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Theory of bulk and surface magnons in Heisenberg ferromagnetic superlattices
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We present a theoretical study of the bulk and surface magnons of a semi-infinite stack of two
different ferromagnetic films. Each film is modeled by a simple-cubic lattice of spins coupled via
nearest-neighbor exchange {Heisenberg ferromagnet). The superlattice has a larger periodicity in the
direction perpendicular to the slabs and therefore many magnon branches in the folded Brillouin
zone. In the gaps existing between these magnon branches appear the surface-localized magnons.
The simplicity of our model allows one to obtain in closed form the bulk and (001) surface Green's
functions for this magnetic superlattice. The analytic knowledge of these functions enables us to
study easily all the bulk and surface magnetic properties of a ferromagnetic superlattice. %e give
here the analytic expression we obtained for the folded bulk magnons and also the expression that
gives the surface-localized modes, which may appear within the extra gaps which exist between the
folded bulk bands. One figure for a specific case illustrates these results.

I. INTRODUCTION

An exciting development in materials science is the ap-
pearance of new samples of alternating thin layers of two
different materials, with the thickness and composition of
each element subject to precise control. The resulting en-
tity may possess new physical properties. Most particu-
larly, by means of a sputtering technique, one may
prepare specimens from two metals, each of which is
present as a layer with thickness from a few angstroms to
several hundred angstroms. '

In the recent literature such samples have been prepared
in which one of the two materials is a ferromagnetic metal
and the second is a nonmagnetic one. The nature of the
spin-wave spectrum of such a system was recently studied
theoretically ' and experimentally by light scatter-
ing. ' The theoretical study was done within the frame-
work of a description valid for modes whose eigenfunc-
tions vary slowly on the scale of the lattice constant. In
this approach the dominant contribution to the spin-wave
energy comes from dipolar and Zeeman energy, and ex-
change effects were ignored.

In the present work, we address ourselves to a different
system, namely, a superlattice made from two different
ferromagnetic materials. We study this material within
an atomic model, the Heisenberg model, including ex-
change effects between first-nearest neighbors and neglect-
ing dipolar and Zeeman energies. Of course, a more com-
plete study will also have to include these effects; but
here, for a first (to our knowledge) study of this type of a
ferromagnetic system, we use only the simplest Heisen-
berg model.

Let us note that the present model of a ferromagnetic
superlattice is, from a mathematical point of view, an easy
transposition of a model previously used for the study of

surface phonons in superlattices. " The superlattice under
study here is also built up from alternately L i and L2
(001) atomic planes of two different simple-cubic lattices
having the same lattice parameter ao and characterized by
their Heisenberg exchange interactions (J& and J2) be-
tween first-nearest-neighbor atoms. The alternating thin
layers are bound together by an exchange interaction Jbe-
tween the interface atoms. This simple model enables one
to obtain in closed form the bulk and (001) surface
Green's function for this superlattice. The analytic
knowledge of these functions enables us to study easily all
the bulk and surface magnetic properties of this superlat-
tice.

We will give here the analytic expressions we obtained
for the Green's functions, for the folded bulk magnon
dispersion curves, and also for the surface-localized
modes, which may appear within the extra gaps that exist
between the folded bulk bands. These expressions enable
us to discuss easily the effect of the physical parameters
defined above. These surface magnons also depend on the
kind of layer (1 or 2) being near the (001) surface of the
superlattice.

In Sec. II we obtain the bulk magnetic Green's function
for the superlattice defined above. In Sec. III we give the
corresponding surface Grmn's function. In Secs. IV and
V these results are used for the calculation of the bulk and
surface magnons.

II. BULK MAGNETIC GREEN'S FUNCTION
FOR A SUPERLATTICE

We start from an infinite simple-cubic lattice described
by the Heisenberg Hamiltonian
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where we retain only the exchange interactions Ji between
the spins Si and Sp situated on nearest-neighbor atoms.
The linearized Holstein-Primakoff transformation enables
to rewrite this Hamiltonian in the following form:

(Hoi —ail) u=O, (3)

where u is a column vector having as many rows as we
have atoins in the crystal and representing the ensemble of
the operators bi.

The diagonalization of this Hamiltonian provides the
bulk magnon dispersion relation,

JIoi = ~—g Ji(bi bi'+bl'~I+bi bi+bi'bl')+«e,
1,1'

where bl and bl are the usual creation and anaihilation
operators and S the spin amplitude.

