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Derivation of exact results for the single-ion Kondo problem
with the use of diagrammatic methods
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It is shown that exact results for the single-impurity Kondo problem can be obtained by diagram-
matic methods. The results for the susceptibility and specific heat agree with those obtained by
Wilson's numerical methods. In particular, the crossover W'= (m /e }'~and Wilson 8 =2 ratios are
reproduced exactly. Conduction-electron scattering from the impurity reaches the unitarity limit
corresponding to a phase shift 5=~j2. Both this and the compensation of the impurity spin are
also exact results. The methods described are relatively easily extended to the Anderson model and
the corresponding lattice problems.

I. INTRODUCTION

Probably because of recent work on the intermediate-
valence systems and heavy-fermion superconductors there
has been a considerable reawakening of interest in the
Kondo problem, particularly in the lattice versions of
both the s-d exchange and Anderson Hamiltonians. At
the level of the single-impurity problem there exists the
exact solution by Wilson, ' the details of which confirmed
by and large the solution "in principle" obtained earlier by
Anderson and co-workers. 2 However, both this and the
recent Bethe-atisatz methods are of little help for the lat-
tice problems either because of the computational difficul-
ties or, in the case of the Bethe methods, their intrinsic
nature. Diagram methods, once condemned as "wilder-
ness methods, " have again become popular. Such
methods, if they could be made tractable, have the advan-
tage of being easily generalized to the lattice problems.
Some progress has recently been made in this direction.
However, it still setnns to remain the opinion of most
workers that the crossover from the weak- to strong-
coupling limits of the problem cannot be described by
these methods.

The purpose of this paper is to describe in detail dia-
gram methods which yield exact results'3 for the single-
impurity Kondo problem. In particular, the method
reproduces the value W'=(sr/e)'~ for the ratio of the
high-field, weak-coupling scale temperature Ttt to low-
Geld, strong-coupling scale To. The precise definitions
are given in later sections. Also given exactly is
& =(bX/7)/(4C„ /C, ) =2, the Wilson ratio of the
change in the susceptibility to that in the specific heat,
both normalized to the free-electron values.

As has been emphasized in connection with the Ander-
son model, these results cannot be obtained without ex-
plicitly considering cnain vertex corrections. The high
degeneracy limit has been suggesteds as a way of avoiding
such corrections. Methods which also use the author' s
Abrikosov method for the Anderson model are an alter-
native. These methods permit the systematic evaluation
of vertex corrections. It was possible to show for the
U=O limit of this model that the vertex corrections and

dg —2g'(1+g)+ . .
dg

(1.1a)

self-energies beyond fourth order cancel exactly, permit-
ting the solution of this admittedly trivial limit. 7 The
method, however, has quite general applicability. It does
not directly involve Ward identities, but rather, treats the
single-particle self-energies, i.e., those associated with the
individual propagators, on the same footing as the vertex
corrections. Both contribute to what can, in a real sense,
be called two-particle self-energies. These methods were
evolved from Holstein's work~ on transport in the
electron-phonon system and were first used by Barnes and
Zitkova-Wilcox in the derivation of spin transport equa-
tions for electron-spin resonance (ESR) in dilute magnetic
alloys over a decade ago. The equivalent of the vertex
corrections considered by Colemans are included in the
present work. Other important vertex corrections of the
general structure of those shown in Fig. 1(a) are also ac-
counted for. It can be shown that the totality of these
corrections, for an isotropic exchange, cancel either
against each other or against omitted dressings.

The approach involves the evaluation of a certain two-
particle self-energy X for the impurity transverse dynamic
susceptibility. In the weak-coupling limit, this is associat-
ed with the energy required to suddenly flip the impurity
spin. In the strong coupling it evolves into the energy
separation between the singlet ground state and an excited
(triplet) state of the impurity; it has a value —To and acts
as an infrared cutoff in the logarithmic integrals of the
theory. These integrals will be denoted I, and in the large
field limit I—in(H/D) as usual. Because the self-energy
acts as a cutoff, it follows that in the small field limit the
leading order (pJ)"I" '-pJ, regardless of the power n,
and that the next to leading order and, so on, are small by
increasing powers of }oJ. Thus in the scaling limit,
pJ~0,D~ oo with To a constant, only the self-
consistently evaluated parquet, or leading order, approxi-
mation is required.

The present approach differs from the well-accepted
methods of Abrikosov and Migdal. ' Their scaling equa-
tion in the present notation would be
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FIG. 1. (a) Overlapping bubble type of vertex correction. These are required in the next to leading logarithmic approximation. (b)

The renormalized 0(J) longitudinal vertex. Only this vertex will eventually be required. (c) This vertex correction which contains
transverse vertices within a longitudinal bubble is a dressing of a purely longitudinal diagram (d) This type of vertex correction of a
conduction-electron self-energy is included. The diagram conventions are described in Fig. 2 and the text,

where g is the renormalized, or effective, exchange
scattering strength near the Fermi surface, y = ln(e/D) is
the logarithmic integral, and the right-hand side is intend-
ed to be a power series in g. The coefficient of O(g ) is
also known. ' The quantity g is the "invariant charge" in
this formulation and is taken to be real. Integrating gives

—,
' (1/g+ lng+ ) = ln(s/T» ), (1.1b)

where again the ellipsis represents omitted terms.
However, as discussed at length by Tsvelick and Wieg-

man, the invariant charge is not unique. The choice
made in the present work corresponds to a scaling equa-
tion:

=2g'/(1 —g), (1.2a}

which when integrated gives exactly

—,
' (1/g+ lng ) = ln(Z/T» ) . (1.2b}

In this equation g, related to the true renormalized ex-
change matrix element, is complex and defined differently
(see below). Also, the cutoff which was the energy s has
been replaced by an effective such quantity:

&kn=ek~ tr(1—/trpN) arcta(nnpJ/4) .
0

(1.4)

The point to be made is that the spin-dependent phase
shift, or the effective scattering matrix element at the Fer-
mi surface, and therefore the impurity polarization, is not
directly proportional to the exchange interaction except in
the small exchange, or weak-coupling, limit. It is this
quantity which is chosen implicitly as the invariant
charge by Abrikosov and Migdal. In contrast, the contri-
bution the interaction makes to the energy required to
make a spin-flip transition of the impurity is simply

X= ,'(pJ }(gpttH),—

H = g ek nk +gpttHS, (J/—N)S,s, (R=O), (1.3)
k

where s, (R=O) denotes the z component of eonduction-
electron spin density at the origin and S, is associated
with the impurity. This is just the Kondo Hamiltonian
with the transverse parts of the interaction removed. The
exact conduction-electron energies corresponding to this
model can be obtained by standard potential scattering
methods. In particular it is straightforward to use phase
shift methods to obtain the following for the scattering
states with energies near to the Fermi surface:

where h is the Zeeman energy and X is the two-particle
self-energy discussed above. (In the body of the text T» is
replaced by E; the former is reserved for Wilson's defini-
tion of the Kondo temperature. }

Different choices for the "invariant charge" lead not
only to different scaling equations but also to different ex-
pansions for the various physical quantities. Their choice
might be thought of as "bad." It is suggested that the
present choice of the invariant charge plus the self-
consistent nature of the cutoff Z is the optimal one. Not
only does it lead to a simple scaling equation which can be
readily integrated, but also, and this is most important,
physical quantities like the susceptibility have easy to han-
dle expansions in terms of the invariant charge in both the
weak- and strong-coupling limits. It is perhaps worth em-
phasizing that all of the diagram structures explicitly con-
sidered by those authors are included here.

The physics involved in the choice of invariant charge
is perhaps best understood in terms of the simple spin-
dependent potential scattering Hamiltonian:

and is only linearly dependent upon J even in the strong-
coupling, i.e., large-J, limit. This result follows from the
examination of longitudinal diagrams, both self-energies
and vertex corrections. With (i) particle-hole symmetry
and (ii} the usual form of band cutoff, it ean be shown
that the sum of a given diagram and its particle-hole con-
jugate obtained by reversing the direction of the
conduction-electron lines has no linear term in H, i.e., it is
at most O(H ). Turning to the full Kondo problem, the
renormalized exchange is evidently directly related to the
derivative dX/dH but not to the effective exchange
scattering strength of conduction electrons which involves
the arctan of the exchange. In the present approach the
invariant charge g is essentially dX/dH, and one is led to
study self-consistent equations for X.

This philosophy of studying X is supported by the ob-
servation that the conduction electrons do not have a
self-energy in the Dysonian sense. It is necessary to turn
to the impurity propagators in order to look for a self-
consistent equation for the problem. However, as will be
shown, the self-energy of the single d electrons in the
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= —,[1/pJ (I++I )] ' pJ/2— —(1.6)

for the derivative of tl/e two-particle self-energy X. The
quantities I+= (s+X—-h )

' are logarithmic
0

integrals and h =(1+pJ/2)gpjtH.
A second differentiation of Eq. (1.6) yields the key re-

sult of the self-consistent parquet approximation. It is a
universal equation, i.e., one which contains neither the
coupling constant nor the band, ultraviolet cutoff:

(X—h )(d X/dh )+2(dX/dh ) =0, (1.7)

where again X is the self-energy and h the Zeeman energy
[the definition of both is modified to 0(J), see Sec. V].
While it might not appear so, this will be shown to be
equivalent to the scaling equations (1.2a).

The weak-coupling perturbation-theory results deter-
mine one of the two integration constants required to in-
tegrate Eq. (1.7}. This turns out to be the energy scale K

Abrikosov method" is not unique. In contrast, the two-
partiele self-energy X is unique.

For counting purposes, the skeleton diagrams in the
present approach are mapped onto those associated with
Eq. (1.3). The quantity X is evaluated by determining the
pole of the transverse dynamic susceptibility. It is shown
that the longitudinal diagrams generated by the above
Hamiltonian can be used as a skeleton set for the evalua-
tion of the diagrams for the full Kondo Hamiltonian. Re-
normalized diagrams are obtained by first inserting two
transverse vertices (denoted TT} for any longitudinal ver-
tex. Then the diagrams ean be further renormalized by
including the sequence TL T, TLLT, etc. The sum
L+TT+ TLT+ TLLT+ corresponds to the usual
leading logarithmic or parquet series. The last step [and
which would not occur for model (1.3)] is to dress the
skeletons, with their renormalized vertices, by including
the impurity self-energy. The result will be called the
self-consistent parquet approximation.

It seems to be widely appreciated that this type of pro-
cedure is complicated by the existence of vertex correc-
tions of the kind illustrated in Fig. 1(a). These LTLT ver-
tex corrections cancel exactly in the evaluation of X. This
can be shown in one of two ways. First, using the dia-
gram methods developed here these corrections can be ar-
ranged in canceling pairs. The second method is to use a
variant of the usual Abrikosov method" in which such di-
agrams simply do not exist. However, there still remains
a TTTT, i.e., 0(J~) purely transverse, vertex correction to
the transverse susceptibility, and the methods used to
evaluate X and put it on its energy shell generate some
new types of "overlapping" diagrams which are fully
equivalent to regular vertex corrections. These corrections
do not cancel quite so handily. However, as will be sho~n
in an appendix they do cancel, in calculation of X, in next
to leading logarithmic order for an isotropic exchange.
Thus the self-consistent parquet approximation is accu-
rate to next to leading order and, in view of the existence
of the infrared cutoff discussed above, this will lead to ex-
act results in the scaling limit.

The self-consistent parquet approximation results in an
expression of the form:

for the problem

E= '2—e' D
I
pJ/2

I

' exp(l/pJ) . (1.8)

It includes the famous
~
pJ

~

'~ factor which demon-
strates that the next to leading order is correctly account-
ed for. This integration constant carries the information
about the cutoff and coupling constant.

The other integration constant cannot be determined by
the weak-coupling limit, even in principle. It is deter-
mined by requiring that the solution in the strong-
coupling limit be explicitly invariant to time reversal.
The result is the following expression:

4mTO (em)'~——D
~
pJ

~

'~'exp(1/pJ), (1.9)

for the energy associated with the pole of the transverse
susceptibility and h =0. In turn this corresponds to the
exact separation between the very much renormalized
S,= ——,

'
and —,

' states of the impurity.
A quantity to be defined as the kink "self-energy" for

the single-particle S,=+—,
' d-electron propagators also

corresponds to exact energies. The expression for these
quantities cannot be connected to perturbation theory.
However, the strong-coupling limit can be uniquely con-
nected to the above result obtained from the two-particle
self-energy. One of the integration constants used to
make this connection is obtained by matching the differ-
ence in energy between the S,= ——,

' and —,
'

energies to
4ir To. The second is again obtained by time-reversal sym-
metry.

With a knowledge of the effective coupling constant the
quasiparticle energies can be calculated. From these is ob-
tained the density of states, the susceptibility, and the
specific heat. The result is

X =(gati)'/irTo (1.10)

in agreement with the result of Wilson. ' The specific
heat corresponds to a Wilson ratio R =2, and the energy
correction at the Fermi surface corresponds to a phase
shift 5=ir/2.

With use of these results for the quasiparticle energies,
it is then possible to construct the conduction-electron t
matrix and confirm that it reaches the unitarity value
1/in This also. gives an expression for the resistivity re-
laxation time.

To calculate conduction-electron properties, in general,
a part of the longitudinal series must be accounted for.
Because of this the conduction electron and other physical
quantities involve, again in general, an expansion in the
present effective interaction vertex defined as g. For the
weak-coupling limit this will yield the usual asymptotic
expansion. However, in the strong-coupling limit the re-
sult is simpler. The shift in the energies of the quasiparti-
cles is proportional to g. Exact results are recovered for
the specific heat and susceptibility via a calculation of the
density of states for the quasiparticles. Again all relevant
vertex corrections to the conduction-electron self-energies
such as those of the structure shown in Fig. 1(d) are in-
cluded, as needed.

