure. We have —m/d & ki & +m/d, again with d the
dimension of the superlattice unit cell.

If N=2 (NFM+NAFM) is the number of spin sheets in
each superlattice unit cell, then the problem reduces to the
diagonalization of a 2NX2N matrix M(l», l„') whose ele-

ments, of course, depend on k„, k„and ki. For each
value of I„ in the reference unit cell, we have two dynami-
cal variables, P'+(I» ) and P' (I„). Thus, for each choice
of the wave vector k=2k, +$'ki+ 2k, we have 2N eigen-
frequencies Q (k). For the low-field ground state illus-
trated in Fig. 1(a), incidentally, where all angles ei are ei-

ther 0 or n, the problem decomposes into that of di-
agonalizing two matrices, each an N XN matrix.

We introduce a 2N-dimensional column vector S, de-
fined as

construct the matrix MJ. Its detailed form is of little
general interest, but we comment on its general structure.

One may express M in terms of two NXN matrices,
each of which is Hermitian. We call these M, and M2,
and we have

(A 1 1)

so the matrix M is in fact non-Hermitian.
In this case, the eigenvector defined in E(j. (A10) is a

right eigenvector, henceforth denoted by SI~ ', and the
right eigenvectors are distinct from the left eigenvectors,
which satisfy

y S(La)M Q~(La)
j

(A12)

In this appendix, we discuss the details of the calcula-
tion of the response of the superlattice to an externally ap-
plied, time-dependent magnetic field. For definiteness, we
apply the external field parallel to the x axis, and allow it
to have an arbitrary spatial variation. Thus, at lattice site
I, the spin is driven by the field

h(l, t}=h»(l)cos(Qt}x= —,'h, (l)(e' '+e ' ')x,

with Qa the same eigenvalue as that which appears in Eq.
(A10). The completeness relation, for a given wave vector
k, is expressed in terms of both sets of eigenvectors as fol-
lows.

2N

(A13)
a=1

To study the spin-wave spectrum of the superlattice, we
need not be concerned with the nature of the eigenvectors.
However, to discuss the response of the superlattice to an
externally imposed field, one needs to employ both sets, as
one sees from Sec. IV of the main text. An excellent dis-
cussion of the eigenvalues spectrum and eigenvectors of
non-Hermitian matrices is given in the classic text of
Freedman. '3

APPENDIX 8: RESPONSE OF THE SUPERLATTICE
TO AN EXTERNAL MAGNETIC FIELD

~+(I) )

~+(Iz)
e

~+(4)

(I i )

(Iz)

0

(1)v )

so our eigenvalue problem may be written as
2N

g M,JSJ
' ——Q+; .

j=1
(A10}

so this introduces into the Hamiltonian the interaction
term

V= ——,
' g h, (l)cos(Qt)[S+(I,t)+S (I,t)] . (B2}

l
We shall first discuss the response of the system when

it resides in the low-field ground state illustrated in Fig.
1(a) or Fig. 1(b). The same principles may be used to ex-
tend the analysis to the various canted spin configura-
tions. In the interest of brevity, we comment only briefly
on this extension.

In the standard manner, we obtain equations of motion
for the operators S+(l, t), and linearize these by replacing
S,(l) by + S or —S, whichever is appropriate. In what
follows, S(I) will assume the value + S for up spins, and
—S for down spins. We shall write, for the response,

(I t) S( i) (I )e int+S( ) (I ) int- (B3)

From the equations of motion outlined earlier, one may We then find
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+QS+'(/) —g M(l, I')S+'(I') = ——,
' S(/)h, (l)

l'
(84a) The Green's functions which may be used to solve Eqs.

(84) may be written as

+QS+'(/) —g M(l, l')S+'(I') = ——,
' S(l }h (/),

l'
(84b)

[e( a)( / }]eeR(a)(/)
Gp(/, l'}=g (89)

where the matrix M(l, l') is identical to that which enters
the analysis of the spin-wave spectrum. In the low-field
ground state, S+(/) does not couple to S (I); the matrix
M(/, I') is readily constructed from Eq. (A5) through ap-
propriate selection of the angles OI .

