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Critical behavior of disordered degenerate semiconductors.
II. Spectrum and transport properties in mean-field theory
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The critical behavior of disordered degenerate semiconductors is studied within a mean-field

theory valid when the number of degeneracy points is large. I show that above two dimensions there

is a semimetal-metal transition at a critical impurity concentration. The mean free path and the

one-particle density of states exhibit scaling behavior with universal exponents. The transition is

smeared at nonzero temperature. An equation of state, relating temperature, disorder, and bare con-

ductivity, is presented. In two dimensions, the semimetallic phase is unstable. I show that a locali-

zation transition follows except in two dimensions where all states are localized. The bare conduc-

tivity appears to be a universal number in two dimensions. Applications to zero-gap semiconductors

and other systems are discussed.

I. INTRODUCTION

This is the second of a series of two papers devoted to
the study of the critical properties of degenerate semicon-
ductors. ' In the previous paper, hereafter indicated by I, I
introduced models that describe the physics of the elec-
tronic states of degenerate semiconductors near their N,
degeneracy points. In this paper I discuss their spectral
and transport properties in detail, in particular near the
semimetal-metal transition. I show the following:

(i) Above two dimensions, a semimetal-metal transition
takes place and it is followed by a localization transition.

(ii) Two is the lower critical dimension of this transi-
tion.

(iii) The density of states (DOS) and the elastic mean
free path display a critical behavior with universal ex-
ponents.

(iv) The transition is smeared at finite temperature. I
show that temperature has an effect analogous to that of a
magnetic field in a ferromagnet. I present an "equation of
state" relating disorder, temperature, and bare conductivi-
ty. I find an anomalous temperature dependence in the
specific heat at the transition of the form Ta with a = —',

at Xc=
(v) The localization transition is of the standard (nonin-

ieracting) type. The system is investigated by an approxi-
mate solution valid when the number of degenerate points
(N, ) is large. The localization transition is studied by
deriving the associated nonlinear o model (Refs. 2 and 3)
and its relation to the semimetal-metal transition is dis-
cussed.

(vi) In two dimensions the semimetallic phase is unsta-
ble. The bare (Boltzmann) conductivity appears to be
universal. The mean free path and localization length are
shown to be related and a wide separation of length scales
is possible for N, large.

The paper is organized as follows. In Sec. II the large-
X, limit is studied. The transition is studied in both taro
and three dimensions. The locahzation transition is con-

sidered in the framework of the nonlinear o model. Sec-
tion III is devoted to applications and conclusions.

II. SEMIMETAL-METAL AND LOCALIZATION
TRANSITIONS: THE LARGE DEGENERACY LIMIT

(2.2)

At finite temperature T (kii ——1), e is replaced by AT. In
Eq. (2.1), g is the width of the probability distribution of
random fields, i.e., a measure of the impurity concentra-
tion. I first show that the path integral

N= I &itt&gexp —f d"xW (2.3)

can be solved in the large-degeneracy limit (N, ~ao),
where the average Green's functions can be calculated ex-
plicitly. In the following I shall show that this approxi-
mation is only qualitatively correct.

The first step is to introduce a set of collective Hermi-
tian (c-number) Q (x) fields to decouple the quartic term
of the Lagrangian. This is done using the standard
Gaussian integral

In paper I (Ref. 1) I showed that the problems of calcu-
lating the averaged Green's functions of dirty degenerate
semiconductors (at the Fermi energy) reduces to the study
of a field theory of self-interacting Dirac fields g~ (x)
with Lagrangian

~=4&0+~4&4 gN. P' C'—O'„C
where ~=/~~/~„and repeated indices are summed.
The fields g and 1b are Grassmann (anticommuting) vari-
ables and the indices a=1,2 (for the conduction and
valence bands), a =1, . . . ,N, are the degeneracy points,
r =1, . . . , n (the replica indices, n~0), and s =+1 (for
advanced and retarded). The matrix A is
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x exp — x 2tr x

+A, Q (x)1(;(x)1(',(x)]

2

=Mexp + P'„(x)+{x)g',(x)f'„(x)d x
2

&=$7$+egAP+ ,
' trg—'+A,g„p„'.g', . (2.5)

By integrating out the Dirac fields I find the effective ac-
tion for the Q variables