In addition to the nonstandard Abrikosov representa-
tion and the techniques used to define two-particle self-
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energies, other unusual diagram methods are used. It is
desired that the quasiparticle energies be obtained directly
from the evaluation of the conduction-electron propaga-
tor. As discussed at length for example in the recent book
of Mahan, ' even for plain potential scattering it is usual-

ly not the case that the real part of the conduction-
electron self-energy (defined for many impurities after
Kohn and Luttinger' ) corresponds to the quasiparticle
energies. The standard method would be to calculate the
phase shift 5 from the r matrix and use the result that the
energy shift is 5/mpN, for a single impurity. Here it is
shown by way of example, for this same simple potential
scattering problem, that the quasiparticle energies can be
recovered directly, provided care is taken in treating the
infrared cutoff. For the potential scattering problem the
relevant infrared cutoff is 2D/N, 2D being the bandwidth
and N the number of electrons per band. This is the
separation between adjacent conduction-electron states.
Even for the single-impurity problem it is possible to de-
fine a quantity which plays the role of a "self-energy, "but
which will always be referred to in quotation marks to
distinguish it from the self-energy defined by Dyson's
equation. As noted above the latter does not exist for a
single impurity. In contrast to the potential scattering
problem, the Kondo problem is shown to have an intrinsic
infrared cutoff associated with the energy required to ex-
cite the impurity and which is of the order of the Kondo
temperature 4+TO. This greatly exceeds the conduction-
electron cutoff 2D/N and permits the single-impurity
"self-energy" to be more easily defined. This method is
used to obtain the quasiparticle energies. The results are
then combined with the conventional definition of the t
matrix to obtain a useful formula for the conduction-
electron propagator and from this the resistivity.

A second novel quantity is denoted as the kink "self-
energy. " A technique of repeated partial fraction expan-
sions is used to define these quantities which are used in
the systematic evaluation of an appropriate energy shell
for various Dysonian d-electron self-energies. This tech-
nique is particularly useful in the evaluation of the d-
electron occupation numbers. In essence the technique
converts the Feynman expansion into a Rayleigh-
Schrodinger perturbation series.

The Hamiltonian and the two versions of the Abrikosov
representation used in this work are introduced in Sec. II.
A discussion of the relevance of the infrared cutoff for the
problem of potential scattering is given in Sec. III. Also
in this s~tion is found the rational behind the definition
of kink "self-energies, " and described is the evaluation of
an 0(J ) vertex correction to an 0(J ) self-energy. In
Sec. IV the method of defining two-particle self-energies
is reviewed and illustrated. Section V describes the con-
struction of the self-consistent parquet approximation for
the two-particle self-energy. The relation of the results of
Sec. V to conventional scaling is discussed in Sec. VI.
The solution of the universal equation (1.7) is matched to
the relevant weak-coupling expansion in Sec. VII. The
precise definition of the integration constant E and its re-
lation to the high-field scale Tg is detailed. The strong-
coupling limit is the subject of Sec. VIII. The value of the
effective coupling constant g in this limit is determined,

The Hamiltonian studied in this work is essentially the
standard s-d exchange or Kondo Hamiltonian:

~= g &i,~nl, ~ (J/N) —Q ay~(S s+ —,
'

)~~aA, ~ . (2.1)
k, 0 k, k'crcr'

Here S refers to the spin of the impurity and s to that of
the conduction electrons. The index o denotes the
conduction-electron spin index. a~ and ni, are the de-
struction and number operators. A given impurity spin
operator 0 is replaced by a pseudofermion operator ac-
cording to

O~ ddt(s ~

0 (s')d, . (2.2)
J,S

Here the impurity spin ket
~
s) =

~

+ —,
'

) as s =+1 or g

and L. The unphysical pseudofermion states are projected
out by adding a term

Hi„——A,(d,d, +d,d, )

and taking the limit A, -moo. The pseudovacuum with no
"d" electrons never contributes to the expectation value of
any term in VA'ck s theorem since in the interaction a d-
destruction operator always lies to the right. The states
with a single up or down d electron correspond to the
equivalent impurity spin state. Expectation values involv-
ing these states contain a Boltzmann factor
f= exp( —PA. ), P= 1/ka T. States with more d fermions
are higher in energy by multiples of A, ; the corresponding
Boltzmann factors are powers off and these states do not
contribute. In well-known fashion, this results in there
being no linked cluster theorem and the usual result that
the partition function cancels against the vacuum polari-
zation diagrams when evaluating that a Green's function
is no longer valid. It is necessary to explicitly calculate
the partition function, at least in principle. In addition to
the usual prescription for this quantity there is a special,
simple rule associated with the Abrikosov projection tech-
nique (see Sec. IX).

It turns out that diagrams with n loops involve f", i.e.,
only one impurity loop occurs in any given diagram. This
will be referred to as "the single-loop rule. "

When applied to the Hamiltonian H, from Eq. (2.1), the
replacement formula, Eq. (2.2), is not unique. For exam-

(2.3)

this being equivalent to determining the second integra-
tion constant for Eq. (1.7). The occupation numbers for
the d electrons are calculated in Sec. IX. This involves
some further development of the kink methods introduced
in Sec. III. The impurity polarization is calculated from
these results and the total compensation of the impurity
moment is discussed. The quasiparticle energies are cal-
culated in Sec. X. From these the susceptibility and
specific heat are obtained. These determine the Wilson
ratio R. With use of the results for the quasienergies, the
usual t matrix can be uniquely determined and the resis-
tivity time calculated. Finally, Sec. XI contains a sum-
mary and conclusions along with a short discussion of the
applicability of the present methods to the single-impurity
Anderson model' and the lattice problems. An appendix
contains some of the details pertaining to the cancellation
of the omitted 0(J ) vertex corrections and dressings.

II. HAMILTONIAN AND FORMULATION
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pie, (2.1) can be written in terms of d electrons, by setting
either O=S s or O=P=(S s+ —'). The result, and cor-
responding diagram rules, are different. More specifically
the latter approach leads to an interaction of the form

(J—/W) g akim, (S s+ —,
'

) ~ ak d, , (2.4)

which involves the physically nonsensical replacement
—,
' ~—,

' (d,d, +d,d, ). The former replacement corre-
sponds to an interaction:

CT, CF;krak;$, $

gkg (S s) i .ski id i

1+ g 4eia&k
o,k, k'

(2.5)

with which the potential scattering term does not involve
d operators. From the point of view of diagram structure,
and for impurity quantities, the former method is simpler
and will be used for that purpose. Conduction-electron
quantities will be calculated with the standard method.
Clearly physical results cannot depend upon which of the
methods is used. The calculation citn be done with either
method; however, some summations are easier to do with
one method rather than the other.

The d-electron propagators are represented by the wavy
hnes shown in Fig. 2, while the conduction electrons cor-
respond to straight lines. The various vertices are also il-
lustrated in Fig. 2. The spin-flip or transverse vertices are
standard; however, with the interaction in the form of Eq.
(2.4), there is only the one longitudinal vertex involving
uniquely lines with the same value of the spin. The ma-
trix element for each such vertex, both longitudinal and
transverse, has a value of 1/2.

An important point which never seems to have surfaced
in the literature on this method is the fact that the d-
electron self-energy is not unique. The above two ways of
representing the potential scattering term properly illus-
trate the problem and its origin. Consider the O(J ) self-
energies shown in Fig. 3. In the absence of a field the in-
tegrals involved in both the transverse and longitudinal
contributions are the same; however, in the representation
of the interaction corresponding ta Eq. (2.5) the longitu-
dinal contribution has different matrix elements, and
despite the sum on the spin index is one-half the trans-
verse term In contr. ast, with Eq. (2A) the two contribu-

tions are equal under the same circumstances. The reason
is simple. Involved is the propagator (T,d, (r)d, (0)).
The destruction operator d„acting on a physical state,
not only destroys the single d electron but also destroys
the interaction; this because another destruction d opera-
tor always lies to the right in the interaction and cannot
act (with a finite result) on the d-electron vacuum. The
inverse argument applies for the reversed time ordering.
When the potential scattering is written in terms of d
operators, this results in the potential being "turned on"
or "off" at v=0, which in well-known fashion leads to an
infrared divergence and the extra self-energy contribution.
Clearly the d-electron self-energy cannot have any real
physical meaning. However, when summed over its exter-
nal frequency the d-electron propagator gives the occupa-
tion numbers. Since these do have physical meaning the
result must be unique. The calculation of these quantities
is described in Sec. IX.

III. DIAGRAM METHODS

A few unusual methods are used in the present diagram
development. In one form or another most of these have
appeared in the author's previous work. 6 9'~ This section
and the beginning of the next review these techniques in
the context af the present problem.

One innovation involves the systematic evaluation of
two-particle or higher-order prapagators using repeated
partial fraction expansions. This is to be found in the
next section. In this section the same type of systematic
expansion is used to develop a "kink" method for study-
ing single-particle propagators. Involved is the question
af the appropriate energy argument for a self-energy when
it is put on its "energy shell. "

A second topic is the role of vertex corrections. While,
as stated in the Introduction, there are no skeleton O(J )

vertex correctians to the important transverse self-energies
when the alternative Abrikosov method is used, there are
equivalent contributions generated by certain overlapping
and the kink self-energies. The evaluation of these is
identical to the evaluation of the vertex corrections with
the standard Abrikosov method. The evaluation of the
O(J ) vertex corrections to the O(J ) transverse self-
energy will be described at the end of this section. This
serves to illustrate the role of such terms both in connec-
tion with the particular diagram and in relation to the
other types of corrections which arise later in this paper.

FIG. 2. (a) %'avy lines represent the magnetic impurity propagator. The Abrikosov representation of the impurity sign operators is
used, see Sec. II. (b) Straight lines correspond to conduction-electron propagators. (c) illustrates the transverse vertex while (d) shows
that in a nonstandard Abrikosov representation the only longitudinal vertex involves propagators with the same spin. Both this and
the more standard representations wi11 be used. In the standard version of the Abrikosov representation the spin of the impurity and
conduction-electron propagator may differ.
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reader is familiar with the standard methods at this level.
Consider the simplest Hamiltonian possible:

H = g ektik+(u/N) g ckck' i
k k, k'

(3.1)

FIG. 3. (a) Transverse d-electron self-energy. The matrix

elements contribute a factor ( 2 ) . (b) The longitudinal contribu-

tion depends upon the type of Abrikosov representation used.
In the standard representation there is a spin sum to give a pre-

factor 2 times ( ~ ) = 8, while for the same contribution in the

nonstandard method there is no spin sum but the matrix ele-

ments are thric the size to give a factor ( 2 ) = 4, twice the size.

First, however, as an aside, the problem of plain poten-
tial scattering will be considered. The purpose is to focus
upon the different ways of treating the energy shift of the
quasiparticles. This problem is discussed at same length
in the recent boak by Mahan 2 it is assumed that the

where it is assumed that there is a constant density of
states p lying between ultraviolet cutoffs at +D, u is the
potential scattering strength and there is assumed to be
one electron per band. For a finite system of N states per
band there will also be an infrared cutaff 2D/N corre-
sponding to the separation between individual levels.

Rather than using the Kahn and Luttinger' method of
averaging over many impurities, here the single scattering
center problem will be considered. Repeated scattering
from the center can still be represented by diagrams of the
form shown in Fig. 4. However, such a diagram is pro-
portional (1/N) rather than the concentration c, and there
is no self-energy in the Dysonian sense. So much is stan-
dard and leads to the following for the conduction-
electron Green's function:

Gk(e+ts)=(e+is —ek) ' 1+(v/N) 1 (u/N) —g (e+is —ek )
' (a+is —ek }

k'
(3.2)

If the sum is converted into an integral,

(llN) g(sk e+is) —'
p J de'(s' —e —is) '=pIiir+ ln[(D —e)/(D+s)] I,

k'
(3.3)

provided of course the energy s lies within the band.
This Green's function equation defines a t matrix:

tk k (v/N)j[1——+(pu)im]

=e's(ulN) /[1+(pu) m ] (3A)

where the logarithmic term in Eq. (3.3), which is negligi-
ble for energies close to the Fermi surface, has been omit-
ted. The phase shift 5 is given by

5= tan '(p~) . (3.5)

This phase shift corresponds to an energy correction
bc=5/ptrN. When u~oo this gives the unitarity limit
5=m/2, t =1/Ninp, or he=D /N. All of this is again
standard.