The equations of motion of the bi operators can be
written in the following matrix form:

The advantage of this model is that this film Green's

function Ui can be worked out in closed form, once the
corresponding surface Green's function is known. " The
mathematical procedure is very similar to the one used be-
fore for a similar vibrational model of surfaces' '3 and
slabs. ' We will therefore simply give the results here.

Taking advantage of the periodicity of the film in
directions parallel to the surfaces, we introduce a two-
dimensional position vector

X~~(l) =ao(liXi+i2X2), (8)

a two-dimensional wave vector parallel to the surfaces

k, X,+k,X

Ui(l, l', ro) = 2 g Ui(k~~, ro;li, 13)

co =4SiJi [3—cos(k iao) —cos(k2ao) —cos(k3ao)], (4) Xexp t ik~~ [X~~(l )—X~~(l')]I, (10)

where k is the propagation vector.
We now construct out of this lattice a film of L i layers

bounded by a pair of (001} free surfaces. Each (001)
atomic plane of this slab is labeled by

1 &l) &Li .

The equation of motion of the bi operators of this film
can be written as

where N2 is the number of atoms in a (001) plane.
The explicit expression of Ui(k~~co;l3, ii } was calculated

as a function of

gi ——3 —cos(k iao) —cos(kzao)—
4

(Hi —coI) u=O,

and a Green's function Ui can be defined as

(Hi —F01) Ui ——I .

I is a unit matrix with elements 5» .

(6) I

gi —(g'i —1)'~, gi)1
ti ——pi+i(1 —fi)', —1&pi &1

4+(Ci —1)'" 4 & —1

and 1s

(12)

]13-13 )+1
1 t1

Ui(kii, ai;ls, l3 ) =
2SJ) t2) —1

'3+'3 2L)
1 tJ t ] 13 13 + 1 —13+13 13 13 13+13 1+ 2 + 2 zL (ii +ri +ri +i& )2$Ji r2i —1 2SJi r2i

1

(13)

In the same manner we construct another film of L2
(001) layers. In order to distinguish these two films one
from the other, we will use an index «=1 or 2. The corre-
sponding Green's function Uz(k~~co;13, l3 ) can be obtained
from the above equations" '

by changing all indices 1 to
2. Let us also remark that for this «=2 film one has

I

this superlattice. Its elements can be worked out explicit-
ly in the same manner as for the corresponding vibration-
al model and are given as functions of the q„defined in
terms of the i of Eq. (12) by

t„=e ", v=1 or 2
1&13&1.2 . (14)

Let us now set this a =2 film in epitaxy with the sr= 1

film; we characterize this double film by another integer
n An infinite . repetition —ao &n &+ 00 of this double
film gives us our starting point for our model of a fer-
romagnetic superlattice. %e couple all these alternating
«=1 and «=2 films by exchange interactions J between
the interface atoms facing each other. This creates the in-
finite superlattice we will study. In the same manner as
for the slab [Eq. (7)] we define a Green's function D for

and a new variable t defined by

q —(q —1)', q&1
q+i(1 —g }', —l&g&l
g+(q —1)'~, g & —1

(16)
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r

2JiJz
tanh tanh sinh(q i L i )sinh(qzL z )J2 2 2

J) q)+2 tanh sinh(qiL i )
2 2

cosh[qz(Lz ——,
'

)] Jz qz cosh[q&(L &

——, )]
+2 tanh sinh(qzLz)

cosh qz/2) 2 2 cosh qi/2

Jz sinh[qi(L, —1)] qz+ tanh sinh(qzLz)+J) slnhq i 2

cosh[qi(L i
——,

'
)] cosh[qz(Lz ——, )]

+
cosh(qi/2) cosh(qz/2)

Ji sinh[qz(Lz —1)] qi
tanh sinh(q, L, )

Jz sinhq&

Let us give the explicit expressions of the elements D(k~~, co
~
n, ~, lz, n', a.', lz ) of the superlattice Green's function D.