S,rr[g]= —,
' f d~x trg~(x}

—N, trln(}{0'+eA+A,g) . {2.6}

I now define rescaled fields Q (x)=AQ (x) and a cou-
pling constant go N, g T——he re.sulting path integral is

f ~g —~asar(+

with the effective action

g,&&[Q)= f d~x trg (x)—trln()F+eA+Q) . (2.7b)
4go

Thus if the number of degeneracy points N, is large, the
path integral will be dominated by configurations of the
Q field close to the solutions to the coherent-potential-
approximation- (CPA) looking saddle-point equations.
They are

(g„.(x)) = QS.-. (x,x) .
2go

(2.8)

(2.4)

where A, =2gN, and M is a numerical normalization con-
stant. In Eq. (2.4) I have abolished the s label to simplify
notation. We can now regard the replica index r as taking
the values r =1, . . . ,2n with A trivially redefined. Thus
the Lagrangian (2.3) reads

To simplify matters I define p =q +e.
The integral in Eq. (2.12) diverges in two dimensions.

We have to cut it off at a momentum exchange scale
E-1/ao (where ao is of the order of the lattice spacing).
I use the smooth cutoff

1 1
P —E=4goP

p 2+ 2 p @2++2
(2.13)

The result can be put in the form of an equation of state
'd —2

E
p —6' p

o go
{2.14)

C8=0 go &go
, - ir[~-2]

go —go
p =I%'

~ go&go
go

(2.16a)

(2.16b)

This solution means that the average one-particle
Green's function' G(x,y) decays exponentially at dis-
tances larger than the mean free path i

c V

I=K ' (d &2)
go

(2.17)

with v= 1/(d —2). In two dimensions Eq. (2.14) becomes

p=Ke ' (d =2) (2.18)

f'or all go&0. Hence the mean free path is finite. This
agrees with the results of Fisher and Fradkin. The densi-
ty of states (DOS) is

where the critical coupling go equals

(d —2){47r)"
(2.15}

8I [(2—d/2)]
If e is set to zero, Eq. (2.14) has the solution (p =q), for
d&2

In Eq. (2.8) I have used the propagator
N(0) =

2go
(2.19)

S„(x,x') = (ar
1

Q P

W+eA+(g)
(2.9)

Thus, below go the DOS vanishes and above go it in-
creases with a critical exponent s

N (0)=~ (go go) go &g0— (2.20)

(g .)=~A.
Therefore I obtain

qA =2go
1f ~ ip+(e+q)A '

which yields

q =4go q+e
i' p'+ (g +e)

(2.10)

(2.11)

(2.12)

A. Solution of the saddle-point equation (SPE)

I now look for a translationally invariant solution of the
SPE. This solution is not unique. This nonuniqueness is
related to the existence of diffusive modes. ' I further as-
sume a solution (Q ) proportional to A

and s =1/(d —2), for d &2. In two dimensions N(0) is
always nonzero and equals

N(0) = e
-~rag,

go~
(2.21)

These results should be contrasted with analogous calcula-
tions in dirty metals. In dirty metals the CPA equation
(2.8) yields a finite mean free path of the order of atomic
distances. The equation has essentially the same behavior
in all dimensions because the DOS is nearly constant close
enough to the Fermi energy. In dirty degenerate semimet-
als the extra phase space associated with the pointlike Fer-
mi "surface" enhance fiuctuations and is the cause of this
critical behavior.

The strong dependence on the cutoff of the equation of
state (2.14) suggests the use of the renormalization group
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(RG). I define a dimensionless renormalized coupling
constant t by

Explicit calculation yields

(d 2)Z (t) (2.22a)
P( t) = —(d —2)t + (2.26)

where the scale parameter E is arbitrary. Likewise

e=eit Z(t),

P=Pz .

(2.22b}

(2.22c)

Equation (2.22c} is valid only at N, =00. There are
corrections of order of I /N, Th.e renormalization con-
stants Zi(t) and Z(t) can be calculated using the condi-
tion that Eq. (2.12) be finite. Substituting I obtain

(2.23a}

The p function has two fixed points (d &2): t*=0
(stable} and t ' =t, (unstable), which controls the
semimetal-metal transition. The eigenvalue is equal to
d —2 which agrees with the explicitly calculated ex-
ponents.

The corrections of order 1/N, and higher are expected
to modify systematically these exponents. This I do not
do here. Still fiuctuations make an even more significant
contribution to transport properties.