It should be, and is, possible to obtain the phase shift
formula

be=5/mN=(l jmpN) tan '(pun)

without introducing the imaginary parts of the self-
energy, simply by taking the continuum limit in a dif-

1/u —(1/N) g (ek a+is) —'=0 .
k'

(3.6)

This is not difficult to do analytically, although the au-
thor has never seen the details reproduced in the litera-
ture. It is necessary ta explicitly perform the sum taking
account of the infrared cutoff. The sum is of the farm

N/2
S= g [(n' —n)+ —,

' +x]
n =-N/2

(3.7}

where it is intended that the correction x =phe„ from the
unitary, or large u limit, is to be evaluated, i.e.,

l

ferent way. If it is assumed that the infinitesimal
s ~ 2DlN, the infrared cutoff, then the imaginary parts of
the self-energies will be suppressed. However, it is not
correct that when this is done the real part of the "self-
energy" is given by the logarithmic term above; one must
be careful to account for the discrete nature of the sum in
Eq. (3.3). The more or less standard way to do this is to
find the exact poles of the t matrix, i.e., to solve for the
roots of

k k' k k' k" ek =(2D /N )(n+ —,
' )+ae„ /N,

where the unperturbed energy is ek =(D jm )k,
k =(2n/N)n with n lying in the interval N/2 to N/2. —
The sums can be evaluated in terms of g functions f(x ):

N —1

g (n +x ) ' =f(N+x ) f(x ) . —
FIG. 4. Diagrams which represent the repeated scattering of

conduction electron from a static potential. The result is
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S= lnI [N/2+ —', —(n x—)]/[N/2+ ,
' +—(n—x )]) EE„=(1/pit) tan '(1/peru) (3.11)

n—tan(nx ),
where the large N result P(N }—lnN and the identity

g( —,
' +x ) —P( —,

' —x }=m tan(ex }

(3.9) which agrees with Eq. (3.5).
The same arithmetic can be used to obtain an effective

"self-energy" o. directly. Now care must be taken to treat
separately the terms in the sum for which k'=k; in par-
ticular,

have bern used. The logarithmic term in the sum S is
simply ln[(D —e)/(D+s)]. If, consistent with Eq. (3.4),
this is ignored the expected equation for the roots is =pNS'+ (E,» E—+is } (3.12)

g(E» —E+ls } = g (E» —E+ls ) +(E» —E+lS )
k' k'(~k)

or

1/u —pn tan(harp EE„)=0, (3.10)
is the correct way to separate the suin when evaluating
G». Inserting the result into the expression for G» gives

G»(a+is)=(e+is —E») 'I 1+(u/N)[1 (u/N—)S (u/N—)(a+is —E») '1 '(a+is —E»)

= I a+ is —[E» +0'(E)] j (3.13)

On its energy shell the "self-energy" is given by

(3.15)

=(1/Np)[ —,
' +(1jir) tan '(1/pmu)],

which again is the exact answer, with band-edge effects
ignored. On the energy shell o(E=E» ) is smooth. In con-
trast, as a function of s it is highly singular with singular-
ities separated by 2D/N, the infrared cutoff.

(3.16)

a =(u/N)[1 —(u/N)$'] (3.14)

where

S'=$(e=«) —( —, +x }1

is again the sum with the k =k' term excluded. M before
the effects of the ultraviolet cutoff, i.e., band-edge effects,
are ignored by dropping the logarithmic term. Substitut-
ing for a and using the definition of x then gives

lr =( I/pN)( —,
' +p hs„)

There are two conclusions to be drawn from this simple
exainple. First, if the continuum limit is taken correctly,
it is possible to suppress the imaginary parts of the self-
energies and obtain directly the results usually calculated
via a phase shift analysis. Second, the infrared cutoff is
the energy scale upon which such a real o(e) is singular.

In connection with the present problem it is desirable to
exploit these observations. Because scattering involves ex-
citation of the impurity, for the Kondo problem it will be
found that the infrared cutoff is of the order of the Kon-
do energy 4irTo, and therefore, unlike for this example,
does not go to zero in the thermodynamic limit, N ~ 00.

The second subject to be covered in this section is the
systematic evaluation of the appropriate "energy shell"
using repeated partial fraction expansions. These will be
called kink methods.

The basic partial fraction expansion is, e.g.,

[« l(ton+—ohio)] [&a loin] ' —'=(e» —«' —lolo) I [« loin] ' ——[« l(n+—ohio)] 1 ~

This identity is correct and is used repeatedly in this paper. No difficulty arises when the results are continued to the
real axis (iolo~e+is ) except in connection with the presently discussed kink methods when both the complex frequen-
cies, oi„and co„+too, are the same. Then, on the real axis, one must use the identity

[E» —(E+is)] '[« —(E+is)]

=[(« E) '+i—n5(« E)][(—« E) '—+in(E» E)]-
=(« —e) '(e» —E) '+[(« —E) 'ln5(e» E)+(E» —E) —'iir(« —E)]—n 5(« —E)5(« —E)

=(« —«) '[(E» —E) '+im5(« —E)—(« —E) ' —in(« —E)]—~r 5(« —E)5(E» —E)

=(« —'») 'I[« —(a+is)] ' —[« —(E+»)] ] —ir'5(« —&)5(« —E). (3.17)

Vfhen a denominator does not contain "is"a principle part is implied.
However, it must be realized that the m 5(« —E)5(« —e) term is only present when both the variables «and «have

a continuous spectrum. This is the case, for this example, when the thermodynamic limit is taken in the usual way, i.e.,
when s &D/N, D being the bandwidth. In Sec. IX, where extensive use is made of these kink methods, the thermo-
dyn imic limit is in fact taken in the unconventional way with s (D/N and these terms do not arise.

In Sec. V, which uses the conventional thermodynamic limit, is is added to the first denominator in the last line of
(3.17). This does not alter anything:

[E» —(a+is)] [E»~ —(a+is)] =(E» —E» —ls) I[E» —(E+ls)] —[« —(E+ls)] I
—7T 5(E» —E)5(« —E), (3.18)



3216 S. E. BARNES 33

e, —[X(e,)+A+ oh /2] =0 . (3.19)

In general, the determination of e, involves the continua-
tion of X beyond the cut on the real axis. Clearly, putting
a self-energy on its energy shell effectively includes the
self-energy in the argument of the self-energy itself as a
part of the exact energy s, ; this rather than, say, giving
the self-energy the argument A, +oh/2, i.e., the unper-
turbed value for the energy shell for the d propagator.
The kink methods develop a systematic expansion for the
quantity X(s, ). If taken to infinite order these methods
would give this quantity exactly. The point of the exer-
cise is to develop a method which can be used to justify an
approximate expression for the same quantity.

Consider the d-electron propagator evaluated with just
the bare O(J ) transverse self-energy as implied by the
Dyson equation illustrated in Fig. 5. This self-energy cor-

since the coefficient of the extra 5 function is zero. The
choice (3.18) will result in the self-energies having their
expected imaginary parts. When this is done the term
n 5(sk —s)5(sk —e) is not involved in the definition of
the kink self-energy discussed here and in Sec. V. %%en
the remainder is required these extra terms arising from
the product of two or more 5 functions must be accounted
for separately. This will not occur in the present work.

The aim of the kink procedure as outlined in this sec-
tion is to give a regular self-energy an argument appropri-
ate to the "energy shell" of the relevant propagator. The
tix:hnique will be illustrated with a single d-electron prop-
agator, although an important application of the method,
found in Sec. V, is in relation to the impurity dynamic
susceptibility, a two-particle propagator within the present
method. The energy shell is defined as being the energy

e„ the solution of an equation of the form

responds to an expression of the form

( J/N) g nk (1 n—k)/[ice„—(A, —li /2+ek —ek )] .
k, k'

(3.20)

Notice that the projection energy A, appears in the denom-
inator and with this level of approximation the expression
corresponds to the sum of simple poles. The first step is
to make a partial fraction expansion between the self-
energy denominator and an undressed d-electron propaga-
tor, the two parts on the right-hand side connected by the
arrow labeled 1. The result is illustrated by the kinked di-
agrams shown in the first line of Fig. 6. The denominator
which is the result of the expansion and which no longer
contains the external frequency co„corresponds to taking
a cut though the vertical part of the diagram. For each
propagator with a horr'zontal part there is a corresponding
denominator which contains co„. Each partial fraction ex-
pansion removes one horizontal section of the diagram
but, at least, doubles the number of these new types of di-
agrams.

In this section only the kinked diagrams, such as those
to the extreme right of the top line in Fig. 6 which con-
tribute to the kink "self-energy, " will be considered. Ex-
plicitly the kink "self-energy" has a value

k, k'
(3.21)

This corresponds to the bare self-energy with a bare ener-

gy shell. Since only the d line can be dressed, because of
the single-loop rule, the exact regular self-energy is of the
form

/'

4k -—t

k

FIG. 5. Dyson s equation in which only a single 0 (J ) transverse self-energy has been included. The initial partial fraction expan-
sion used in the kink method is between the denominator of the self-energy and the first bare propagator in the development of the
full propagator. Compare the two lines on the right-hand side. In the second line the quantities connected by the arrow marked 1 are
the ones expanded. The same arrow in the first line is intended as a shorthand notation.
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FIG. 6. Top line shows the result, in diagrams terms, of the partial fraction expansion indicated by arrow 1 in Fig. 5. The denomi-

nator, the result of the expansion, does not contain the external frequency. The corresponding energy denominator is obtained by
making a horizontal cut through the vertical, or kinked, part of the diagram. Each such expansion, in essence, doubles the number of
contributions, although, as here more than double the number of diagrams are required to represent the various contributions. See the
text.

(J/N) g nk(1 nk)/(ice—„—[X,(ck —sk+icu„)+A, —h/2+ek —ek]],
k, k'

(3.22)

where X, is the exact, regular self-energy. Repeated partial fraction expansions generate terms which form a series to
give the result illustrated in Fig. 7 and which includes the up-spin self-energy X„with a specific argument, in the
denominator of the original up-spin self-energy to give a dressed kink self-energy:

g nk(1 nk')/[~g(&k ~k'+~/2) ~t(&k' &k h/2) ~+&A &k'] .
k, k'

(3.23)

FIG. 7. Illustrated is the dressed kink self-energy. Not only
is the d propagator in the interior of the original single-particle
self-energy dressed, in addition the antiparallel external line
which determines the argument of the self-energy is also
dressed. This latter dressing introduces a second self-energy in
the denominator of the self-energy itself. The kink method
thereby specifies an energy shell for the single-particle self-
energies, this including self-energy corrections to that energy
shell. The small horizontal portion at the top of the diagram is
included for clarity and does not correspond to a propagator.
Here, and in other diagrams, such parts will not have an arrow
attached.

With this partial fraction expansion technique the self-
energy again appears in the argument of the self-energy,
but now it involves the intermediate-state energy in a
manner which is equivalent to the way the self-energy,
which is the dressing of the internal down d line, contains
the same energy. This form is more useful for the present
development. The relation to the more standard prescrip-
tion Eq. (3.19) is discussed below and in connection with
the construction of the parquet approximation in Sec. V.
Other terms generated by this kink method are involved.
These are "overlapping" kink self-energies such as that il-
lustrated in Fig. 8 and come from higher-order terms in
the partial fraction expansion. Such terms are fully
equivalent to vertex corrections of the same order, and in
particular this diagram must, in principle, be accounted
for since it is of next to leading order. The fact that there
is a cancellation of such terms to that degree of approxi-
mation is important.

In Sec. V this technique will be used to deduce the ap-
propriate energy shell for what will be defined as a two-
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Extraneous factors have been omitted and there is an im-

plicit sum upon the k values. The vertex corrections in
the regular Abrikosov method are, to within the magnetic
field arguments and sign, of the same general form. (But
see below for a specific statement about such corrections. )

This contribution should be compared with the first term
generated by dressing the internal d propagator. This is
shown in Fig. 9(b) and has the value

FIG. 8. Double kinked self-energy. The three denominators

without an external frequency correspond to the three horizon-

tal lines. These overlapping contributions are equivalent to ver-

tex corrections. These wiH discussed in connection with other

overlapping two-particle self-energies to be defined later and ac-

tual vertex corrections.

particle self-energy. In Sec. IX the terms omitted in the
above will be evaluated in order to obtain the d-electron
occupation numbers. It will be seen that the omitted
terms involve the derivatives of the same kink self-

energies.
The last topic in this section is the evaluation of vertex

corrections. Consider the O(J ) diagram shown in Fig.
9(a). This can be viewed as a transverse vertex correction
to the O(J ) transverse self-energy. When placed upon
the energy shell (i.e., to this level of approximation, with
the external frequency coo ——h, the Zeeman energy) the
contribution turns out to be of the form

1 1

& —(&k —ek- ) ~ —[(ek ek')+ (&k" sk'")

X
1 (3.24)

h —(Ek —ek )

where N =J (1 nk )nk (1—nk-)nk- —is the numerator.

1 1

h —(ek —ek- ) h —[(ek —ek ) +(ek- —Ek ) —h ]

(3.25)

with the same conventions. Making a partial fraction ex-
pansion between the first two denominators in the vertex
correction gives one term which cancels this dressing and
leaves a net result:

1 1 1

(ek ~k') i (~k" sk'") ~ (ek ek')
(3.26)

This factors into two sets of independent sums and gives a
net contribution of the form:

g(2t)
(2t)

BK
(3.27)

which is just the first term in a Taylor expansion which
would give eventually Eq. (3.19).

The role of these overlapping bubble vertex corrections
should be clear from a comparison between (3.25), which
corresponds to the O(Ji) dressing of the O(J~) self-
energy, and (3.26), which is the sum of the vertex correc-
tion and the same dressed self-energy. The central
denominator in (3.25) corresponds to the self-energy
within the self-energy. Since it involves the energies ek

k4

k"t

FIG. 9. {a) Overlapping 0(J ) two-particle self-energy. The precise definition of these are given in Sec. IV. They are fully

equivalent to the usual 0(J ) vertex correction of the form illustrated in Fig. 1(a). However, with the nonstandard Abri«sov repre-
sentation used here such vertex corrections do not occur. (b} The overlapping term cancels, in part, against this dressing of the two-

particle self-energy. Again the definitions are given in the next section.
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and ek it is definitely not on the energy shell of the im-

purity propagator. However, when the vertex correction
is included the result (3.26) is of the same mathematical
form except now these energies no longer appear, i.e., the
sum of the dressing to the self-energy and the vertex
correction is the same as if the dressing alone were put on
the internal impurity line energy shell.