The elements of D between different ~= 1 and v=2 films are

D(n, l, lz ,n', 2', 1z ) = z [Eiz(lz, lz )t '" " +ECiz(Li —ii+1,Lz —ii+1)t " " ' '],—1

where

(18)

cosh[qi(l3 z )] cosli[qz(Lz 13+—,
'

)] 1 cosh[q, (13 z )] sinh[qz(Lz I&)]
Kiz(lz, lz ) =

2JS cosh(qi /2) cosh(qz/2) 2JzS cosh(qi/2)
+

sinhq&

cosh[qz(Lz —I&+ —, )] sinh[qi(l& —1)]
+ 2JiS cosh(qz/2) sinhq ~

D(n, 2, lz, n', l, ls ) =D(n, l, lz', n', 2, 13) .

The elements of D between the same a films are

,
~

sinh[qi(lz —lz )] ~
I~ —~'I+~

D(n, l, lz, n', l, lz)= t " "', sgn[L, (n —n')+I& —lz]+ Eii( 3 13),
2J&S sinhq

& 2J(S

where

(20)

(21)

ECii(13pl3) —
z tcosh[qi(Li+lz —lz )]+cosh[qi(Li —lz+lz )]+2cosh[qi(Li —l3 13+1)]]

4 cosh (q i /2)

2J, cosh[qz(Lz ——,')] Ji sinh[qz(Lz —1)]
tanh sinh(qzL z ) +J2 cos qz z sin qz

Jz qz smh(qzLz)
+ . tanh . [cosh[q& (L i + lz —lz —1)]+cosh[q i (L

& +l3 13 1)]
2 sinhq &

J~ 2 sinhq
&

—2cosh[q, (L, —I, —I', +1)]j

+ sinh[qi(L, ——, )]cosh[q&(13 13 )]
2 ~ 1

cosh qi 2 cosh qz/2

—sinh cosh[q, (L, —Iz
—I z + 1)]2

r

2Jz qz 1slllll sinh(qzLz)+cosh[qz(Lz ——,)]
2

(22)

and D(n, 2,l , 'i 2n, 13 ) ca'n be obtained from D(n, l, lz ,n', l, lz ) by'interchanging in J„and L„all the indices a =1 and 2.
We now proceed to use these results for the calculation of the surface Green's functions of the ferromagnetic superlattice.
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III. SURFACE FERROMAGNETIC GREEN'S FUNCTION FOR A SUPERLA I l ICE

We will consider here two different cases, depending on the thickness of the last film near the free suIface.

A. Surface f»m with same width as corresponding bulk films

We create two free surfaIxs by equating to zero all interactions between atoms in the plane (n =0, a =2, 13—L2) and

atoms in the plane ( n =1,II=1, 13 ——1). We define a corresponding surface Green's function G. The Dyson relation be-

tween G and D enables us to find easily, "for n and n' & 1,

G(n, a, l3 ,n','a', 13}=D(n,x, l3,'n', n', 13}+ D(1,1, 1;n',a', 13)[D(nx,l3, 02, L2) —D(n, s, l3,'1, 1,1)],J
(23)

tA —j.$1—
t —1

(24)

cosh[q1(L I
——, )] e2

cosh[q2(L2 ——,
' )]+2 sinh sinh(q2L2)

cos q1 2 cosh q2 2

J2 sinh(q2/2) sinh[q1(L I
—1)]

+2 „sinh(q2L2) (25)

B. Surface film with width smaller than corresponAng bulk films

We create now two other free surfaces by equating to zero all interactions between atoms in the plane
(n =1,II=1, 13——lc &LI) and atoms in the plane (n =1,a= 1, 13 ——10+1).

As before, "one obtains the surface Green's function, which for n and n' & 1 and 13 and 13 & 10, is

2 J
G(n, Ir, l3;n', a'', 13 )=D(n, z, l3,n', II', 13 )+ [D(n, a, l3, 1, 1,10) D(n, ~, l3,'1,—1,10+1)]D(1,1,10+1;n',a', 13 ), (26)

~S1

where

sinh(q1/2} 2JIJ2 q2 2J
$1 »nh(q2L2)+

t 2
1 cosh2(q1—/2) J2

cosh[q2(L2 2 }] J1»nh[q2(L2 —1)1
+

cosh(q2j2) J2 sinhq2

X sinh cosh(qILI)+sinh[qI(LI —210——,)]
1

2 sinh I sinh[q1(L I
——,)]—sinh[q1(L I

—210 ——,)] I
1 1

slnhq1cosh q1 2 cosh q2 2

J 2
slfl11 slIlh(q2L2)+cosh[q2(L 2 ——)]2

r

sinh sinh(q2L2) sinh cosh[q1(L I
—1)]J) 2 2

—sinh[q1(L I —210——,)] (27)
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IV. SULK AND SURFACE MAGNONS
IN A SUPERLAT. -x ICE

