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Effective-medium theory of percolation on central-force elastic networks.
III. The superelastic problem
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The effective-medium theory developed in previous papers is extended to the superelastie prob-

lem, where a fraction p of the bonds in a central-force elastic network have a spring constant a, and

a fraction 1 —p of the bonds have a spring constant a . The superelastic limit is obtained as

a„/a, ~0 such that a remains finite. In this paper we present comparisons between effective-

medium theory and numerical simulations for the triangular net with nearest-neighbor central forces
and the square net with nearest- and next-nearest-neighbor central forces. Some unexpected sym-

metries are found in these models.

I. INTRODUCTION

In two previous papers' we have developed an
effective-medium theory for central-force networks. The
theory is straightforward and can be applied to any lattice
with central forces of arbitrary range. The generalization
of this work to include angular forces has been difficult,
but some progress has beni made. 3

In this paper we consider the application of our previ-
ous work' (henceforth referred to as I and II) to the su-
perelastic problem Consider an elastic network which has
a fraction p of strong bonds a, and a fraction 1 —p of
weak bonds tx„with a /a, &1. The limit studied in I
and II corresponds to keeping a, fixed and letting a~ ~0.
In this paper we study the other limit in which a~ is kept
fixed and a,~ ao. This limit is the elastic analogue of the
random mixture of superconducting and normal links and
so is referred to as the superelastic problem. It should be
emphasized that there is a single phase transition at p'
that may be approached in different ways.

In the next section we present results for the triangular
net with nearest-neighbor central forces only and for a
series of values of a~/a, that approach the superelastic
limit. Comparisons are made between numerical simula-
tions and the results of the effective-medium theory
developed in I. Because of the elastic isotropy of the tri-
angular net (that leads to C» —Ci2 ——2C44) and the (unex-
pected) adherence to the Cauchy relation (Ci2 ——C4e), even
in the random system, there is effectively only one elastic
constant in this system.

In Sec. III, we examine the behavior in the critical re-
gion around p' more carefully. It is shown that the
effective-medium equations give a scaling form which is
reasonable except very close to p'.

In Sec. IV we compare results of numerical simulations
with effective-medium theory on the square lattice with
first (a,tx, ) and second (y,y, ) nearest-neighbor central
forces. Flow diagrams for the ratio (C»+C&2)/2C44

showing the approach to a fixed point as p~p' reveal an
interesting symmetry between the elastic and superelastic
problems on this lattice.

II. TRIANGULAR NET RESULTS

We first consider the superelastic problem on a triangu-
lar net, with Hooke springs connecting nearest-neighbor
sites. The potential in this case will be

V= —,
' g at([(ut —uj)'rtj. ] t

&ij &

where the angular brackets denote a sum over nearest-
neighbor pairs connected by springs with force constant
a;J.,'tz;J is a random variable that takes on the values

a„a~ with probability p, 1 —p; V,J is a unit vector from
site i to site j, and u; is the displacement of site i from
equilibrium. When a ~0 for a, finite, we recover the ri-
gidity percolation problem studied in I and when a,~ 00

for a~ finite we have the superelastic problem. For arbi-
trary values of a, and a we can develop an effective-
medium theory (EMT) using the static method derived in
I.

The static method treats a single-defect spring a in an
effective medium of springs with force constants a
This single-defect case is solved exactly, and we then aver-
age over the probability distribution for the defect springs
ct to get the renormalized effective force constant a as a
function of p. The result from I is

a /a' —a +a
where the angular brackets denote an average over the
probability distribution P(tx). Using the distribution

P(a) =p5(a a, )+ (1 p)5(—a a),— —

we get the effective-medium equation
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(a —a, )p (a —a )(1—p)+
am/o —a~+as am/o am+au

Taking a, =a, a ~0 as in I are get

&m p —a'
1 —a

where a =21/z= —,
' for the triangular net as was shown

in I. Taking the superelastic limit a,~ oo we obtain
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For the triangular net with all force constants equal to a~
the elastic moduli are C» ——3C~——(3W3/4)a~ so that
Eq. (6) gives a prediction for Cii and C44 at all values
of p &a' and predicts a phase transition at p'=a'= —',
where Ci, ' and C44' go to zero or equivalently the elastic
moduli diverge.