This is always the role of these important, i.e., next to
leading logarithmic, contributions which arise from 0(J )

vertex corrections and higher-order similar corrections
which are due to diagram ouerlap Th. ey replace the dress-
ing of the internal 1 propagator by it's value on the 1-
propagator energy shell.

However, for direct vertex corrections, such as those in

Fig. 1(a), this is not necessarily so. In particular, in Fig.
1(a) the two longitudinal vertices have different signs, and
as a result such a vertex correction would double rather
than cancel the similar fourth-order dressing while, in ad-
dition, making a contribution similar to, but the negative
of, Eq. (3.26). Also, it is reiterated that the cancellation
result is only valid for the relevant initial self-energies
placed on its energy shell.

This result, however, is useful in Sec. V and the Appen-
dix to show that, for an isotropic exchange (i.e., JS s) in-
teraction, the overlapping vertex corrections cancel. Oth-
er "regular" vertex corrections will be either shown to
cancel against each other or are accounted for with the
necessary precision.

IV. T%'0-PARTICLE SELF-ENERGIES

It is not usual (see, e.g., Ref. 12) to define a two-particle
self-energy, although the method used here appeared in
the literature over a decade ago. s A two-particle self-
energy is defined as a repeated inclusion in a two-particle
propagator which modifies the energy of the pole, or
poles, of that propagator. The definition presented here is
unique if a few minimum requirements are made of a
quantity which passes by that name,

Traditional methods for dealing with two-particle prop-
agators tend to treat vertex corrections in quite a different
way from single-particle self-energies, although it is
known they can sometimes be related via Ward identities.
Barnes and Zitkova-Wilcox have shown that, in fact,
they can be treated in a very similar fashion. The
methods can be thought of as being related to those asso-
ciated with Ward identities in that they relate vertex
corrections to self-energies. However, unlike Ward identi-
ties, they have quite general applicability and can be used
when %'ard identities cannot. Vertex corrections are re-
lated to quantities that have the appearance of a self-
energy, usually though there is no corresponding single-
particle self-energy. (In connection with Ward identities,
see in particular Ref. 12, which derives them without tak-
ing the limit ~~0 and which therefore, as do the present
methods, involve finite differences rather than derivatives
of the self-energies. )

It perhaps needs to be emphasized that the methods
used in this section deal with two-particle propagators,
i.e., with vertex functions, e.g. , Q(i co„,E (co„+coo) ),

'

summed over the internal frequency co„. As a result the
only frequency argument is icoo and the poles of the prop-
agator occur in the complex plane associated with this
variable. Thus although the single-particle self-energies
are functions of either ice„or i (co„+co 0), and vertex parts
are functions of both, the resulting two-particle self-

energy is a function of only the single variable icoo
Consider specifically the spin-spin correlation function.

This is obtained by evaluation of the two d-electron vertex
function Q(ice„,i(co„+coo)) shown in Fig. 10. With the
frequency labels shown in this figure, the correlation
function is given by performing a suin upon co„. (For
mathematical convenience, in what follows this sum will
be implied and repeatedly this dummy variable will be in-
terchanged with the other similar variables involved in the
summation over internal frequencies. ) To 0 (J ) this
transverse correlation function is

y (irido) =(gps) [(ne, ne—, )/(igloo i)i—] .

It has a pole at icoo=h The .idea behind defining a two-
particle self-energy is to look for repeatable inclusions for
the corresponding propagator which will modify the posi-
tion of this pole. Clearly, the single-particle self-energies
are such quantities. In addition are vertex corrections
such as those shown in Fig. 11. Vertex corrections are
more complicated because they have four rather than two
external lines, and therefore are a function of two frequen-
cies, i.e., the two frequencies of the external lines of the
vertex on the right-hand side of the diagram. Explicit ex-
pressions will be found below.

There are three important identities. First, when the
vertex corrections are omitted, and without using the con-
vention that there is a sum on co„, Dyson's equation can
be written in its two-particle form as follows:

FIG. 10. Vertex which gives the transverse susceptibility.
When summed over the external frequency co„ this will be re-
ferred to as a two-particle propagator.
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Q{ico„,i(N„+cop))=(iN0 —h) t 1 —[X,(i(N„+cop)) —Xl(iN„)]Q(iso„,i(N„+Np})], (4.1)

which is trivial to prove. Second, the vertex corrections can be accommodated in a similar identity when use is made of
the sum on co„. After relabeling the internal sums there is a two-particle equivalent of Dyson's equation ineliiding vertex

corrections:

Q(iso„,i(co„+Np))={IN0—h) 'I 1 [X—i{CNpi(N„+Np)) X—,(loop, lcm„)]Q(ice„,E(co„+Np)) J . (4.2}

Notice the quantities X in this expression now have two frequency arguments as stated earlier. A given vertex correction
can always be accommodated in this form after repeated partial fraction expansions.

Consider, by way of example, the 0(J ) bare vertex correction shown in Fig. 11. If, initially, the external lines are tak-

en to be also bare, this corresponds to an expression:

[l(N„+cop) (h/—2+&)] '[i(co„+cop co—+co") ( ——h/2+}j.}]

X [ico„( —h /2—+A)] '(,ico Ek,—) '[i (co„+co" co'„—) Ek—,] '(ico" Ek—-, ) 'Q{i (co'„+cop},i co„' } .

The first step is to partial fraction expand the two external impurity propagators which carry the frequencies co„+cop
and co„. The result is

(i cop h)— I [i(co„+Np)—(h/2+}I, )] ' —[iN„—( —h/2+A, )]

X [i(co, +cop —co+co")—( —h/2+A)] '(ico Ek, )—
X [i(NN +N" Ng )—Ek,]—'(i co" Ek-, )—'Q(i (cog +Np)yi N'g ) .

The frequency sums for the term involving propagator [i(co +cop) —(h/2+A, )] ' in the curly brackets are now easy to
perform with a result corresponding to Fig. 12(a):

(1—n k(}1 nk )— ~k
X(iN0 i(N. +Np))= (J/N)—' g

k, k', k" lN0 (Ek" Ek'+h } l(NN +Np) (Ek Ek'+~
(4.3a)

where the relevant prefactor has been included but the conduction-electron spin labels have been dropped for clarity.
The second term involving the propagator [ico„—( —h/2+A, )] is a Httle more difficult to evaluate. The easiest way

to proceed is to note, because of the Abrikosov projection, that only the poles of the conduction electrons contribute.
This enables the co and co" sums to be performed immediately. The result is

(iNp —h) ' g [ico„—( —h/2+A)] '[i(co,„+Np) —(Ek —Ek- —h/2+A, )]

X [l(co —co ') —(Ek' —Ek )] Q(l(co' +cop) ~
LN' )

where both the spin labels on the energies and the conduction-electron thermal factors have now been dropped. Now the
sum on co„can be performed:

(lN0 —h )
' y [iNg —(El,-—Ek —h/2+A )] '[l(Ng+cop) —{El,—Ek —h/2+}I)] 'Q(l(cog+cop)ilNg ) .

With a change of summation variable, co„+N„,and w—ith one more expansion this is of the form to fit in Eq. (4.2). With
this last expansion the result can be interpreted in terms of the diagrams of Figs. 12(b} and 12{c},i.e., dropping the pre-
factor of (i cop h) but ag—ain including the prefactor of the coupling constant, etc., and corresponding to Fig. 12(b) is

(1 nk )(1—nk-)—~k
X{icop, i (co„+cop)}= (J/N)—

lcop (Ek —Ek-) i{co—„+cop) (Ek —Ek +A, —h—/2)

while for Fig. 12(c}it is the expression

(1 nk)(1 n—k )—~k'
X(icop, iN„ )=—(J/X)

l cop (Ek —Ek ~ ) lN ——(Ek —Ek"+k}

(4.3b)

(4.3c)
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FIG. 11. Bare 0(J3) vertex correction to be evaluated. An
important result is that such vertex corrections to a two-particle
propagator are fully equivalent to a series of two-particle self-

energies corresponding to different time orderings of the ver-
tices. The three significant time orderings for this vertex correc-
tion are shown in the next figure.

The first energy denominator, e.g., corresponds to the in-
termediate state energy between the first and second ver-
tices.

The contributions to the quantities X in Eq. (4.3} are
not yet two-particle self-energies. These are defined after
the frequency sum upon co„has been performed.

This example contains all of the essential complications
I

to be found in higher-order vertex corrections, including
the dressed equivalent of this particular correction. It is
always possible, in principle, by the use of repeated partial
fraction expansions to reduce a given vertex correction to
the form required for Eq. (4.2). Of course with increasing
order it rapidly becomes prohibitive to actually do the de-
tailed calculations. That is why it is important that each
contribution is in one-to-one correspondence with some
time ordering of the interaction vertices. As will be dis-
cussed below, this permits the result to be written down
by rule of thumb.

As noted in connection with the Abrikosov method for
the Anderson model, the thermal factors are easy to
determine. Because of the Abrikosov projection, the only
thermal factors are associated with the conduction elec-
tron lines. The frequencies of these lines are labeled in
such a way that the frequency within each impurity line
involves sums rather than differences of these same fre-
quencies. The sign of the electron frequency label then
determines whether the factor is nk or 1 nk —From. this
the following rule is deduced: The end of a conduction-
electron line is its right-most vertex. If the end is on the
top line and the arrow is directed towards the vertex, the
thermal factor is 1 nk and—nk for the opposite direction.
For the bottom line the rule is reversed. Here the top im-
purity line runs without kinks from left to right, the bot-
tom line from right to left. Various diagrams up to
fourth order have been evaluated both for this and the
Anderson model6 to confirm this rule. Notice that, for
example, the three different time orderings of the vertex
correction shown in Fig. 12 all have the same thermal
factors.

The third identity is obtained by performing the fre-
quency sum on co„, which involves the product of the ver-
tex function Q and a self-energy X. The resulting general
rule is again best illustrated by example. Corresponding
to the second time ordering of the vertex correction, i.e.,
Fig. 12(b), we have

X{i(co„+cop) )Q(i (co„+cop), l co„)=X( —Ii /2+ A, + icop) Q{i(co„+coo),ico„)— (i

cop�}

+X (l (co„+cop))Q(i (co„+cop), i co„) ~

This is obtained by first exhibiting the external lines associated with the vertex:

Q{i(co„'+coo),i co„')=[i (co„+coo) (h /2+ I )) —'[i co„—( —it /2+ 1 )] '(1+ . }

(4.4)

(4.5)

then another partial fraction expansion is performed between the last denominator in (4.3b) containing the argument
i (co„+coo) and [ico„—( —it /2+ A, ) ] which corresponds to an external line to Q.

The quantity X{—it /2+ A, +i co, ) is a two-particle self energy Explicitly .corresponding to Fig. 12(b) is

(1—nk}(1—nk ) &k'
X(i cop) = (J/N)— (4.6)

k k k- tcoo (sk —sk-) tcoo
—(—ek —ek }

The two denominators of this self-energy can be inferred by taking the two vertical cuts shown in the figure. The simple
argument icoo on the left-hand side is used to indicate the quantity defined by Eq. (4.6) is a two-particle self-energy.

The new quantity " corresponds to an inhomogeneous term (It would be. an inhomogeous term in the equation-of-
motion method. ) Following an expansion, it results from the 1 on the right-hand side of (4.5) after the implicit sum is
made on co„. The inhomogeneous term is in a one-to-one correspondence with Fig. 12(b); it is represented by the diagram
in Fig. 13 and the following expression:

(1—nk-) ~k nk(1 —nk )n, —(1 nk)nk n, —
:-(icop) = —(J/N )

k, k, k- i~o —(ek —st, -) i~o —(sk —ek } ~k —~k' —" (4.7)
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FIG. 12. Three time orderings which correspond to two-particle self-energies. The denominators in each diagram correspond to
vertical cut, as shown for (b). The thermal factors can be obtained by rule of thumb as explained in the text. The expression corre-
sponding to (1) is Eq. (4.3) of the text.

which clearly does not contribute to the pole near i coo h-—
These inhomogeneous terms enter the numerator of the
two-particle propagator and will not be needed here.
They are important to the analytic properties of the prop-
agator, (see Ref. 9).

The thermal factors and denominators in both the two-
particle self-energy and inhomogeous term are given by
simple rules. It only remains to ascribe a net sign to each
contribution. This of course may be done from the sign
of the initial diagram by following, in detail, the partial
fraction expansions required to obtain this result. Howev-
er, this process can also be reduced to a rule of thumb
which will be given below.

The quantity left in Eq. (4.4), i.e., X'" is of higher order
in the coupling constant J. These contributions result
from the ellipsis on the right-hand side of (4.5) and in-
volve the relabeling of the sums. The beginning vertex
correction was O(J3) and the lowest order to appear in
X'" will be O(J'). Mathematically iterating Eq. (4.4) gen-
erates a power series for the two-particle self-energy.
However, the real usefulness of Eq. (4.4) stems from a
diagrammatic interpretation of the new term X'" as lead-
ing to ouerlapping two-particle self-energies. Figure 14
shows an overlapping contribution involving the vertex of
Fig. 12(b) and an O(J ) single-particle self-energy. Fig-

ure 9(a) shows an O(J ) overlapping contribution from
two O(J ) single-particle self-energies. Such time order-
ings of the vertices have an obvious physical meaning.
The thermal factor is the product of those for the two
parts; the energy denominators are again obtained by tak-
ing vertical cuts through the diagram and the net sign by
a second rule of thumb to be given below. The corre-
sponding inhomogeneous terms can be obtained by these
same rules by allowing overlap of self-energies with the
elementary inhomogeneous terms.