The bulk magnons of our superlattice can be obtained
from the knowledge of the bulk Green's function [Eqs.
(18)—(22)]. Let us first recall that for the infinite simple-
cubic lattice described above, the bulk magnon dispersion
relation, Eq. (4), can be obtained from Eq. (11) and is

given by

gi
——cos(kiao), —m & kqao & +n . (28)

In the same mmmer, "for the infinite superlattice, we ob-
tain the bulk magnons from

We now proceed to use the results of Secs. II and III for
the determination of the bulk and surface magnons in a
superlattice.

—n ( ks(Li+Lz)ao (+m . (30)

Because of this larger periodicity in the direction xq, one
has a folding of the magnon dispersion curves in a re-
duced Brillouin zone specified by Eq. (30) and an opening
of new gapa between these folded dispersion curves (see
Fig. 1).

In the gaps, new surface magnons may appear; they can
be found from the new poles in the surface Green's func-
tions [Eqs. (23) and (26)] due to the creation of the free
surface.

In particular, in the case for which the surface film has
the same width as the corresponding bulk films, we
worked out explicitly the diagonal element of the surface
Green's function G on the surface plane and found

rl =cos[k&(L i +L2)ao], (29)
g cosh(qi /2)cosh(q2/2)

G(1,1,1;1,1,1)= (31)

where rl is given by Eq. (17); and because the periodicity
in the direction xi is now given by ( L, +L2)ao, one has where

4SJiJ2 qi q2
D(a)) = sinh sinh sinh(qiL i )sinh(q2L2)

92 1 ~ 1+2SJzslnh cosh[qi (L i ——, )]sinh(qzL2 )+2SJi sinh sinh(q, L i )cosh[q2(Lz ——)]
2 2 2 (32)

From the poles of this Green's function, we find the
frequencies co, of the surface modes localized at the free
surface (n =1,~=1, li ——1) and decaying inside the bulk
situated at n and li & 1. They are given by

together with the condition

J2 sinh(q2Lz )tanh(qz/2) )1,Ji sinh(q, L i )tanh(q i /2)
D(co, ) =0,

Ak

4S J)

4

(33)
which ensures that these modes decay inside the bulk. "

In Fig. 1 we present the results for the bulk and surface
magnons of a superlattice with two atomic planes in each
film ( L i L2 ——2) in ——functions of the parameter
S =2—cos(k iao) —cos(k2ao). We assume Ji ——2J2 or
Ji ——J2/2. The exchange at the interface is assumed to be
J=(Ji+Jz)/2. The film labeled by the index ~=1 is at
the surface. The shaded areas represent the bulk magnons
(four here for each value of k~~). The Xi,Ni' surface
magnons (solid line) refer to Ji ——2Jz, the Nz, Nz' surface
magnons (dashed line) to Ji ——J2/2.

V. DISCUSSION

I

3

FIG. 1. Bulk (shaded areas) and surface (solid and dashed
lines) magnons of a superlattice with two atomic planes in each
film in function of S =2—cos(klao) —cos(kzao). The film la-
beled by the index x=1 is at the surface. The XI,X~' surface
magnons are obtained for J~ ——2' and the Xq, Xq' surface mag-
nons for J~ ——J2/2.

In this paper we obtained for the first time surface and
bulk magnons on a simple three-dimensional atomic
Heisenberg model of a ferromagnetic superlattice. The
simplicity of this model enables us to derive in closed
form the bulk and surface magnetic Green's functions for
a superlattice. From the poles of these Green's functions
we obtained analytic expressions for the bulk and surface
magnons of a superlattice. The surface magnons obtained
here are a new feature of the superlattice, as this model
has neither surface nor interface magnons' localized on
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each of the two materials. One has to take into account
the exchange between second-nearest neighbors, if one
wants to study the superlattice effect on these surface and
interface magnons. This theory will also have to be
completed in the future to take into account the dipolar
and ZCXRIlgIl CIlcfg1CS.
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