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A model that describes the qualitative properties of the electronic states of a disordered degen-

erate semiconductor with a finite number of degeneracy points is proposed. I introduce an effective
Hamiltonian of the form of a Dirac operator coupled to randomly distributed fields. It is shown

that there is a phase transition between the semimetal and metallic phases followed by a localization

transition. The symmetry breaking associated with this transition is related to the nonsymmorphic

character of the space group. The density of states plays the role of the order parameter and the

elastic mean free path is the correlation length. A path-integral representation is introduced and

used to characterize the universality class of this transition. The lower critical dimension is 2. A

mapping of the two-dimensional case to one-dimensional self-interacting Fermi systems is presented.

Applications to zero-gap semiconductors and other systems are discussed.

I. INTRODUCTION

This is the first of a series of papers in which I present
a study of the effects of disorder on the spectral and
transport properties of degenerate semiconductors. A
brief account of ideas and results was presented else-
where. '2 Degenerate (or zero-gap} semiconductors are
systems whose valence and conduction bands are degen-
erate at a finite number of points. ~ Examples are HgTe
(and other III-V systems) and SnTe (and other IV-VI sys-
tems} alloys, and thus systems with significant random-
ness, have also been studied, in particular CdsHg&, Te
and Pb„Sni „Te. The semimetal-semiconductor transi-
tion observed in these alloys is related to the problems
studied in this paper. Still other more "academic" exam-

ples exist like "two-dimensional graphite, " and two-
dimensional tight-binding systems in a magnetic field
with one-half of quantum of flux per plaquette (square
lattice). A possible physical realization of the latter
could be an array of tunneling junctions in a magnetic
field with one-half of the quantum of fiux per plaquette
(for regular lattices such magnetic fields are prohibitively
high}.

Disordered degenerate semiconductors have a number
of properties that make them different from other disor-
dered electronic systems. In a dirty metal, the average
density of states (DOS} is nonzero and is a smooth func-
tion of the impurity density. The elastic mean free path is
also a finite slowly varying function of the impurity den-

sity and typically very small, of the order of atomic spac-
ing. By contrast degenerate semiconductors are semimet-
als in their pure state. Since the bands are degenerate at
points, the energy-momentum curves are linear near de-
generacy points. As a result the DOS varies like e
(e=E Ea,s and d is the —dimension) and thus it is very
small. The elastic mean free path can be very large. In
typical systems the Fermi energy is exactly at the degen-
eracy energy Ea,s which I will set to zero hereafter. From
localization theory one expects localized states to occur at

band edges or generally where the DOS is small. ' A
naive argument would suggest that disorder might con-
tinuously draw states from energies where the DOS is
large to where it is small. The previous argument might
suggest that they are localized states. In this paper I give
arguments that indicate that in three dimensions these
systems are semimetals up to a critical impurity density at
which the DOS increases as a power law above the transi-
tion. The elastic mean free path is found to diverge at the
transition.

The origin of the semimetal-metal transition is a spon-
taneous breakdown of the (discrete) sublattice symmetries
these systems possess. Typically they contain more than
one atom in their unit cell and their associated space
groups are nonsymmorphic, i.e., the point group is not a
subgroup of the space group As a .result a translation
connecting two atoms inside the unit cell becomes a sym-
metry operation if combined with either a refiection or ro-
tation (i.e., screw axes and gliding planes). Such crystal-
line symmetries cannot survive in a dirty system. Howev-
er, I show that if the probability distribution of the im-
purities has a certain symmetry, ensemble-averaged quan-
tities may not break the sublattice syinmetries unless the
impurity concentration exceeds a critical value (in three
dimensions}.

It is also possible to present an alternative view of the
physics of these systems by regarding one of the directions
as imaginary time and performing analytic continuation
to "real time. " The result is a (d —1)-dimensional self-
interacting Fermi-field theory in Minkowski space. Much
is known about such theories in l + l dimensions, partic-
ularly about their spectrum. This suggests that a version
of the models presented in this paper should be exactly
solvable.