1 St I [2—(d/2)]
Z (4ir)"~ d —2

=l—

which yields a renormalized equation of state
1—2

(2.23b}

P(t) = —K E (2.25}

(2.24)
p~ t, EC

where t, =goK" . The arbitrariness of K generates the
RG flow through the P function, P(t)

B. Fluctuations, conductivity, and locahzation

The analysis of the role of fiuctuations above the transi-
tion is completely analogous to localization theory. 2 3 7'
Below g, the system is a semimetal and the conductivity
is zero. Above g, the bare (or microscopic) conductivity
does not vanish. However, in order to determine whether
the states near the Fermi surface are localized or not it is
necessary to construct the corresponding nonlinear o
model and, in particular, to determine its bare coupling
constant. By expanding around the solution of the SPE I
find

S(g)= f d"x tr(g)2 —trin[W+eA+(g)]
4gp

+ f d"x trg + —, f d x f d ytr[S(x,y)g(y)S(y, x)g(x)]+O(g )
4gp

(2.27)

with

Q ( )={Q )+Q„( ) . (2.28)

e &c I [2—(d/2)]
3m (4v }~~2

(2.33)

Hence, at N = oo, the correlation function of diffusive
modes'4

In three dimensions this is

e2 &c

~ 24M
(2.34)

K+ (p)=(g+ (p)Q +(p)) (2.29) while in two dimensions I get

has the small-momentum-transfer limit form

4trg o N (0)
Dp +e

where the bare diffusion constant D equals

1 {d—2)gp d —3

c~d —2

(2.30)

(2.31)

The bare (or microscopic) conductivity can be calculated
using the Einstein relation

2

o = N(0)D,
fg

which yields

e2 Ãc

& 126
(2.35)

This is a rather remarkable result. In two dimensions the
microscopic (or Boltzmann) conductivity appears to be a
universal number independent of the width of the distri-
bution. Of course fluctuations (i.e., higher orders in the
1/N, expansion) may still modify this essentially semi-
classical result.

The local density of states fluctuates over distances of
the order of 1/}u, the mean free path. These fluctuations
are described by the correlation function
(Q ++(x)g ++(y) ). In a metal such correlations are al-
ways short-ranged because the mean free path remains
small. In dirty degenerate semiconductors DOS correla-
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H = — f de tr[VU(x) VU(x) '] .
16u

(2.36}

The fields U(x) are just the matrices Q(x) constrained to
satisfy the SPE exactly (after rescaling them by the expec-
tation value p, ). The nonhnear o-model coupling constant
is (as N, ~~)

(4 )d/2 Id —2

32 I"[2(d/2)] N,

where in three dimensions (3D) I get uiD (3n/4N——, )l
and in two dimensions uiD ——(3n'/8N, ). Defining once
again a dimensionless coupling constant u 0

——uE
where K &(1/I}, one can write down the p function for
the unitary nonlinear tr model known from localization
theory' ' as

(2.37)

Buo Qp
3

P(uo) = —E = —« —2}uo+
BE 2r2 ' (2.38)

which is accurate to two loops.
In two dimensions this implies a relation between the

localization length g and the mean free path I

f&1exp( N, ) . (2.39)

Notice that the numerical proportionality constant can be
very large. A naive substitution N, - 1 in (2.39) yields a
ratio g/1-10 .

In three dimensions there is a localization transition. A
very poor estimate of its location can be found using the
unstable fixed point of (2.38) valid to leading order in
d —2. Therefore,

tions become long ranged at the semimetal-metal transi-

tion. Once the mean free path has become finite (and the
DOS nonzero) localization effects set in. Such fluctua-
tions take place on length scales longer than the mean free
path l. We know from localization theory that a system
with underlying unitary symmetries has a localization
transition in the universality class of the unitary nonlinear

o model. " This model describes the physics of fluctuat-

ing diffusive modes. Following Hikami, ' I write a com-
pact'z nonlinear o model with degrees of freedom U(x)
defined on the symmetric space U(2n)/U(n)XU(n) in

the replica n ~0 limit. The Hamiltonian is (e=O)

surely is a slowly varying function of the impurity densi-

ty. It is likely that at high disorder N,' should eventually

become less than one. There is no reliable way of coiilpllt-

ing these effects with the methods of this paper.
Nevertheless it is clear that for general N, a localization
transition of the standard noninteracting type follows the
semimetal-metal transition.