%'e have done numerical simulations on the triangular
net to check how accurate the EMT is for general values
of a, and a and for the superelastic limit. In I it was
shown that the EMT was very accurate for the case in
which a~~0. All the triangular net simulations were
done on a 21)&24= 504 atom unit cell. An external strain
was imposed by redefining the vectors that define the
large periodic cell. Each atom was then allowed to move
toward a position of zero force. The elastic energy was
then computed and the elastic moduli C,J extracted via
U = —,

'
C,&e, where U is the elastic energy per unit volume

and e is the imposed strain. C,& was averaged over five
configurations for each value of p.

Figure 1 shows Cii' and C~ versus p, the fraction of
a, bonds present. The units are such that a, =10 and
a~=1. The solid lines were obtained from (4), which
gives a quadratic equation for a for finite values of a,
and a~. The agreement between EMT and simulation is
almost exact. Figure 2 shows the same computation done
for a, =100 and a =1. Again EMT and simulation are
in close agreement, with only some very small fluctuations
around p=0.5—0.7. Figure 3 shows Cii' and C~' for

2. 50

FIG. 2. Same as Fig. 1 except that a, = 100.

a, =10 and a~=1. Here, the EMT is essentially a
straight line because a, /a„=10 gives a result close to
the limiting form in Eq. (6). The fluctuations in the re-
ciprocal moduli are larger in this case, but within numeri-
cal error. The simulation and EMT are in excellent agree-
ment. Near to p' on the left-handside, some of the points
seem systematically beneath the EMT line, but this could
be due to relaxation difficulties. Near p' every atom had
to be moved many thousands of times in order to drive
the elastic energy to its final value. An extrapolation
technique was used (see II) to save computer time which
gives only an upper bound on the final relaxed energy. 6

Since in Fig. 3 we are plotting the reciprocal moduli,
reducing the energy by further relaxation would tend to
bring the data points up and into closer agreement with
the EMT. Also since a, /al is so large p' is "almost" a
real critical point, near which the EMT is not necessarily
accurate. And of course there are always finite size and
random noise effects, particularly in the critical region,
which could have made a contribution.

Figure 4 shows the ratio Ci i /C44 plotted against p for
the data shown in Figs. 1—3. The ratios for a, =10,10~

have been rescaled to fit on one graph. The horizontal
lines are the EMT result which predicts the Cii /C~ ratio
will remain constant. For both a, =10 and 100 the nu-

2. 00

O
O

1 50

V
O

M

o. so

0. 00
0. 00

1

0. 75

2. 00

C3
O

1. SO

&. 00

V
o. so

10000

FIG. 1. Showing C~', C~~' vs p for the triangular net with

a, = 10, a = 1. The points are from simulations on a
21&24=S04 site network averaged over five configurations.
The solid hnes are the result from EMT.
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FIG. 3. Same as Fig. 2 except that a, = 10000.
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gives f=1. Recently, Sahimi and Goddard have found
that f=1.12 for the superelastic central-force problem on
a triangular net.

We note in passing that Feng has found that

f=1.02+0.07 and Bergman' has found f= 1.30+0.01 for
related but different problems.

For p =p', Eq. (7) reduces to
O
MI-

2. 00
d d d

a „0 5 C11

X-a =(a,a )'~ [p'/(1 —p')]'~ .

In general for p =p', Eq. (4) can be rewritten as

(10)
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FIG. 4. Showing the C~~/C~ ratios for the data shown in

Figs. 1—3. The straight lines are from EMT. Note that the fac-
tars of 0.5, 1.0, and 1.5 are introduced to offset the results.