These overlapping terms are not individually negligible.
For example, the overlapping diagram of Fig. 9 is fully
equivalent to an O(J ) vertex correction of the form
shown in Fig. 1(a) and discussed in the Introduction. The
cancellation of such terms is important and will be dis-
cussed in the next section.

The net sign of a two-particle self-energy is determined
by the sequence of partial fraction expansions required to
put every energy denominator in the following form:

iso —(some sum and difference of energies) . (4.8)

For the O(J3) single-particle self-energy of Fig. 15(a) this
requires two expansions against the bare down d-electron
propagator. The sign of the term retained as the direct
(rather than the beginning of an overlapping) self-energy
therefore has a factor (+1) . On the other hand, the
mirror-image self-energy, Fig. 15(b), has a factor ( —1)t
because of similar expansions with the, top, up-spin line,
but begins with a negative sign in Eq. (4.1), and so has

FIG. 13. Inhomogeneous term corresponding to the exempli-
fied two-particle self-energy of Fig. 12(b). The relevant expres-
sion is Eq. (4.5). Such terms are fully equivalent to inhomogene-
ous terms in the equation-of-motion method and are an essential
feature of two-particle propagators. Notice the external vertex
indicated by the wiggly tail at the bottom right of the figure.

FIG. 14. The simplest overlapping diagram generated by the
exemplified O(J ) two-particle self-energy. This diagram is ful-
ly equivalent to an O(J2) vertex correction of the extreme
right-hand vertex of the 0{J ) term.
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FIG. 15. Two mirror-image two-particle self-energies which
illustrate the factors which determine the net sign of a contribu-
tion. Starting from the single-particle self-energy (a) involves

two partial fraction expansions with the bottom line. This gives
a factor of (+1)2. In contrast (b) requires two expansions
against the top line which introduces a factor ( —1) . In addi-
tion, this term started with a minus sign in Eq. (4.1}or (4.2} and
so has a net opposite sign to its mate.

net negative sign relative to its mate. If only one elemen-

tary vertex is transferred to the lower line [Fig. 12(a)] to
form a vertex correction, then it is easy to show the corre-
sponding contribution is equal in magnitude to that from
a single-electron self-energy shown in Fig. 15(a), except
the sign is opposite. The sign of other more complicated
vertex corrections, etc. can be deduced by inductive
reasoning. The result is a factor,

( —1) ',
where n, equals the number of conduction-electron lines
which end on the bottom line, and where the melting of a
line ending is the same as in the above. This rule implies
that all of the two-particle self-energies [Fig. (12)] result-
ing from a single vertex correction have the same net sign.

The present approach would be prohibitive without

these prescriptions used for the direct evaluation of the
relevant two-particle self-energies and for the estimation
of omitted contributions.

The method for defining two-particle self-energies and
inhomogeneous terms is unique. In the same way as
Dyson's equation defines a single-particle self-energy,
mathematically the two-particle self-energies and the asso-
ciated inhomogeneous terms are defined by the following
which explicitly displays the sum on m„:

[X,(ico„+icoo) X,—(i co„)]Q(i (co„+coo),i co„)

=X(icoo) g Q(i (co„+coo),i co„)—:-(icoo), (4.9)
~s

where again the simple argument coo, and the lack of a
subscript on the right-hand side, indicates X(icoo) is the
two-particle self-energy. The sequence of partial fraction
expansions and the division into self-energies and inhomo-
geneous terms is fixed by the requirement that the denom-
inators of the self-energies be of the form ico„—(an ener-

gy). In terms of diagrams this self-energy is defined as a
repeated inclusion in a two-particle diagram. Typical
such inclusions are illustrated in Figs. 9, 12, 14, and 15,
while all O(J) and O(J ) such diagrams are shown in Fig.
16. The inhomogeneous terms are true vertex corrections
in that they appear in the numerator of the propagator;
diagrammatically, each corresponds to the overlap of
some two-particle self-energy with an external vertex as il-
lustrated by Fig. 13. They have the characteristic of not
having any poles near those of the two-particle propaga-
tors. In fact, in the present application they have cuts
rather than isolated poles. The same method has quite
general applicability; however, when applied to, e.g., the
conduction-electron susceptibility the scheme becomes
more involved; see Ref. 9. The method can also be ap-
plied to problems where coupled vertex equations occur;
again, see Ref. 9.

III PVA~
gl

~IV d' A7WVIAh

FIG. 16. Illustrated are all O(J) and O(J ) two-particle self-energies. The bottom two lines correspond to the standard Abrikosov
representation which as compared to the nonstandard version has two vertex corrections shown in the last line. Since the results for a
physical quantity cannot depend upon the representation, the total of the longitudinal diagrams, i.e., vertex corrections and self-
energies, in one case must be exactly equal to the self-energies alone for the nonstandard method. This illustrates that two-particle
self-energies which arise from single-particle self-energies and vertex corrections are equivalent and must be treated on an equal foot-
ing.
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V. SELF-CONSISTENT PARQUET APPROXIMATION

The aim of the present approach is to obtain a self-
consistent equation which corresponds roughly to the usu-
al equation of the scaling theories. In a diagram theory
attention is usually focused upon the evaluation of the
relevant self-energy(ies). While as mentioned in the Intro-
duction the only well-defined self-energy is that of the
two-particle propagators and, in particular, that of the
transverse susceptibility. The purpose of this section is to
therefore derive a suitable self-consistent equation for this
quantity. Specifically, what is considered is the self-
consistent evaluation of the two-particle self-energy, as
defined in the preceding section, put on its energy shell
using the kink method described in Sec. III. This same
two-particle self-energy invariably appears as dressing in
the diagram prescription for the various other quantities
which are to be evaluated in the present approach. It is
therefore a quantity of fundamental interest.

The impurity transverse susceptibility gives information
about transitions between the (often much renormalized)
S,= —,

' to ——,
'

states of the impurity. There is a pole of
the susceptibility corresponding to the energy for each
such transition. If such a pole has no width it corre-
sponds to the exact energy difference between the two
eigenstates of the system with these spin values.

Results for this susceptibility in the perturbation limit
appeared in the literature on ESR in dilute alloys well
over a decade ago. ' ' The results of such calculations
are in agrounent with the expectations of scaling theory. "

The leading 0 (J) and 0 (J ) diagrams in both the stan-
dard and nonstandard Abrikosov representations are
shown in Fig. 16. A comparison between the two diagram
prescriptions is instructive since with the standard tech-

nique there is an 0(J ) vertex correction while the alter-
native approach gives none. This appropriately illustrates
that vertex corrections for the impurity are just another
form of two-particle self-energy. On energy shell, at zero
temperature, the longitudinal terms do not contribute.
The transition energy is

gpiiH(1+pJ, @/2),

and the width is

,' n(pJ) gp~H, —

(5.1}

(5.2)

where J,fr ——J[1+pJ1n(gp~H/D)'j is the usual expression,
to 0(J ), for the effective exchange. Higher-order terms
will renormalize the exchange in the width formula. In
fact, the width can be incorporated in the energy formula
by giving the logarithm a suitable imaginary part:

1n(gp~H/D) ~in(gp&H/D }+im /2 .

As stated in the Introduction, not only do the longitudi-
nal self-energies not contribute to the low-order perturba-
tion expansion, the purely longitudinal diagrams do not
contribute, on energy shell, to the logarithmic divergences
in any order. This follows from particle-hole symmetry.
It is easy to show that the sum of a given diagram plus
that obtained by reversing the direction of the
conduction-electron lines is at most 0 (H ).

The purely longitudinal diagrams, beyond 0 (J), there-
fore can be taken as a skeleton set, the sum of which is
not logarithmic divergent in any order. However, it
would be dangerous to throw away the longitudinal dia-
grams or more particularly the dressed version of these di-
agrams without some more-detailed consideration. The
dressing of the vertices of the longitudinal series begins by
the replacement L ~TT, which when added to the bare L
vertex leads to an effective longitudinal interaction J,fr
specified above. Including higher-order corrections leads
to the usual logarithmic series for J,rf, implying the ver-
tex in the longitudinal series has a value of order unity for
a cutoff of the order of 4irTO. It would appear that such
a large longitudinal interaction, even though it still gen-
erates no logarithmic terms, cannot be ignored since at
first sight it is capable of grossly modifying the wave
functions in the vicinity of the impurity and, through this,
modifies in turn the effective vertex.

This raises the difficult question of vertex corrections.
It is well known that the vertex corrections are the
relevant diagrams required to account for the above renor-
malization of the wave function, and it is also known that
the vertex correction shown in Fig. 17(a) is the one which
generates the ~pJ ~

'/ factor in TH and must be included.
However, it is also well known that, at least in the weak
limit, this factor arises within the self-consistent parquet
approximation. Indeed the self-consistent nature of the
approximation does include all vertex corrections of the
form of Fig. 17(b) where bubbles lie within bubbles.

With the nonstandard version of the Abrikosov repre-
sentation there are no overlapping bubble on bubble dia-
grams of the structure shown in Fig. 17(c}, except the
purely LLLL term which is not needed. There is always
one or more vertices in the combinations TTTT, TLTL,
and LTLT which are not allowed. In contrast, for the
traditional version of the representation, TL TL and
LTLT diagrams do exist. Again this illustrates the
nonunique nature of the d-electron single-electron self-
energy. It also illustrates that there is a cancellation of
vertex corrections against self-energies in both representa-
tions. While there are no single-particle diagrams of this
kind, there are overlapping two-particle vertex corrections
of this structure as illustrated in Figs. 18(a) and 18(b).
The pairs vertically above each other cancel. Other vertex
corrections arising from overlapping self-energies also
cancel. However, this is nontrivial in that longitudinal
corrections are compared with their transverse counter-
parts and some dressings of self-energies are involved.
This mill be discussed later in this section and in an ap-
pendix. While these overlapping bubble vertex corrections
cancel, other vertex corrections such as that in Fig. 11 do
not cancel. As will be seen below, there are many such
vertex corrections in the parquet series which is summed.
Also, the vertex corrections discussed by, e.g., Coleman
in connection with the author's method for the Anderson
model are important. Here, the equivalent of those dia-
griuns generate part of the parquet series. Further discus-
sion of these vertex corrections will be found later in this
section.

The diagrams are therefore classified into two groups:
(i) the 0(J) longitudinal diagram with a dressed vertex
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FIG. 17. The elemental vertex correction illustrated in (a) can be viewed as generating both the bubble inside bubble dressings of
the self-energies, examples of which are shown in (b}, in addition to true vertex corrections of which the first is illustrated in (c).

and (ii) higher-order longitudinal diagrams with dressed
vertices. These latter diagrams can be neglected.

The aim is to smoothly connect the large-to-small cut-
off self-energy for the problem. Because the two-particle
self-energy is placed on its energy shell the effective cutoff
is the magnetic field rather than the customary energy.

In fact, it is rather obvious that the weak- and strong-
coupling limits can be smoothly coupled when the cutoff
is the magnetic field, but not so if it is the energy. The
ground state of the problem consists of a spin singlet
S=0 which has a binding energy of order 4n To. The ac-
tion of S+ will be to create an excited triplet state S =1.
Such a spin flip must therefore cost an energy of the order
of the binding energy of the singlet, i.e., there is a gap of
order To separating the ground state from excited states
of the impurity. As will be shown explicitly in Sec. X, this
does not imply there is a gap in the conduction-electron
excitation spectrum. (A similar situation exists for a gap-
less superconductor; the binding energy for pairs is finite
even in the absence of gap in the conduction-electron
spectrum. ) Also, it aught be noted that there can be no
strict gap in the impurity spectrum at nonzero tempera-
tures. (This impurity spectrum cannot be calculated
directly by the Bethe methods. )

The impurity ground-state-energy scheme must look
something like the left-hand side of Fig. 19. There will be
a finite self-energy for the spin-spin correlation function
corresponding to a transition from the ground state to the
excited state marked with the arrow labeled 1. For in-

creasing energies s (and zero field) this branch of the self-

energy corresponds to transitions like that indicated by ar-
row 2 which end in the continuum of decaying excited
states. However, it is clear that however large the energy,
the self-energy for this branch necessarily involves the
ground-state energy 4trTO, which of course cannot be ex-

pressed as a power series in pJ. Thus the ground-state
self-energy cannot be connected to the usual perturbation
expansion for large energies. Increasing the field breaks

up the singlet and changes the nature of the ground state.
Therefore for large fields the energy scheme appears as on
the right-hand side of Fig. 19. A relevant self-energy
would have a value corresponding to the transition
marked by arrow 3. Since this energy does have an expan-
sion in pf it is possible that a single branch of the self-
energy as a function of field can be used to connect the
large-field, weak-coupling limit to the small-field, strong-
coupling or ground-state limit.