In this paper I present the models and their symmetries.
A detailed analysis of their critical properties is presented
in the following paper. In Sec. II the models are present-
ed. It is shown that this problem is equivalent to the
study of the spectral and transport properties of the Dirac
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operator. 'c In Sec. III symmetries and symmetry breaking
is discussed. In Sec. IV a path-integral representation of
the Green's functions is presented. I show that tempera-
ture plays the role of a symmetry-breaking field. I present
arguments that show that two is the lower critical dimen-
sion. In Sec. V the mapping to (d —1)-dimensional self-
interacting Fermi fields is presented. Conclusions and
possible experimental realizations are discussed in Sec. VI.

II. THE MODELS

%e are interested in developing an effective Hamiltoni-
an for states near the degeneracy points. I will assume
there are N, such points. Typical values are N, = 1 for
HgTe (degenerate at the I point)" if spin-dependent
scattering is neglected and N, =2 if spin scattering is in-
volved. For SnTe we have N, =4 (degenerate at the I.
points like other IV-VI systems)' and N, =8 if spin-
dependent scattering is included. I will not consider ef-
fects of spin-orbit scattering (although it may be impor-
tant). Electron-electron and electron-phonon interactions
are not included; their effect may not be important if the
coupling constants are weak. Of course they could (and in
many cases they do) trigger instabilities which would alter
the conclusions of this theory. A detailed model of the
pure systems was presented by Kane several years ago.
In this paper I keep only those states with momenta close
to the degeneracy points and energies close to the Fermi
energy which happens to lie exactly at the degeneracy en-

ergy Ed,s (which is set to zero). Two quantum numbers
are needed to label the states

~

aa ), where a=1,2 labels
conduction- and valence-band states (i.e., epO and @~0)
and a =1, . . . , N, labels the various degeneracy points. "
Momentum is measured relative to the respective degen-
eracy points. After appropriately shifting the momenta
and setting the energy scale so that the Fermi velocity
equals one, the pure-system effective Hamiltonian takes
the Dirac form

Ho ia V, —— (2.1)

where the 2)& 2 Dirac matrices are just the three Pauli ma-
trices (in three dimensions}. In two dimensions (i.e., su-
perlattices) I take o,, and a„ to equal cr and or. To make
the notation simpler the coordinates x; are labeled from 1

to d (the dimension). Thus we have a; =o;.
The effects of disorder are included simply by consider-

ing all possible scattering processes that may mix both
conduction and valence states and different degeneracy
points. A simple symmetry argument indicates that the
most general form the scattering potentials may take
yields a Hamiltonian of the form

H=ia V+o(x)+a an(x)+ao, (x)T, +a a, (x)T,
(2.2a}

in three dimensions, and

H =ia.V+a(x)+a ac+on, (x)T,

N, XE, matrices T„which are the generators of the
group SU(N, ). The interpretation of the various terms is
very simple. Consider, for instance, Eq. (2.2a). Scattering
processes in which states are not mixed are represented by
the (random) amplitude a(x). All terms that contain a
matrices indicate that conduction- and valence-band states
may be mixed awhile terms with T matrices may mix
states of different degeneracy points. A model of this sort
can be derived from a tight-binding model as in the exam-
ple of Fisher and Fradkin.

The Hamiltonians of Eqs. (2.2a) and (2.2b) were derived
under the assumption that the lattice disorder has a
white-noise character for the entire range of Fourier com-
ponents. However, if the disorder is only appreciably ran-
dom on scales larger than typical separations between
atoms of two different sublattices, it will not induce
scattering matrix elements connecting different degenera-
cy points. In that case, terms including T matrices should
not be included. I show in the following paper that this
affects significantly the nature of the phase transition in
two dimensions. Thus as the coherence length of the ran-
dom potential is varied, a crossover between N, =1 and
N, +1 behavior should be observed.