III. CRITICAL REGION

The EMT equation (4) can be rewritten in the critical
region (a,/a »1,

~ p —p'
~

&&1) as

2
' 1/2

(1—p')
QgQI„

a~ Qg
(p p )

(a,a„)'"

merical simulations track the EMT rather well, with
somewhat more noise than in Figs. 1 and 2 because we are
dividing two computed numbers. The data for a, =10~
follows the EMT line quite well until about p=045, and
deviates significantly from EMT through the critical re-
gion, and then drops back to the pure system value as p
approaches 1, where the system consists of all a, bonds.
The deviations of Cti/C~ from the EMT value of 3 in
the critical region are at least partly due to the numerical
effects discussed in Sec. II above, but could also be a real
critical effect as the ratio C» /C~ relaxes to its real criti-
cal value, which could be different from the EMT value
of 3.

f(a /a, )-(a /a, )", (12)

where EMT gives k =0.
In Fig. 5, we show the results of numerical simulations

for the bulk modulus at p'= —,'. The effective force con-
stant a~ can be extracted from the bulk modulus and we
plat y against x where

x =(a~/ag )

y=a /(a, a )'~.
(13}

Also shown is the EMT result from Eq. (4) rewritten in
the form of Eq. (11}.Note that y =1 when x = 1. At the
critical point, we see from Eq. (10) that

' 1/2
am

(a,a )'" (14}

so that y=v 2 when x is very small. The EMT agrees
well with the simulation results down to log~ox= —1.0,
which corresponds to a, =100a . For smaller values of
x, there are significant differences. Note that the simula-
tion results have large error bars in this region because of

where near the critical point (a~/a, ~0) we would expect
power-law behavior:"

Within EMT, all of the elastic constants are proportional
to a and so behave similarly. We will focus our atten-
tion on the bulk modulus E=—,'(C»+Ci2}. Three limits
which are of interest are discussed below.

As a~~0, but a, remains finite, Eq. (7) becomes

(p —p')K-a =a,
(1—p')

as found in I and II. More generally we would expect
K-(p —p'j where the EMT in Eq. (8) gives f=1.
I.emieux and co-workers have found that f= 1.4+0.2 for
the central-force triangular net problem discussed in I.

As a,~ oo, but a~ remains finite, Eq. (7) becomes

4. 0

3.0

2, 0
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log�(o(X)

so that the inverse elastic moduli go to zero linearly as p'
is approached as shown in Fig. 3. More generally we
would expect E-(p' —p) j where the EMT in Eq. (9)

FIG. 5. Results of simulations and EMT are shown at

p p 3 The variables are y =a /( a,a )
' and

x =(a /a, )' . The EMT result (see Sec. III) can be written as
y= —[(8+x )'~ —x ) so that y =1 when x =1 and y =@2
when x =0.
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increasing fluctuations between configurations as the su-

perelastic limit is approached. Also the simulations were
carried out at p = —, (as a test of EMT) rather than at the

best current numerical estimate for the critical point,
which is p' =0.649.

IV. SQUARE NET RESULTS

+ —,
' $ [(u; —u ) r'"]'y", (1S)

where the first sum is over all nearest-neighbor bonds and
the second is over all second-nearest-neighbor bonds. u;J.

(y;J ) is a random variable which takes on the values a„a
(y„y ) with probabilities p„ 1 —p, (p2, 1 —pi), and VJ.
and 9',

&
are unit vectors between first- and second-

Another system on which we have studied the supere-
lastic problem is the square net with first- and second-
nearest-neighbor Hooke springs. The potential ls giveil by

V= —,$ [(u; —u~ ) r,j ] a;;i 2

C11 +ll)+ Ym ~

44 12 Ve ~

1
I( =Ta„+y~,

(16)

where K = —,
' (C» +Ci2) is the bulk modulus.

An EMT can easily be derived for the square net with
potential (1S) in complete analogy with that developed in
II and in Sec. II of this paper. Using these methods we

get two EMT equations, one for the a bonds and one for
the y bonds:

(~ —~, )pi
(17)

a /ai —a +a,
(~ —~ )(1—p&)

+m/u i +m +ized

where a i +a f = 1 is an identity and a ~ is given by

neighbor pairs of sites, respectively. When pi ——p2 ——0 and
all of the springs are a or y, then the elastic moduli are
given by

1 ~ ~ 2(1—rm )—(2+rm )(CA+ &y )+(2+rel C +rnl &y)CX&y
ai —— dK~dKr" I+2r~+r~(C —C~)2+(1 2r )C,C» ——(1+r~ rC„C~)—(C, +C„)

and r =y /a, C =cos(K a), C„=cos(E„a),and a is
the nearest-neighbor distance on the square net. The
dependence of ai on the ratio y /a couples the two
EMT equations.