The idea is then to classify diagrams as to types (i) and

FIG. 18. Illustrated are two-particle self-energies which are equivalent to the type of single-particle vertex correction illustrated in

Fig. 1(a). The pairs vertically above each other cancel. Transferring one vertex from the top to the bottom line changes the sign if
both lines have the same spin label. The pair {c)only exists for the standard representation.
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FIG. 19. The energy-level scheme for the ground state in

zero field must be something like that illustrated in C,
'a). There is

the isolated singlet ground state an energy of order To below the

continuum. Both the low-energy transition 1 and the higher-

energy transition 2 involve To, and therefore have an energy

which is not given by an expansion in the exchange J. In con-

trast, the high-field ground state has an energy-level scheme as
in {b). The transition marked 3 does correspond to an expansion
in J. It is implied that the high-field expansion and the ground
state can be connected while the high-energy expansion cannot,

(ii) discussed above. All two-particle self-energies, as de-

fined in the preceding section, up to O(J') are shown in

Fig. 20. In general, diagrams will contain a mixture of
intermediate-state denominators, some with the "longitu-
dinal" cutoff h —s and others the "transverse" s. All dia-

grams which are purely transverse are of type (i) and cor-
respond to a dressing of the O(J) vertex, while the others
are of type (ii) and can be viewed as dressings of the pure-

ly longitudinal skeletons. Again the latter are negligible.
Two purely transverse sets of diagrams have been iden-

tified: Those in Fig. 21(a) can be associated with the

upper line, while those in Fig. 21(b} can be taken to corre-
spond to the lower line. Characteristics of both sets are
the same: the extreme end vertices are both transverse
while those in the middle are all longitudinal. There is a
single conduction-electron line connecting the two end
vertices. The expression corresponding to the sum of
these diagrams is easily obtained by the rules of the
preceding section. Consider the diagram in Fig. 20(a), all

vertices are attached to the top line. Corresponding to the

1

e —(e' —s")
1

s —(e' —e"') '

(5.3)

where the expression has been continued to the real axis
ico0~e. The Zeeman energy gp&H should, in general,
appear in the large energy cutoff +D for each integral.
The approximation of ignoring these corrections to the ul-
traviolet cutoff is not negligible; the exact evaluation of
the crossover ratio W' requires that a careful accounting
be made of these approximations. Here approximations
of this type will be freely made. An accounting will be
found in Sec. VII. Using such an approximation, the ar-
gument can be shifted into the lower limit of the first in-
tegral:

X(e}=(pJ/2) f de' f ds" f ds"'

(5.4)

It is important to notice that when manipulated in this

way, the self-energy X is a function of s only. The field
only appears explicitly when the self-energy is put on its
energy shell, i.e., when approximately s =h. [Recall
h=(1+ ,'pJ)gpsH incl—udes the O(J) correction. ] The

single conduction line parallel to the impurity line is a
thermal factor (1—nk), while for each of the antiparallel
lines there is a factor nk, nk-, etc. However, when one of
the intermediate longitudinal vertices is transferred to the
bottom line, to give Fig. 20(b) its factor nk changes to
1 —nk a-nd there is a change of sign corresponding to one
conduction-electron line finishing on the bottom line. As
a result transferring such a vertex generates another con-
tribution with a leading logarithmic divergence of the net
same sign.

Rather than writing a result for the total self-energy it-
self, it is more convenient to give the sum in terms of a
differential. Consider again the simple O(J ) diagram of
Fig. 20(a); writing the sums over momentum as integrals
gives the following contribution:

D 0 0
&(&)=(pJ/2)' f de' f ds" f de"'

T L 'T

t c.l (C3

FIG. 20. Totality of two-particle self-energies in O(J ). A single vertex correction generates, e.g., a11 three time orderings (b), {c),
and (e). The contributions (a), (b), (i), and (j) are those which generate the leading parquet approximation. The other contributions are
discussed in the text. The letter I or T denotes the type of vertex, longitudinal or transverse, respectively.
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FIG. 21. {a) The purely transverse diagrams which are associated with the upper line. {b) The mirror-image diagrams associated

with the lower line. The full series is obtained by iterating this diagram. As discussed in the text, it is this series which generates the

important leading parquet approximation.

The result is similar for each term in the leading logarith-
mic series, Fig. 21. Differentiation with respect to the
field leaves a power series in the logarithmic integrals for
dX/dh. Before writing down the result, the calculation is
made self-consistent.

Because of the single-loop rule, the conduction-electron
lines within a self-energy cannot have self-energy in-
clusions. The dressing of the self-energy comes about
from including two-particle self-energy inclusions on the
antiparallel, longitudinal lines within the diagram. This
can be done by the straightforward extension of the rules
devised for the self-energy itself.

The last important step in the evaluation of the parquet
approximation is to put the two-particle self-energy on its
energy shell by the partial fraction expansion, or kink,
method described in Sec. III. In general terms, the trans-
verse susceptibility is of the following form:

it@0—X(icuo) —h
(5.6)

The numerator X is just a prefactor and is not involved in
the determination of the poles of the susceptibility. The
problem of determining approximation schemes for the
energy shell for [italo X(i too) h] —' is almo—st identical to
that for the single propagators considered in Sec. III.
One begins by taking the first partial fraction expansion
between the rightmost denominator of the two-particle
self-energy and the bare two-particle propagator immedi-

0 (J) two-particle self-energy —,
'
pJh, however, is explicitly

a function of h and does not conform to the same pattern.
It will turn out that for this reason it must be accounted
for separately. The desired result for now is obtained with
e= h by differentiating with respect to the field h:

0 0= (pJ/2) de' de"
dh —D —D h —(e —e') h —(e —e")

'2
1

(pJ/2) f de'

ately to the right. With the kink prescription this gen-
erates odd-looking diagrams for the kink self-energy such
as those shown in Fig. 22. One has a total of four impuri-
ty lines in the intermediate state of this kink self-energy.
However, the two antiparallel lines indicated by the ar-
rows in this figure come about from bending up the bot-
tom line of the susceptibility bubble and do not contribute
to the intermediate-state energy first because the bare en-
ergies of the two lines cancel and second because the self-
energies associated with these two lines also cancel. The
former statement follows from the rule of taking a hor-
izontal cut through the diagram in order to determine the
relevant intermediate-state energy. The latter statement is
justified in the Appendix.

Thus, the relevant dressing for the intermediate state is
that of an antiparallel opposite spin pair, which is just the
quantity being evaluated. This directly implies the latter
quantity must be evaluated self-consistently. However,
the situation is a little more complicated than would ap-
pear at first sight.

One might reasonably expect that the relevant dressing
would consist of the transverse two-particle self-energy,
while it turns out that the dressing to be used is purely
longitudinal. The intermediate state already involves the
Zeeman energy, and any further spin fiips would cause
this to be canceled, leaving only the frequency as the cut-
off. With a longitudinal dressing the intermediate state
still has the field as its low-energy cutoff. In turn, the
self-energy contained inside this dressing and so on is also
purely longitudinal. It is these longitudinal self-energies
that make the parquet approximation self-consistent. The
fact that this construction correctly reproduces results for
the next to leading order parquet approximation, and in
particular the famous prefactor of

~
pJ

~

', will be evi-
dent from the solution of the resulting equations. This
provides a posteriori confirmation of the present state-
ments.

Justifying the previous few paragraphs a priori is rather
complicated and involves numerous vertex corrections,
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FIG. 22. Illustrated in an 0(J') kink two-particle "self-
energy. " The same spin pair of lines indicated by the arrows do
not contribute to the intermediate-state energy. %hen con-
sidered together with overlapping contributions the self-energies
of these lines are found to cancel.

etc. For the nonstandard Abrikosov method there are no
TLTL or LTLT vertex corrections. However, there are
higher-order vertex corrections which correspond to dress-

ings of these taken as skeletons. The fact that the
skeletons do not occur in the nonstandard representation
simply refiects the fact that they cancel in the standard
one. The dressings cancel in both representations.

There are several TTTT contributions. These are of
two types: first, the omitted transverse dressings and
second, four two-particle self-energies which come from
the one TTIT vertex correction.

There are also overlapping TLTL, LTLT, and TTTT,
self-energies both for kink and two-particle quantities.
Direct evaluation of such a diagram on the energy shell
(see Sec. III) shows that it should be compared with the
diagram [Fig. 9(b)] which generates a self-energy correc-
tion within the self-energy. Together they give the follow-
ing contribution:

X(2t)
X(2t) (5.7)

which is the first term in the Taylor series which would
cause the nominal energy shell h to be replaced by its ex-
act value.

The cancellation of these remaining terms is neither ex-
act nor trivial. It involves the cancellation of longitudinal
by transverse contributions, and therefore is only valid for
an isotropic exchange interaction. This cancellation is
correct to the next to leading order approximation which,
for the reasons stated in the Introduction, is sufficient.
This cancellation is dealt with in the Appendix.

The result of this self-consistent evaluation of the trans-
verse self-energy is

dX ( 1 ) (I+ I )
pJ (5.8)

dh ' pJ 2

where the self-consistent logarithmic integrals are

integrals I-ln(h /D), i.e., d X/dh +pJ/2 is just the usual
formula for the renormalized exchange interaction part.
The fact that this is the differential of a self-energy may
be viewed as some kind of Ward identity, and that the
self-energy should appear in a self-consistent way in the
integrals makes obvious sense. There are perhaps two
features which might be troubling: first, the pJ/2 on the
right-hand side of Eq. (5.8) and second that this is an
equation for X as a function of field, while within the in-
tegral the argument of this quantity is really the
intermediate-state energy. These two features are related.

The fact that the energy and field arguments are
equivalent implies that the two-particle self-energy, before
it is put on shell, is a function of s only. As noted al-
ready, this is so for all but the O(J} self-energy. The
O(J) term must therefore be subtracted out from the
right-hand side of (5.8) and, in principle, be accounted for
separately; however, in practice it can be ignored in the
scaling limit, except in the weak-coupling regime when
the integration constant E is evaluated (see Sec. VII}. Al-
ternatively, it is not difficult to see that if the O(J) term
(vere included in (5.8) the key, next to leading order,
O(J ) contribution would be incorrectly given. [Recall
that an 0 (J) term is included in the definition of h.]

What would appear to be similar self-consistent equa-
tions for the Anderson model were obtained by Inagaki. 4

However these equations are for a single-particle self-
energy, they do not account for vertex corrections, and are
not equivalent to the present equations even in the U~ oo

limit.
The last step in deriving a key result is to differentiate

again with respect to h. To obtain the following result it
is again necessary to ignore an O(h) modification to the
high-energy cutoff +D. Again such approximations are
important when considering the high-field or weak-
coupling limit; see Sec. VII:

(X—Ii) +2 + =0 .
dh dh 2

(5.10)

(X—h) +2dX dX =0. (5.11)

Equation (5.11) is a universal nonlinear differential
equation for the two-particle impurity self-energy, i.e., it
depends on neither the bare cutoff nor the bare coupling
constant. It should be considered as a generalization of
the usual scaling laws for this problem; the relation to
which will be discussed in the next section. This equation
is the principle result; the rest of this paper @vill be largely
a study of the properties of solutions to this equation.

If instead the result is written in terms of the full trans-
verse self-energy, i.e., X~X+(pJ/2)h, and if h is rede-
fined, i.e., h~h[1+(pJ/2)), then

'2

+D 1I+-= dc
0 s+X(ii —s) —Pg

(5.9)

%@ale the path by which it was obtained might be un-
familiar, the result [Eqs. (5.8) and (5.9}] should be no
surprise. Without the self-energy in the denominator the

VI. RELATION TO CONVENTIONAL SCALING

Although, at first sight, Eq. (5.11) does not appear to be
simply related to the conventional scaling equations, a
simple change of variables reduces it to a familiar form.
These steps are also required for the first integration of
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this differential equation.
First though recall the following simple way to obtain

the standard scaling law. ' In the present notation the ef-
fective exchange constant within perturbation theory is

pJ,rr=2g =pJ+(pJ) [1+—,
' (pJ)]ln(h/D)+ (6.1)

As is well known the leading logarithmic term arises from
the diagram shown in Fig. 3(a), while the displayed 0 (J )

term corresponds to the vertex shown in Fig. 17(a}.
Equivalently the impurity self-energy in the leading ap-
proximation corresponds to Fig. 3(a) while the O(J )

term appears when this term is evaluated self-consistently.
The usual scaling equation is obtained by removing an

infinitesimal strip dD from the top and bottom of the
conduction-electron bands. The change dg in the ex-
change (recall 2g =pJ,fr in a more standard notation) is
obtained from Eq. (6.1):

dg 1

dD D
g =2 —g (1+g+ ).

With the definition y =ln(D/Do) this becomes

(6.2)

dg =2g'(1+g+ .
) (6 3)

A similar equation is obtained from Eq. (5.11) by the
substitutions Z =X—h and g =d Xjdh to give

Z(g —1) = —2gz
With y =ln(Z/D) this is comparable with Eq. (6.3):

dg =2g /(1 —g) .

(6.4)

(6 5)

Apart from the different cutoff used, these equations
agree for the weak-coupling limit when g ~&1 and h ~~X.
Also, in this form, the latter equation is trivial to in-
tegrate:

—,(1/g+lng)+ln[(X —h)/K] =0 . (6.6)

T»s step introduces the first integration constant K. It
has the dimensions of energy and plays the role of energy
scale. It is proportional to the Kondo temperature. A
precise value will be obtained in the next section by com-
parison with the high-field or weak-coupling limit.

The rest of this section is concerned with the second in-
tegration, although little use will be made of the results.
The first step is to solve for Z:

h +a =2'~ Ky( —,, 1/2g) . (6.10)

The second integration constant "a" actually corresponds
to an autonomous property of Eq. (5.11): Given a solu-
tion X(h) there are a series of solutions X(h +a)+a, since
Eq. (5.11) is unchanged by the transformations X~X+a
and h —+h+a.