The problem thus reduces to finding the spectral prop-
erties of the Dirac operator in the presence of random
fields. The random fields represent the influence of the
randomly distributed impurities or, in tight-binding pic-
ture, random site and bond potentials. They are assumed
to be independently distributed unbiased (i.e., zero mean)
Gaussian variables (i.e., white noise). For the sake of sim-
plicity I will initially assume that they all have the same
variance. However, this is by no means necessary. As a
matter of fact this choice is not invariant under the renor-
malization group (RG) and some of the widths (or vari-
ances) grow (or decrease) under the RG flow. I argue
below that non-Gaussian probability distributions, which
differ in the higher moments, do not affect the critical
properties (at least near two dimensions) since they contri-
bute only to, irrelevant operators. Thus non-Gaussian
pieces of the distribution will affect the exact value of the
critical impurity density but not the exponents. It should
be stressed that corrections to the linear terms in the
dispersion curves will produce a similar effect. This is
why a precise prediction of the critical impurity density
requires a careful numerical calculation that would be
strongly affected by the microscopic details of the band
structure. The Hamiltonians of Eqs. (2.2a) and (2.2b) are
Hermitian but generally cannot be made real symmetric.
The underlying lattice Harniltonians thus contain scatter-
ing amplitudes that are complex (or involve spin) and
hence violate (locally) time-reversal invariance. The result
is that these Hamiltonians are invariant under unitary
SU(X, ) transformations. If only real scattering ampli-
tudes are allowed the resulting Harniltonian can be made
real symmetric and the symmetries are orthogonal
[O(2N, ) on this case]. If spin-orbit scattering is included
the symmetry is expected to be simplectic. '

+a, (x).aT, +b(x)P+b, (x)PT, (2.2b) III. SYMMETRIES AND SYMMETRY BREAKING

in two dimensions. Here P=cri (this choice is arbitrary).
In Eqs. (2.2a} and (2.2b} I introduced the set of X, —1

The Hamiltonians, Eqs. (2.2a) and (2.2b) have a number
of symmetries which can be regarded as coarse-grained
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versions of the underlying lattice symmetries. It was

mentioned before that it is characteristic of these systems
that their space groups are nonsymmorphic. Thus a
translation connecting two sites of the same unit cell be-

comes a symmetry operation if combined with a rotation
or a reflection depending on the case. The point here is
that the pure-system Hamiltonian is add under such sym-
metry operations if it is symmetric under particle-hole
symmetry. If it is not exactly invariant under a particle-
hole transformation, this is only an approximate symme-
try of the vicinity of the degeneracy points. The operators
that break symmetry can be shown to be irrelevant in the
RG sense since they contain higher powers of the gradient
operator. '5 Such irrelevant operators can affect the phys-
ics away from the transition but their effect switches off
very rapidly as the transition is approached.

Consider first the two-dimensional case. It can be
shown by carefully deriving the Hamiltonian from a
tight-binding model that the relevant symmetry operation
involves multiplying the states by one of the Pauli ma-
trices, say p, so that states associated with different sub-
lattice sites (or bands) transform differently. '5 For exam-

ple let

a'a' = aa (3.1)

at all points of space. The Hamiltonian in the new basis
18

H'[a, ap, ap„a„b,b, ]

IV. PATH-INTEGRAL AND LOWER
CRITICAL DIMENSION

We are interested in calculating the ensemble-averaged
Green's functions of this problem. The (unaveraged) one-
particle Green's function (or resolvent) at energy E is

Gx(xaa ~x'a'a')=Ixaa
H —E+ie

x'a'a', 4.1

where E&0 (and small). It turns out to be more con-
A, A

venient to work with the anti-Hermitian operator &=iH,
so that

decays], which is just the elastic mean free path.
In three dimensions and analogous argument can be

made. The only difference is that there is no analog of
the matrix p. Thus one uses any of the a matrices (say

a5) and repeats the same argument. The caveat here is

that this is not a symmetry of H unless it is followed by a
reflection in the same coordinate x5~ —x5). Hence in

three dimensions parity operations are intrinsically neces-
sary.

A similar phenomenon is known to exist in quantum-
field theory. In that framework the symmetry operations
described above are related to chiral symmetry and its
breakdown. R(',gently this has been the subject of inten-
sive investigations. ' This analogy will be used in Sec. IV.