Taking the limits a~,y~~0 with a„y, finite reduces
Eqs. (17) and (18) to

P2 —a2

1 —a2

p1 —a1

1 —a1
(21)

which was the form of the EMT equations used in II for
the ordinary elastic problem. The superelastic limit is ob-
tained when a„y,~ ao with a~,y finite, resulting in the
EMT equations

go to zero for the elastic problem analyzed in II. The
lower left-hand region of Fig. 6 has a„y,—+Do with

a~, y„ finite. Tracks 3 and 4 start at pi ——pz ——0 and fin-
ish on the critical line where all of the elastic moduli
diverge.

Numerical simulations were done for the system de-
fined above to determine how well the EMT would
describe the superelastic problem on the square net and, in
particular, what the critical elastic modulus ratios would
be for this problem. The details of the simulations were
the same as those described in II. We have computed

1, 00

0. 75

a2 —p2
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a1 —p1

(22)

(23)
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Equations (22) and (23) imply that the superelastic phase
transition occurs when p1 ——a1 and p2 ——a2 or, since
a 1+a z ——1, the transition occurs along the line

p1+p 2
——1 in the p1,p2 phase plane.

Figure 6 shows the pi,p2 phase plane for the square
net. The large-dashed line is the critical line p1+p2 ——1.
The upper right-hand region of Fig. 6 has a„,y~ —+0 with

a„y, finite. Tracks 1 and 2 start from pi ——p2 ——1 and
finish on the critical line where all of the elastic moduli

0. 50 0. 75 1.00

FIG. 6. Showing the pi,p2 phase plane for the square net
with first- and second-nearest-neighbor springs. The side la-
beled "elastic" has a, y ~0 with a„y, finite while the side la-
beled "superelastic" has a„y,~ 00 with a,y finite. Tracks
1—4 are defined in Sec. IV.



33 EI E'ECTIVE-MEDIUM THEORY OF PERCOLATION ON. . . . III. 3293

4. 00 1.00

M I
3. 00

C3
O
X

2. 00
O
tL

0 1. QQ4J

T* 0. 25
0(:

C4 4'

& C, ,'

M

0. 75
Ch
C)
X

0. So

O
IX
CL
M

O. 25
IX

1.00~a

& C,,'

0. 00
O. 01 0, 25 0. 50 0. 75 1.00

0.00
0.00 0. 25 0. 50 0. 75 1.00

FIG. 7. Showing C~2 and C44 computed a1ong track 3 for

y, /a, =0.25.
FIG. 9. Same as Fig. 8 except that y, /a, = 1.0.

E ' and C44' along track 3 shown in Fig. 6, which has

pi ——pz, for various ratios of y /a =y, /a, .
In Fig. 7 we show the results for Ci2 and C44 when

y /a =y, /a, =0.25, and y, /y =a, /a =10. It ap-
pmrs that, within the numerical scatter, Ci2 ——C~ for the
values of p= —,'(pi+pz) shown. From Eq. (16) we see
that Ci2 ——C44 holds for the pure system. This is because
the square net with only one kind of first- and one kind of
second-nearest-neighbor force constants obeys Cauchy's
theorem', whose proof demands that all forces must be
central and each site must be at center of symmetry. It is
as yet unclear why Cauchy's theorem appears to be still
obeyed for these random systems. We will assume that
Cauchy's theorem holds over the entire pi,p2 phase plane
shown in Fig. 6.