VII. WEAK-COUPLING —HIGH-FIELD LIMIT

Taking the first integration of the Eq. (5.11) gives (6.6).
This can be rewritten as

1 1g=—
2 ln(g'~ Z/K)

(7.1)

It is necessary to compare this with the relevant high-field
perturbation-theory expression. Some care is required in
order to compare it with the correct high-field expansion.
As was pointed out in Sec. U, approximations were made
to the high-energy cutoff energies in order to obtain the
simple result Eq. (5.11). The above must be compared
with a high-field expression for which the same approxi-
mations have been made. In differentiating the logarith-
mic integrals they were approximated by, for example,

I+= f dx[x+X( —x)]
D+h

(7.2)

The point of the approximation is for
dI+jdh =(X—h) ' exactly; however, in the second line
the upper cutoff should clearly be D not D+h. To main-
tain particle-hole symmetry the second-order contribution
to the self-energy inust be

0 D+h
I, =(pJ)' f de' f de(e' —e —h)

=h(pJ) ln( —h/2eD) . (7.3)

Most important is the 2 in the logarithm. If this expres-
sion is directly differentiated with respect to the field h, in
order to compare it with Eq. (7.1), the 2 remains and so
the effective upper cutoff with the present approximations
to the standard Kondo inodel is 2D rather than D. Keep-
ing in mind that between Eqs. (5.10) and (5.11) the defini-
tions of X(h } and h were modified, it is necessary to com-
pare Eq. (7.1) with the following high-field result:

g
—= = —,

' [1+1/2(pJ)] 'I(pJ)+(pJ) [ln(h/2D)
dh

Z g —]./2e —1/2g + im. /2) I (7.4)

Next is a differentiation with respect to h:

g —1= = —[(g —1)/2g ]Kg '~ e
dh dh

(6.8)

After some cancellation, with s = 1 /2g, and after integrat-
mg,

h+a =K f (2s) e 'ds . (6.9)

The integral is that for an incomplete y function of power
—,', so the final result in closed form is Eq. (6.6) with

K= 2D
~
pJ/2

~

'~ expI [—1+1/2(pJ)]/pJ)
= —2e' D

~
pJ/2

~

' exp(1/pJ), (7.5)

where the ellipsis is not needed to evaluate the single in-
tegration constant K in Eq. (7.1), and where the factor
[1+I/2(pJ)] ' appears because the same factor appears
in the redefinition h~h[l+1 /2(pJ)]. This factor is
important; it will generate the e' in the crossover ratio
m 8'.

Matching (7.4) to (7.1) is straightforward. The result is
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TH =(D/4)
~
pJ

~

'~ exp(1/pJ ) . (7.7)

The high-energy cutoff here differs by a factor of 8 from
that which helps determine E.

Wilson uses the discretization of his states as an in-
frared cutoff in the weak-coupling limit. Such a method
leaves the polarization of the conduction electrons un-

changed. The above integral I3 uses an almost identical
type of cutoff. It must be emphasized that the crossover
ratio is sensitive, to within factors of exactly 2, to the de-
tails of how the Zeeman energy is, or is not, included in
the ultraviolet cutoff.

VIII. STRONG-COUPLING —LO%-FIELD LIMIT

In the preceding section the formula obtained after the
first integration of Eq. (5.11) was matched to the high-
field perturbative expression. It is remarkable that this
procedure is possible, or stated another way, it is surpris-
ing that only one of the two integration constants E
can be determined by using the weak-coupling limit as a
boundary condition. This refiects the fact that for all
values of the second integration constant the formula (7.1)
gives the same asymptotic expansion. The second integra-
tion constant "a" must be obtained by considering the
strong-coupling limit.

Given the first derivative g, X is determined via Eq.
(7.1), once the first integration constant E is given. It fol-
lows directly that the specification of g at h=0 is
equivalent to giving the integration constant a. To deter-
mine g, the following requirement are used.

(i) The self-energy is real on the energy shell for h =0.
This follows since it is conduction-electron —hole pairs
which are the heat bath and eventually take away the en-

ergy. The relevant phase space on the energy shell is pro-
portional to h, so what is a many-body width associated
wreath the impurity must go to zero in this limit.

(ii) Time-reversal symmetry implies the self-energy can-

where the two lines illustrate the origin of this factor e'~ .
When E is substituted into Eq. (7.1) and compared with
Eq. (7.4), the argument of the exponential is determined
by the O(J) term. The

~
pJ

~

'~ is required to cancel with
g'~, and the rest of the prefactor matches the cutoff 2D.
The role of E as the energy scale of the problem is now
obvious.

To complete the discussion of the weak-coupling limit,
it is necessary to determine TH, the high-field scale tem-
perature corresponding to the weak coupling limit used by
Wilson. He obtains the large infrared cutoff susceptibility
by determining the energy shift of the conduction-electron
states, i.e., the effective exchange interaction for the sys-
tem; this in the absence of conduction-electron polariza-
tion. The relevant, here high-field, second-order integral
is therefore

I3 ——(pJ)' J ds' J ds(s' —e —h)

=h(pJ) ln( —2h/eD) (7.6)

with the correct definition namely 2pJgff
=[ln(H/TH)] ', and since h =gpttH=2H in the nota-
tion of Andrei et al. , this corresponds to a high-field
scale:

6(1+h /5 )+constX(ih+ ) . (8.1)

To understand (ii) consider, in general terms, the field
dependence of the transverse susceptibility
( T[S+(t)S (0)]). Since the total Zeeman energy
gpttH(S, +s, ) is a constant of motion, a change in the to-
tal spin of unity caused by S+-changes the energy by
gp&H. Thus this correlation function has an essential

lgPz Hs
time dependence e . Time-reversal considerations
specifically apply ta the two-particle self-energy alone.
The constraints of time-reversal symmetry then imply
that the self-energy must be of the above form. The fact
that b, -n To is the relevant energy scale will be confirmed
later. [There is one alternative. If X were zero for h =0,
then, since this is the transition energy between the two
levels associated with the impurity, the corresponding
ground state would be daubly degenerate. In fact, this
possibility corresponds to the fixed point for the fer-
romagnetic problem. This is easy to see since fram X=O
it follows from Eq. (5.11) that g=dX/dh is also zero in
the h —+0 limit, i.e., the effective coupling canstant is zero
and the moment decouples itself from the conduction
electron sea.]

These analytic properties of the self-energy dictate that

=Re(g) =0 (8.2)

for h =0.
By particle-hole symmetry the real part of X must be

odd. Corresponding to a causal function, the imaginary
part of the self-energy should also be odd, in which case it
turns out to be an analytic function of h.

The value which satisfies the above criterion is unique.
For X to be real implies —,

' (1/g+ lng ) be real plus a possi-
ble multiple of im Trivial. ly, 1/g = i (m/2)—is the only
value, less than im, for which this is true. While, because
of the spectral sum rule, Im(I+-) &in Substitu. tion into
Eq. (6.6) gives

X= 4~To+(2t'/~)—h+ '

where the strong-coupling scale 4n.TO is given by

4ir To =«~)'"
I pJ I

' "D exp( —1/
I pJ I

)

rvhich with

(8.3}

(8.4)

W'= Ttt /To (8.5)

is the exact result for the crossover ratio 8", although of
course it is still necessary to relate mTO to the susceptibili-
ty.

It is possible to restate the requirements (i} and (ii) in
fixed-point language. In general, the scaling Eq (5.11)is.
a second-order nonlinear differential equation for a com-
plex self-energy X. Writing a separate equation for the
real and imaginary parts mould result in two such coupled
second-order equations. In turn these two equations can
be reduced to four first-order equations. Hence there are
four conditions dx;/dh=0 required to define a fixed

not contain a linear term in h.
Together (i) and (ii) imply, for small fields, that the

self-energy be of the following functional form:
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point, where the x; are suitable variables in these four dif-
ferential equations. However, matching the solution to
the weak-coupling expansion fixes one complex integra-
tion constant, reducing it to a problem in two variables.
Because the total magnetization is a constant of motion, a
finite magnetic field introduces an essential time depen-
dence to the problem. The limit h~0 corresponds to a
time scale t~ao. In the long-time, low-energy limit re-
laxation must cease, leading to requirement (i):
1m[X(h =0)]=0. This reduces the problem to a single
first-order equation for Re(X), the physical requirement
that X have a well-defined value in the long-time limit
might be interpreted as requiring Re(dX/dh)=0 for
h =0.

What has been shown through this study of the two-
particle self-energy for the transverse susceptibility is that
there is a finite threshold, of order 4n To, for excitations
of the impurity at zero temperature. In Secs. IX and X
interest will be in the low-energy spectral density of either
the single-particle impurity propagators, in connection
with the calculation of occupation factors, or in the low-

lying (s & 4m To) conduction-electron excitations. The
same sequence of diagrams, which contribute to the effec-
tive longitudinal vertices, are still identified; however,
now, because of this finite energy for excitations which
acts as a cutoff, the relevant diagrams have no imaginary
parts. To show this formally the calculatian will be per-
formed by taking the thermodynamic limit in the non-
standard fashion described in Sec. III; however, this is
really unnecessary after it is realized that there is, in fact,
such a natural infrared cutoff.

The point of interest in connection with fixed points is
that now the relevant solutions of Eq. (5.11) for X will be
real. In this case the above physical argument cannot be
used. In fact, it follows directly from the basic scaling
Eq. (5.11) that if dX/dh =0 for ii =0 then X=O and, as
mentioned earlier, this corresponds to the ferromagnetic
fixed point. For the antiferromagnetic case this possibili-
ty is excluded. It is useful to examine the fixed and singu-
lar properties of the sealing equations itself since these re-
flect the possible analytic behavior of the different solu-
tions and certain possibilities for the limit h ~0. At face
value the scaling equation dg/dy=2g /(1 —g) has the
ferromagnetic fixed point at g =0 and singular points at
g=l and oo.

However, except in the weak-coupling limit, this is not
an autonomous equation in the scaling parameter h. As
noted at the end of Sec. VI, Eq. (5.11) is autonomous
when written in terms of Z, and so dZ/dh=0, or g =1
for h =0 is a fixed point. In the strong-coupling liinit
dg/dy=g /(1 —g) should be considered as an equation
for y (g), for which the value g =1 gives minimum. This
is also a minimum of Z (g). On the other hand, Eq. (6.10)
shows g to be a function of h dependent upon the second
integration constant a. If a is chosen such that 1/h ~ 00

implies g~ 1, then it follows that Z(h) will approach the
fixed point in this limit. [This reflects the asymptotic
behavior of a class of solutions of the scaling equations.
Since Z =X—h, such solutions X(h) approach a line of
slope unity independent of the first integration constant
and Kondo scale K.]

The above few paragraphs on fixed points will not be
used directly in the development which follows. They are
included only to support the direct development.

It will be useful in later sections ta have, in general
terms, some knowledge about the two-particle self-energy
for the longitudinal susceptibility and other two-particle
propagators with antiparallel pairs of impurity lines with
the same spin labels.

It is important to realize that such longitudinal propa-
gators have, in general, two branches. This is best illus-
trated by the two limiting cases when the given propaga-
tor couples to only one such branch.

First, let us discuss the simplest case; this corresponds
to the propagator:

(8.6)

i.e., the external vertex is, or effectively is, spin indepen-
dent. For this case the single-particle self-energies cancel
exactly against the vertex corrections. This follows trivi-
ally since n~, +n~, ——I is a constant of motion. This re-
sult implies the dressing of the impurity lines cancel ex-
actly for any problem in which all the vertices are spin in-

dependent.
The secand simple case is for the transverse susceptibil-

ity itself, which is proportional to

Now the external vertex changes sign with spin values. In
this case the longitudinal self-energies still cancel with
vertex corrections while the vertex corrections double the
transverse self-energies. For h =0, by symmetry, the fre-
quency dependence of the two-particle self-energy for the
longitudinal and transverse susceptibilities must be identi-
cal. It follows that approaching s=O from positive or
negative energy results in an odd self-energy of order
4rrTO This is im. portant since this form of self-energy
generates an infrared cutoff when the conductian-electron
"self-energy" is evaluated.

When the external vertices have neither of these simple
symmetries a longitudinal propagator involves a sum of
the two branches associated with the above two special
propagators.

IX. OCCUPATION NUMBERS AND KINK
SELF-ENERGIES

So far what has been calculated is the energy of the pole
of the transverse susceptibility as a function of the mag-
netic field. While, as was pointed out in the Introduction,
this quantity does have a direct interpretation in terms of
the effective longitudinal interaction, it is not directly the
object of interest. To calculate the susceptibility it is
necessary to calculate the occupation numbers for the im-
purity. %%at will be done in this section amounts to a
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Plyg+Plgg = I (9.1)

However, the individual occupation numbers are not just
the sum of the relevant propagator over co„, but rather
this sum divided explicitly by the partition function, i.e.,

Z/Z, =g [D,(i~„)+D,(i~„)], (9.2)

calculation of the energy of the individual impurity levels.
The difference in the energy of these levels is directly re-
lated to the pole of the susceptibility when the latter has a
small or no imaginary part, i.e., in either the extreme
weak- and strong-coupling limits. The result of the
preceding section for 4m To will be used to determine the
separation of the impurity levels in the strong-coupling
limit. The fact that this energy, 4m TO, is the minimum
energy for an excitation of the impurity in this limit im-
plies that the impurity self-energy must be real for ener-
gies near the pole corresponding to the ground state, i.e.,
for deviations in the energy &&&&TO. Similarly, the
conduction-electron ". self-energy" will also be real for
states which lie within 4~TO of the Fermi surface. As
would be expo:ted, it is found that the same scaling equa-
tion describes the effective vertices in this part of the cal-
culation. However, now, in principle at least, physical
quantities of interest will have expansions in terms of
these vertices and most importantly the relevant solutions
of the scaling equation will be real.

It can be readily appreciated that these real, low-energy
effective vertices cannot be smoothly connected to pertur-
bation theory. Clearly they will be singular at an energy
of order 4rrTO when they acquire an imaginary part. Two
strong-coupling boundary conditions are therefore re-
quired to integrate the scaling equation. One is the energy
scale 4nTO mentioned above and the other is again ob-
tained by time-reversal arguments.