=PHP= H[ —a,ap—, —ap„a„b,—b, ] . —(3.2)

The trace of the one-particle Green's function is

Gx(xaa lx'e'a')=i(xaa
&—lE —6

x'a'a') . (4.2)

1
trGE(x, x )fs —g aax

a, u Hfg —E
a

ax�'),

(3.3)
Thus

Np(E, x)=+—Im trGE(x, x)
1

where f denotes the random fields associated with opera-
tors even under p and g with operators odd under p,
transforms like

trGE(x, x')f g
=—trG E(x,x') (3 4)

(trGE(x, x))=—(trG E(x,x)), (3.5)

unless the symmetry is spontaneously broken. In particu-
lar, Eq. (3.5) implies that the DOS at the Fermi energy

Xp(0) =—Im( trGE ()(x,x) )
1

(3.6)

must be zero if the symmetry is not broken. It is also ab-
solutely clear that if the system is sufficiently disordered
it cannot keep track of the different sublattices and thus
the symmetry cannot be respected.

From this argument we see that the DOS at zero energy
plays the role of the order parameter of this transition.
The correlation length is the distance over which fluctua-
tions of the density of states are correlated. In the sequel
I will show that the distance is proportional to the phase-
coherence length [i.e., the distance over which (GE(x,x') )

If I now assume that the probability distribution of the
random fields f is even under f-+ f (i.e., has zero—mean)
then the ensemble-averaged Green's function obeys

GE(xaa
~

x'a'a') =i (g (x)l(, (x') )

X ~g X e

J &/&pe
(4.4)

with the action S=Jd xW and the Lagrangian W in

two dimensions is

W =3'&p egg ia pp i—ga ap—i pa p—GT, Q. —

~eby50 ~ PbT r54 (4.5)

In Eq. (4.5) I have introduced the two-dimensional Eu-
clidean y matrices with the properties'

1 1=—Re+ xaa x'ea) . (4.3)
a,a S' —iE—e

Since 4 is a Dirac operator it is natural to represent the
Green's function [Eq. (4.3)] in terms of fermionic (i.e.,
Grassmann) variables. Let us introduce a set of Grass-
man (anticommuting) variables' f~(x), P~(x) at every
point of space. The path-integral representation of the
unaveraged Green's function is
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pi=ex /=1, 2,
g5

I7' rj]=25)
IX rs]=0

(4.51)

(4.5c)

(4.M)

a=Y;a

(4.5e)

(4.5fl

Repeated indices are summed and all indices in the f
fields and the space delsendence of the random fields has
been omitted to simplify the notation. In three dimen-
sions there is an analogous Lagrangian except that i runs
from one to three and there is no ys [since there is no P in
Eq. (2.2a)]. Thus the zero-temperature Green's functions
have a simple representation in terms of averages of
Grassman fields.

At a finite temperature T (measured in energy units)
the Green's functions must be calculated using the Matsu-
bara formalism. ' The net result is that at finite tempera-
ture in a Fermionie system the e term in Eq. (4.1) must be
replaced by the minimum Matsubara frequency
tp„=sr T(ktt 1). Th——e same modification carries through
to the Lagrangian Eq. (4.5) as well as to the one to be de-
rived below. Thus temperature breaks the symmetry ex-
plicitly and one expects that, at finite temperature, the
transition will be smeared and that the mean free path and
the conductivity will be finite. In particular, the unaver-
aged DOS is

Np(0, x)=

(4.9a)

Kpp(x, y)=(g+(x}f (x)i)(I (yH/i+(y)}, (4.9b)

KJ(x,y)=+(((t) (x)y g (x)|T (y)y, g (y)},
and analogous formulas.

The effective Lagrangian used to compute these expec-
tation values after averaging over equally distributed
quenched random fields, is

egAQ—

(4.9c)

+, [(A»'+(0r;4}'+(Arse}'

+(itT.it}'+(fr sT.4}'+(Pr T.0}']

under the ys symmetry urithout having to flip the signs of
some of the potentials, a single set of Grassmann variables
suffices. In this case the ys symmetry is continuous.
This is generally not the case in all the problems that are
considered in this paper.