1(T}=E-'
K

(2.41)

where 5=d —1. In the pure-system limit (t =0) one

finds 1=1/n.T. In the entire semimetallic region I find
I-cT with a coefficient c, which is a function of im-

purity concentration (as T~O). At the transition a cross-
over from 1/T to 1/~T behavior should be observed.
Above the transition I should remain finite as T~0. The
singular behavior of Eq. (2.41) is universal (i.e., it does not
depend on the microscopic details of the system). The ac-
tual exponent 5 equals d —1 only in the large degeneracy
limit. There should be important corrections to this num-
ber for finite N, . These results will be published else-
where.

The temperature dependence of the bare conductivity
can be found by substituting the temperature-dependent
mean free path in Eq. (2.33). One can write this equation

ofstate in the scaling form
' 1/[4 —2) ' 1/P(d —2)

1 —mT— 0
~sc"-'1—

c

(2.42)

C. Finite-temperature behavior

It was shown in I that temperature formally plays the
role of a symmetry-breaking field. At finite temperature
the effective Lagrangian is still given by Eq. (2.1). How-

ever, e must now be replaced by the minimum Matsubara
frequency in a fermionic system, i.e., e =a T. We can now

find the temperature dependence of the mean free path I
and bare conductivity o by making the appropriate re-

placements in Eq. (2.24).
The solution to this equation yields the mean free path

as a function of the disorder t and temperature T. Thus
at the semimetal-metal transition (t =t„)one finds

' —1/5

uo =-[2tr (1—2)]'i +O((d —2) ),
where the condition that ratio

Qp

u o 4N, v'2(d —2)

(2.40)
where the exponent p equals lid —2 (at N, = 0e) and A

t&tc
t=tc
t&tc

be less than one implies that all states near the Fermi en-

ergy are extended if

N, ) +O(d —2) .3
4v'2(d —2)

Estimates of this sort are exceedingly unreliable in three
dimensions. Therefore, all one can tell is that there
should be a critical value N,

' above which all states near
the Fermi energy should be extended. This value N,*

FIG. 1. Qualitative temperature dependence of the bare con
ductivity below, at, and above the semimetal-metal transition.
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—T&0

FIG. 2. Bare conductivity as a function of disorder strength t
at zero and nonzero temperature. Localization effects are not

included.

FIG. 3. Qualitative behavior of the specific heat below, at,
and above the semimetal-metal transition.

is a numerical coefficient. At the semimetal-metal transi-
tion the bare conductivity behaves like

( t p) T(d —2)/s (2.43)

In three dimensions (and N, ~00) one finds o-v T
Below the transition a vanishes like T (in 3D}, whereas
above the transition it reaches the constant value given by
Eq. (2.33). Again localization effects should affect these
results appreciably. A qualitative picture of the tempera-
ture dependence of the bare conductivity (i.e., below the
localization transition} is shown in Fig. 1. In Fig. 2 we
see the bare conductivity as a function of impurity con-
centration at various temperatures.

Fluctuations also affect the specific-heat behavior at
low temperature. Above the transition the DOS is finite
and one readily finds a linear specific heat. Below the
transition the system behaves roughly like free relativistic
massless fermions with N(E)-E~ '. At the transition
one can solve the SPE at nonzero energy and one finds
that the DOS behaves like

III. CONCLUSIONS

In this paper I demonstrated that disordered degenerate
semiconductors should exhibit a rich variety of critical
behavior. Particularly striking are the anomalous tem-
perature dependence of the specific heat at the critical
concentration and the apparent universal character of the
bare conductivity in two dimensions.

There are several experimental systems already avail-
able to study the transition in three dimensions. In Ref. 1

I noted that HgTe, SnTe, and a-Sn at high pressure, as
well as alloys, could serve as typical systems. In this pa-
per I considered only the large degeneracy limit. The ac-
tual exponents at N, finite are expected to change
smoothly with N, . However, there is still the issue that
there may be values of N, for which the large N, results
may not apply, not even qualitatively. This can be
checked by means of a 2+e expansion which will be pub-
lished elsewhere. Preliminary results indicate that indeed
for low values of N, fiuctuations do appreciably modify
the results. Other effects such as spin-orbit scattering as
well as the role of interactions should also be included.

N(E)-E'". (2.44)
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