The inhomogeneous equations displayed as Eqs. (84}
may be solved formally through construction of an ap-
propriate Green's function. We discuss the construction
of this function, then use it to solve Eqs. (84). The matrix
M(l, l ) which enters Eqs. (84) is non-Hermitian, by vir-
tue of the antiferromagnetic regions of the superlattice.
We first begin with brief comments on the mathematical
structure of the eigenvalue problem associated with non-

Hermitian matrix operators. '

Non-Hermitian matrices have left eigenvectors which
are distinct from right eigenvectors. If A (i,j) is such a
matrix, the right eigenvector eR '(i) associated with the
eigenvalue A. satisfies

where Q is an eigenvalue of the matrix M(l, l'). One
sees early on that 6+ (l,l') satisfies

+QG+(I, l') Q—M(l, l")G+(I",I') =511 . (810)

The solution of Eq. (84a) is then

eL '(I')'h (I' )S(I')eR '(I )S+'(I ) = —,
'

a I' Q~+Q

while the solution of Eq. (84b) is

81 eg
S'+'(/) = —,

a I' a—

(810a)

{810b}

If N, is the number of spins in one layer of the super-
lattice (each layer is parallel to the xz plane), it is useful to
perform a Fourier transform with respect to the variables
I, and I, . Thus, h, (/) =h (l„,ly, l, ) is written as

QA(i,j)eR '(j)=A~R(i),
J

while the left eigenvector eL '(i) satisfies

g[eL '(j)]'A (j,i) =Aa[eL (I))',
J

(85) h~(l~, ly, l,)=, g e "'e *'h, (k~, k„'Iy) . (Bll)

i' lx i' lg

eR,L{ x» y» g}= i/2 eR L(k„,kg»'ly),
'' I I I

(N )i/2where the eigenvalue which enters Eq. (86) is the same as
that which enters Eq. (85). The completeness relation as-
sumes the form

(812)

(86)
The eigenvectors which emerge may also be written as

g[ ' '(')]' ' '(j)=&;i,

and the orthonormality condition reads

8L l 8g

(87)
where the index a which labels the eigenvalue is replaced
on the right-hand side by the combination ( k„k„s).

It is useful to switch the external perturbation on and
off adiabatically by appending the factor e"' to each ex-
ponential in Eq. (Bl). Then S'+'(/) and S'+'(I) may be
written as

and

t'k l„ ik l (s)

S+( )= e e ''a (k~»kg»'Iy»ly)

2(Ng}'/i, , k k [Q, (k~, ky)+Q+iri]

ik„l„ ik l ( )

S~ (/)=(2) 1 e ''e *'a'(k~, k„ly, ly')

2(N )'" [Q (k k )+Q+iq]

(813)

(814)

where

a("{k k ly ly)=eL {k k 'Iy') h (k k Iy}S{/y')eR (k k 'Iy) {815}
The above results may be used to derive an expression for S (l, t}, the x component of spin at site I induced by the

driving field. We find

S,(l, t)= »2 gg g e ''e *'[eL'(k„k,;I„')]'h,(k,k„ly)S(ly)eR'(k„k„ly)x»
2(N )i/2 L x» s» y x x» s» y y x» g»

~ 'Iilf io t gj —iQt
X . +

Q, (k„k, ) Q+iri Q—,(k„,k, )+Q+ii/
(816)
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We can use Eq. (816) to describe various quantities of physical interest. Consider, for example, the static susceptibility

X, which describes the total transverse moment induced by a spatially uniform, time-independent field. We let

h, (k„,k, ;1~)=(X,)'~ h05k 05' 0, so ho is the magnitude of the field felt by each spin. Then set Q=rl =0, and if (S„}
is the average transverse moment per spin, with N the number of planes of spins in the unit cell,

h (v [e"(0,0;/' )]'S(1„')e„"(0,0;I„)
(817)

g=] S
JI' y

The expression in Eq. (817) was used to calculate the static susceptibilities displayed in Fig. 3.
If we wish to calculate the infrared absorption spectra, then the wavelength of the radiation will be long compared to

the lattice constant, and also long compared to the period of the superlattice, at least for the structures of interest here.
The energy per unit time absorbed by the system is proportional to