To compute ensemble-averaged quantities it is neces-
sary to use the replica trick. This requires us to introduce
n sets of Grassman variables and to set n ~0 at the end
of the calculation. Thus the Fermi fields carry a number
of indices. P~, (x}, where a and a were explained before,
r =1, . . . , 2n and the first n indices are denoted with +
and the last n indices with —,depending on whether one
is considering advanced or retarded functions. Hence the
averaged quantities are (setting E =0)

%5 KPf

Xp(E,x )=—Im trGE(x, x)=—Re(|T(x)1l((x)}1 1

(4.6)

in two dimensions, and

efAP+ +[(—A }'+(4}'0}'
2

It will also be of interest to calculate current-current
correlation functions to study transport properties. Since
the scattering is elastic (the random fields are time in-
dependent) the energy of each individual particle is
separately conserved. Hence the retarded current-current
correlation functions

G»(x,y) = i e(xp,yp)(0—
~
[J&(x),J„(y)]

~
0) (4.7)

can be obtained from the retarded two-particle kernel with
fixed energies. In two dimension the components of this
kernel are

+(PT,P)'+(Py; T,g}2] (4.101)

1 0
A ~ 0 Pl'

(4.11)

which distinguishes advanced and retarded fields. A sim-

ple algebraic manipulation (Fierz transformation) reduces
both (4.10a} to (4.101}to the final form

in three dimensions. In Eqs. (4.10a) and (4.10b} I have
used the matrix

(4.8a)

1I'I,, ( y)= —trx(x y,. y y
&—e

1 y. ~, (4.8b
+6

1 1
IIrrt(x, y)= —tr(x „y y „x),4' —e GP+e

ePAP &.g 4:4—4:0:—
after repeated use of the identity

N2 —1

T; T "=N,5~5b, 5,b5,e—

(4.12)

(4.13)

1
IC, t(xy) —tr(x 2, =

4—e
Xi 3' 3' y~ x, 4.8c

and similar formulas in three dimensions. To generate
these Green*s functions it is generally necessary to intro-
duce two sets of Grassmann variables, one associated with
+e, the other with —e. However if & happens to be odd

and a similar identity for Pauli matrices.
The upshot of this long discussion is that Lagrangian

(4.12) will generate the average Green's functions of dirty
degenerate semiconductors. It is natural to ask how gen-
eral it is and if there are any corrections to it. Firstly, this
Lagrangian follows from Eqs. (4.10a) and (4.101) because
I assuxned that all scattering amplitudes have the same
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V. RELATION TO (1 + 1)-DIMENSIONAL
NONLINEAR FERMI-FIELD THEORIES

The Lagrangians (4.10a) and (4.10b) are the Euclidean
version of self-interacting Fermi-field theories in d-
dimensional Minkowski space. In two dimensions an
(anti-} Wick rotation

X2~mP s

X)~X)
(5.1)

yields the (1 + 1)-dimensional (Minkowski space) La-
grangian

w=i gQg efAQ+g&, f',+—p'„.p,', (5.2)

with

F2~70 ~

3 1~+~71 ~

I }';,rJ I =»J I }„,) .I =2g„. ,

in the Bjorken-Drell convention for g„„.

(5.3)

distribution. Although this is natural, it is not general.
The most general Lagrangian thus looks like Eq. (4.10a)
or (4.10b) but with all quartic coefficients being different.
In a separate publication (in preparation), I will show that
Eq. (4.12) is not invariant under renormalization-group
transformations and that, to leading order, an asymmetry
term proportional to (Pf) is generated. Secondly, there
is the issue of non-Gaussian distributions. Such non-
Gaussian terms differ from a white-noise distribution only
in their higher moments. Hence they generate operators
with more than four fermion operators. I will show now
that, near two dimensions, they are irrelevant operators (in
an RG sense) and thus do not change the nature of the
singularities. Let us first show that two is the lower criti-
cal dimension for this transition. By dimensional analysis
we know that [g]=1. ' "~,where L is a length. Thus
e scales like L ' and g scales like L" . A higher-order
moment A,„, say the coefficient of 2n-fermion operator,
scales like A,„-L'" " ". In two dimensions A,2

—=g is di-
mensionless and all operators of dimensions greater than
two scale to zero at long distances. Thus all operators
with n &2 are irrelevant. Therefore, up to anisotropies,
Lagrangians (4.10a), (4.10b), or (4.12) are the most general
renormalizable-field theory that one can write compatible
with the symmetries of the problem.