Figures 8—10 show the results for E ' and C44' com-
pared with the solid lines, which are the EMT result.
Again there is gaod agreetnent between simulation and
EMT. The only significant errors appear near p'=0.5,
where the data points are generally somewhat below the
EMT curve. There were difficulties relaxing the systems
in this region, so that our computed moduli are slightly
higher than if complete relaxation of the elastic energy

Qmrm- a
~, (p2 o2 )(1—o] )—
(p, —a', )(1—az )

(24)

had been achieved. Since we are plotting the reciprocals
of the moduli, complete relaxation would tend to bring
the simulations and the EMT into closer agreement. No-
tice that the EMT results have significant curvature be-
cause of the coupling between the equations for a and

yNI '

Figure 11 shows the flow diagram for the ratio E/C~
for both the superelastic and elastic problems. On the
left-hand side are the data for the superelastic problem
computed along track 3 and on the right-hand side are the
data for the elastic problem'~ computed along track 1.
Both sets of data appear to be flowing towards the EMT
fixed paint of K/C44 ——1.5, which corresponds ta
y~/a =1. The EMT ratio curves for the elastic and su-
perelastic cases are just reflections of each other about the
point p'=0.5. This is a curious symmetry, and will be
proven below.

The EMT ratio equations are the following: For the
elastic case,
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FIG. 8. Shying C44' and E ' vs p =
z (p&+@2) computed

along track 3 for the square net with y, /a, =0.25,
a, /a =y, /y =10 . FIG. 10. Same as Fig. 9 except that y, /a, =2.0.



E. J. GARBQCZI AND M. F. THORPE 33

3. 50 perelastic case computed along track 4 is the same, under
EMT, as E/C44 versus p for the elastic case plotted along
track 2. Figure 11 has the results for tracks 1 and 3,
which have m =m '=1. %e do not know whether this
symmetry is exact or just correct within the EMT frame-
work.
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1.50 (. v~~~~v %eP ~ ~ 5)

CK

1.00
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I

0. 25 0. 50 0. 75 1.00

FIG. 11. Flow diagram along track 1 (elastic case, p ~0.5)
and track 3 {superelastic case, p &0.5) showing that E/C~ be-
comes independent of the initial value of y /a =y, la, at the
critical point p'=0.5. The solid lines are from EMT and the
points are from the simulations shown in Figs. 8—10. The EMT
lines shown are symmetric about p'=0. 5.

while for the superelastic case,

3 pNr~=
am

rw(a 1 pl )02

(a2 P2)a 1

(25)

where r, =y, /a, =y /a =r„. Consider a general track
in the p t,p2 phase plane like track 2 shown in Fig. 6. The
equation of this line is

p2 =72lp ) + 1 —P?l (26)

where m is the slope. This track crosses the critical line
at (m/1+m, l/1+m). Now make the transformation

p 1~ 1 —p2,p2~1 —p1. Equation (26) becomes

P2 =P1/m (26')

which is the equation of the line shown as track 4, which
also crosses the critical line at the same point as track 2.
Now make the same transformation of variables in the su-
perelastic ratio equation (25). It is easy to see that it then
becomes identical with the elastic ratio equation (24). We
therefore have the result that K/C4s versus p for the su-

V. CONCLUSIONS

We have shown that effective-medium theory gives an
excellent description of a wide variety of central-force
problems, including those in the superelastic limit. The
only exceptions are very close to the critical point p'
where the EMT predictions appear not to be correct al-
though are very close. For example, for the triangular
net, p'=0.65 rather than —', and f=1.4, f=1.12 rather
than f=f=1.

Similar results are obtained for the square net although
accurate numerical calculations for p' and f,f are not
currently available.

All of the results of this paper and of the previous two
show that the Cauchy relation (C12 ——C44) is obeyed with
remarkable numerical accuracy for these random central-
force systems. This result is of course built into the EMT
equations which map the random systems on to the best
nonrandom system. This nonrandom system satisfies the
conditions for Cauchy's relation as usually stated. '

The square net exhibited an unusual symmetry that
maps the flow diagram for K/C44 in the elastic region on
to the superelastic region. This symmetry has been shown
explicitly for the EMT equations and also appears from
the numerical results to be exactly obeyed. It is presum-
ably associated with a rotation of the lattice by 45' which
interchanges the a and y bonds, but we have been unable
to uncover its precise nature explicitly.
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