= —,
' gh (/, r)dS„(l,t)ldr,

dt
(818)

where the vertical bar denotes an average over time. In the limit that the adiabatic switching parameter g~O, we find,
per unit spin,

dt 128 g g [5(Q—Q, ) —5(Q+Q, )][eL"(ly)]'S(ly')eg'(ly) .
3" J'

A, g
er',"(I') 'S(/')e)'t'(I } .

[(Q, —Q ) +2r/2(Q2+Q, )] r r,

The calculations of the infrared absorption spectrum reported in the text use Eq. (820), or the generalization of this
expression to the more complex phases. In the numerical work, rl has been chosen finite (and frequency independent) to
crudely simulate the effect of damping.

We conclude with a brief sketch of the extension of the analysis to the unsymmetric and the superlattice spin-fiop
phases, where the spins are no longer aligned parallel or antiparallel to the z axis. We now write the equations of motion
for the spin deviation operators S'+(l, t) introduced in Appendix A. These express the deviation of the spins away from
the 2' axis, which is aligned along the direction of the spin at site I. We then seek solutions of the form
S+(l,t) =(S+')'(/)e'"'+(S+')'(l)e ' ', and then find that (S'+')'(/) obeys

+Q(S'+')'(I) —AM)(1, /')S'+'(I') —AM&(1, /')S'+'(I') = ——,
' h, (/)cos(er )S, (821)

It

In Eq. (819), Q, stands for the spin-wave frequency Q, (k„,k, ), evaluated with k, =k, =0, and in the eigenvectors we

omit explicit reference to k, and k, . If we replace each 5 function with a Lorentzian of width q, and then combine the
two, Eq. (819) becomes

dW (820)
dt 32

while (S+')'(I) obeys an equation of the same structure,
but with +Q replaced by +Q. The matrices

M i(/, I') and
Mz(l, l') are the same as those which enter the spin-wave
theory described in Appendix A.

In this case, the variables S'+' '(/) are coupled to
S"* '(/), as in our theory of spin waves in the canted
state. We proceed formally by introducing a vector,

(a)
ea, l. =

& +(a)(/

&z,L, '(4)
(823)

(S(1,2) )i(/ )

(S'+ ')'(IN)

(822)

The orthonormality condition reads

g I[e+' '(/)]'e„' '(/)+[e„' '(I}]'e„' '(/)I =5

(824)

and the eigenvalue problem defined by the homogeneous
version of Eq. (821) introduces eigenvalues Q and left or
right eigenvectors which we write as

and a similar generalization is made in the completeness
relation stated earlier in Eq. (87).

We may then expand the variables (S'+')'(/) and
(S'~')'(/) in terms of the eigenvectors introduced in Eq.
(823},and we fmd
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[eg+' '(I') —ei ' '(l')]'h, (l')cos(8t, )ett' '(l)
(825a)

Q~ —0
[et+' '(1') —eL,

' '(l')]'h (l')cos(8t, )ett' '(I)
(S' ')'(l)= —g g (825b)

2 0+0
It is now a straightforward matter to generate expressions for various physical quantities of interest. For instance,

after the introduction of a Lorentzian width si, one may show that the generalization of Eq. (820) reads

d W Q g
&s'9

[(0,'—0')' +2ri'(0,' +0')]

X g [eq+"(lz) et—"(l„')]'Scos8t,[ett '"(lz)+ett "'(l~)]cos8t
y

' (826)

Because of the coupling between S+ and S that occurs in the canted states, twice as many eigenvalues contribute to
Eq. (826) than contribute to Eq. (820). One may show that the result in Eq. (826}reduces to Eq. (820},for the low-field
ground state.
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