Above two dimensions, g is also irrelevant. This means
that the pure-system fixed point must be stable and so
must be the semimetallic phase. Below two dimensions g
is strongly relevant and hence the semimetallic phase is al-
ways unstable: disorder always dominates. Two dimen-
sions is thus the marginal case. Therefore, due to quan-
tum fiuctuations, disorder always dominates even in two
dimensions but this requires more than dimensional
analysis. This will be discussed in the following paper.

The Lagrangian of Eq. (5.2} has the "wrong" sign for
the coupling constant g. ' Thus, for replica number n

bigger than some n, one expects the effective coupling to
fiow to zero at long distances. However in the replica
limit n~O, the theery recovers its asymptotic freedom
and the effective coupling grows in the infrared. Hence
the replica limit (i.e., quenching} and the "wrong" sign of
the coupling g conspire to produce nontrivial behavior at
low energies. There are many exactly solvable self-
interacting Fermi theories in 1+ 1 dimensions. 20 This
theory appears to be close to the non-Abelian chiral Fermi
theories studied by Polyakov and Wiegmann, 2' except that
the chiral symmetry here is discrete. It is instructive to
transcribe the operators of Six:. IU into this language.
The DOS becomes, in terms of time-ordered vacuum ex-
pectation values of the (1 + 1)-dimensional theory,

X(O,x)~—(0
~
P(x)g(x)

~
0} (5.4)

for e fixed (e~O). In addition, the mean free path be-
comes the inverse of the mass gap in the Fermi-field
theory. Expressions for the linear-response theory kernels
Eqs. (4.9b) and (4.9c) are easily translated into two-
particle Green's functions. Thus we learn that the locali-
zation length, which controls the decay of (4.9b} at long
distances, is the inverse of a two-particle gap in the +-
sector. For this to be true it is necessary that the replica
symmetry be spontaneously broken at n =0, otherwise
there would not even be diffusion as stressed by Wegner'
and McKane and Stone.

VI. CONCLUSIONS

In this paper I have presented a qualitative model of
disordered degenerate semiconductors. I have shown that
both spectral and transport properties of the system can
be studied in terms of an equivalent problem involving a
Euclidean theory of self-interacting Dirac fermions in the
replica limit. The relationship between the symmetries of
both theories is established. I showed that the semimetal-
metal transition can be viewed as a spontaneous break-
down of the underlying lattice symmetries and it is related
to the nonsymmorphic character of their space groups.
The average density of states at the Fermi level is shown
to play the role of the order parameter of this transition
and temperature is the symmetry breaking field. In the
following publication I present a detailed analysis of the
transition. I also discuss the relation with localization
theory important in the regime in which the DOS is
nonzero.

Throughout this paper I have ignored the effects of
electronic correlations and electron-phonon interactions.
They indeed may be important. In fact they are likely to
dominate the semimetal-semiconductor transitions ob-
served in the alloys Pb„Sn& „Teand Cd„Hg~ „Te. How-
ever if the electrons happens to interact weakly, usual in-
stabilities cannot occur. This will be discussed elsewhere.
Nevertheless, electron-electron interactions may still have
an important effect even far from instabilities as it is
known from localization theory. This deserves a
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separate study. From the experimental point of view
there are a good number of systems that should be
described by the model presented in this paper. Some de-
generate semiconductors like HgTe exist naturally at high
pressure. Cd~ „Hg„Te and Pb Sn~ „Te at the critical
density are also good candidates. Still superlattices could
be good candidates of two-dimensional systems. It would
be highly desirable to have materials of this type which
are superlattices of a monolayer in thickness.

Note added in proof. Recently B. Volkov and O. Pan-
kratov [JETP Lett. 42, 178 (1985)] have proposed a con-
tact junction of PbTe-SnTe as an example of a two-
dimensional zero-gap system.
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