As was pointed out earlier, the self-energy of the 1-
electron propagators is not unique. In fact, as a function
of frequency (real or complex) these propagators have no
physical interpretation. Some of their unusual properties
should become more evident from the discussion in this
section. However, the d-electron propagators summed
over the complex frequency ro„do have such physical in-
terpretation. These give the occupation numbers for the
up and down levels. A systematic method is developed in
this section, again using repeated partial fraction expan-
sions, for evaluating these occupation numbers.

There is a special problem associated with evaluating
occupation numbers using the Abrikosov representation,
this because of the single-loop rule. The usual result, that
the vacuum polarization diagrams cancel against the par-
tition function in the denominator of a single-particle
propagator, does not hold. The partition function must be
evaluated separately. Fortunately, the Abrikosov method,
because of this defect, has a special, simple rule for the
evaluation of the partition function Z (Z should not be
confused with the effective cutoff defined in Sec. IV). It
is observed, by construction, that the net occupation of
the d levels is unity, i.e.,

where Zo is the unperturbed partition function for the
conduction electrons. (In principle, Zo is the partition
function for the full unperturbed Hamiltonian in the
Abrikosov representation. In the limit that A,~ 00 only
the 1-electron vacuum is occupied. It follows that the
relevant partition function is the unperturbed conduc-
tion-electron quantity).

The occupation numbers are

nq —g—[D (ice„)/Z] . (9.3)

The sums involving D (iso„) are tricky. Conventional
wisdom dictates that by analytic continuation this should
be converted to the form

e- se-&'Im D c (9.4)

This involves the simplification of the Fermi function
f(a+A}=exp[ —P(a+A, )] which is valid in the limit
A, ~oo. Strictly speaking this formula remains valid;
however, it is misleading because there are contributions
to the integral where Im[D(s)] is essentially zero. Imag-
ine that Im(D) is in fact strictly zero for values for s less
than some value so. The significant contribution, in the
zero-temperature limit considered here, comes from s
values infinitesimally above so, this because of the ex-
tremely rapid decrease of the function exp( —Ps) with in-
creasing s. However, in reality Im(D) has an exponential-
ly small tail for s & so„ i.e., Im(D}-const)& exp[P(s —so)].
When multiplied by exp( —Pe) such a contribution is of
the same magnitude as that from the "finite" part of
Im(D). It is seen that the zero-temperature limit must be
taken very carefully.

This contribution to the occupation numbers which
comes from regions where the spectral density is exponen-
tially small in the limit T~O will be called an "admix-
ture" term.

Instead of Eq. (9.4}, what works well are the kink
methods used in Sec. III. As in earlier sections the
method will be illustrated by example. Here it is used to
evaluate the occupation numbers so each diagram for the
d propagator is implicitly summed over the external fre-
quency co„. This allows the internal and external sums to
be interchanged, if desired. The general procedure is to
repeatedly make partial fraction expansions until either a
simple pole is isolated or the result obtained to a given
point can be resummed by transferring something times
the full propagator back to the left-hand side of the equa-
tion.

Again consider the propagator evaluated with just the
bare 0 (J ) transverse self-energy as implied by the Dyson
equation illustrated in Fig. 5. The second and third, pre-
viously omitted contribution, in Fig. 6 can be redrawn as
in the second line without altering the value. ~en a
second expansion is made between the parts connected by
the arrow labeled 2 the result is as shown in the next line.
Of the resulting terms the second on the right-hand side
involves a frequency sum only on the full propagator.
The series can be resummed by transferring this term the
left-hand side of the equation. The prefactor to the
transferred term is
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(J/N) g nk(1 —nk )/[h —(sk —&k)]
k, k'

which is just the frequency derivative, BX/Be, of the self-
energy with a specific argument ii /2+A, .

Connection with a familiar result is easily made if all
but the first and last of the remaining terms are dropped.
There is a geometric series, the sum of which is

[ice, —(ii/2+2, +&)]

exp[ —P(h /2+ 2,+A, )]/Z,

(9.6)

remembering there is an implicit sum over co„ in the first
line. The result reflects the usual corrections to the
strength, or equivalently to the "charge, " and energy of
the d-propagator pole. The advantage of the present
derivation of this result is that there are explicit expres-
sions corresponding to the remaining diagrams for the
contributions usually omitted in this type of approxima-
tion.

The terms omitted in the above are not negligible. Con-
sider the 0(J ) term, the third, in line 3 of Fig. 6. Per-
forming the sum over the remaining, co„-dependent, cen-
tral part gives a contribution of the form

( J/+) y I(1 iik)nk'/[ii (~k' ~k)] j
k, k'

Xexp[ —P(A, —h/2)]/Z, (9.7)

which again involves what at least looks like the deriva-
tive of a self-energy. This is multiplied by
exp[ —P(A, —ii/2)], the thermal factor for a down spin,
because the d propagator within the self-energy is of op-
posite spin. Notice also the change in the Fermi functions
relative to the starting self-energy and that the expression
involves the unperturbed expression exp[ —P(A, —ii /2)] be-
cause the self-energy is bare. This change in the Fermi
functions show that (9.7) is the "admixture" contribution
referred to earlier.

A little reflection leads to the generalization of the
above results to higher order and including dressed self-
energies. There are only three types of terms: (a) kinked
self-energies, both direct and overlapping; (b) contribu-
tions of the "charge" type; and (c) admixture terms. Both
(b) and (c) are proportional to the frequency derivative of
some self-energy. In general, the single-particle self-

energy will have several denominators either because it is
of higher order than second and/or has dressings on the
internal d line.

For such higher-order diagrams, one again begins with
a partial fraction expansion, the equivalent of 1 in Fig. 5,
between the first bare line in the full propagator and the
denominators of the self-energy, which corresponds to
that part of its diagram to the extreme right. This pro-
duces the first kink. There are two types of terms. First,
ones which still involve the last denominator of the self-
energy, the equivalent of the second and third terms in
Fig. 6, and one term proportional to the external d line in-

volved in this first partial fraction expansion, i.e., the
equivalent of the last term on the first line of Fig. 6. The
difference here is that this last term is not yet a kink self-
energy because there still remain horizontal parts of the
original single-particle self-energy. One therefore contin-
ues the equivalent of expansion 1 until all parts of the
self-energy are vertical. With each such expansion new
contributions are generated which are grouped with the
second and third terms of Fig. 6 and which can all be
rewritten as between lines one and two of this figure. The
partial fraction expansion 2 then generates terms that are
the equivalent of the second term in the third line of Fig.
6 which modifies the "charge" and is used to resum the
series. There are many of the third admixture contribu-
tions which involve the poles of the single-particle self-
energy and which will be taken up again below. Lastly,
there are terms not illustrated in Fig. 6 which are dressing
of the vertical (external) line, i.e., the down pointing, or
right-hand vertical, part of the kink. This is illustrated in
Fig. 7. The net result is an additional internal dressings
of the kink self-energy. In fact, the internal dressing is
simply the two-particle self-energy associated with the
antiparallel iinpurity lines involved in the kink.

To understand the general nature of the admixture con-
tribution consider reordering the sums in the evaluation of
n~ in such a way that the diagram would be drawn as
shown in Fig. 23. It is implied that the sum over the fre-
quency which passes though the d line that was at the in-
terior of the self-energy is performed last. The large cross
indicates the equivalent of an external vertex but with an
associated frequency which is zero. Isolating the contri-
bution from this last d line using the kink methods pro-
duces an admixture term which involves the frequency
derivative of the self-energy times the exact occupation
number both for what was the interior d line of the origi-
nal self-energy diagram. Again it is found that the self-
energies which enter the denominator of this self-energy
derivative are the relevant two-particle self-energies.

Using this kink formalism to perform repeated partial
fraction expansions for particular examples it has always
proved possible to classify each contribution as belonging
to one of the three classes of contributions discussed

FIG. 23. When the frequency sums involved in evaluating

the occupation numbers are recordered, the transverse O(J~)
contribution to Dyson's equation, Fig. 5, can be redrawn as
shown in this figure. Here a11 d propagators are assumed

dressed and the point of redrawing the diagram in this fashion

is to imply the frequency sum on the d propagator to the right is

done last. Clearly, as drawn, this is the derivative of the down-

spin self-energy times the full down-spin propagator. This re-

sult is used in the text.
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above. Recall though that there are more complicated
"overlapping" kink diagrams such as that shown in Fig.
8. As discussed in connection with the two-particle self-

energy, these play a role identical to that of vertex correc-
tions. The conclusion for an isotropic interaction is again
that these corrections cancel. The details of this particu-
lar cancellation will not be given since it is related to that
demonstrated in the Appendix.

It is implied that the general result for the occupation
number can be written as

E BX~
~de=~dc +

Be
&do—

aX .
5g

OE
(9.8)

I

where n~~ is the elementary occupation number:

n~ ——exp[ P(—crh/2+1, +X )]j/Z, (9.9)

where, although the formula is more general, here this
quantity is unity or zero because the temperature is taken
as zero. The n~ which is unity corresponds to the
ground state. Note that the "self-energy" X in the last
two expressions is not the single-electron self-energy but
rather the kink inclusion (or kink "self-energy") discussed
above. In particular, it contains the relevant two-particle
self-energy in the denominator and there are overlapping
contributions. The result (9.8) takes advantage of a can-
cellation which occurs between the two types of derivative
terms, i.e., the charge and admixture terms, when the
internal d line of a self-energy is the same as the external
lines. As a result X~ contains only the spin-dependent

part of the kink "self-energy. " The spin-independent term
in (9.9) is absorbed into A, . Again it is emphasized that
the last term in Eq. (9.8), involving n~, is an admixture
contribution corresponding to the troublesome exponential
tails. Involved in the diagram are intermediate states in
which the conduction-electron contribution to the energy
is negative, e.g., in a simple diagram such as Fig. 3(a) the
sum Ek f e/j $ & 0 is opposite in sign to that implied by the
thermal functions (1—nk) and nk associated with the
self-energy. This is important when the relevant branch
of the internal d —0 self-energy is to be determined.

The final question of technique is the treatment of the
imaginary parts of the kink self-energies. It is desirable to
actually force the conduction-electron self-energy to be
real. As was shown in connection with simple potential
scattering in Sec. III, if the limits s~0 and the thermo-
dynamic limit 1/N +0 are taken in t—hat order, then it is
possible to define a non-Dysonian "self-energy" for the
conduction electrons, which unlike the usual prescription,
gives directly the quasiparticle energy. In this section and
the remaining sections of this paper this trick will be used
in order to directly obtain the ground-state properties. Of
course, physical results should not depend upon the use of
this or the more usual method of taking the thermo-
dynamic limit; this less standard method simply makes
the task much easier. In fact, this trick is really unneces-
sary since, as discussed at the beginning of this section,
there is a natural infrared cutoff 4mTO in the problem
which removes the need for this ruse.

All that remains is to identify and evaluate the self-
consistent leading parquet approximation for the kink

itudinal diagrams as skeletons. The beginning of this
longitudinal series is shown in Fig. 24. Ignoring band-

edge effects and without an infrared cutoff all but the
0(J) kink self-energies are zero. However, with a cutoff
C the 0 (J ) contribution is proportional to
C(pJ) ln(C/D). The ln(C/D) terms in 0(J ), and other
odd orders, cancel so that with the self-consistent leading
parquet approximation there is no spin dependence (the
cutoff C to be spin independent) to terms other than
0(J). The next step is to consider the 0(J ) renormali-
zation L~TT of the longitudinal vertices. This is more
involved than it was for the two-particle self-energies. It
is necessary to extract the field dependence of each dia-
gram. It is easy to show that all three TTL, TLT, and
I.TT diagrams are required to obtain the leading logarith-
mic term proportional to the field h. In fact, for the kink
self-energies the contribution TTL=LTT= —,'(TLT) so
that the three terms are equal to 2( TLT). On the other
hand, as discussed in the Introduction, the existence of
time-reversal conjugate diagrams shows that when the re-
placement I.~TT is made more than twice there is no
contribution proportional to h. Taken with the above for
the skeleton longitudinal diagrams this implies that there
is no contribution to leading parquet approximation from
such diagrams. These diagrams contribute a field and
spin-independent kink self-energy which might be ab-
sorbed into the projection energy A, . The only relevant di-
agrams correspond to repeated replacements T~TI. so
that such diagrams never have more than two T vertices.
The fact that these diagrams are sufficient can be deduced
inductively from the arithmetic for 0 (J ). The result is a
total contribution equal to (2)"TLLL . LLLT, where n

is the number of L vertices. Finally, as was the case for
the two-particle self-energy, and for the same reason, the
relevant dressing of the internal lines is longitudinal.
What is obtained in this way is that part of kink "self-
energies" for the single-particle impurity propagators
which is dependent upon the impurity spin. These will be
denoted X,cr = t or l. In the asymptotic, large-field limit
the spin-dependent part of these "self-energies" are equal
and opposite. However, in the strong-coupling limit this
is not the case except for exactly h =0. This will be in-
vestigated below.

Taking the derivatives with respect to the field gives the
same universal scaling equation for twice —X, or X, as
for the two-particle self-energy. Although the scaling
equation is the same the useful solution of (5.11) for the

FIG. 24. Beginning of the longitudinal series drawn as kink
"self-energies. " Ignoring ultraviolet, i.e., band-edge and in-
frared cutoff effects, all but the 0(J) contribution can be ig-
nored. The infrared cutoff generates field-independent terms
which can be absorbed into the projection energy A, . Band-edge
effects are negligible.
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X,(h) = —,( 4n Tp h+h —/4m Tp—+ . ) . (9.10)

The spin-dependent part of the down-spin kink "self-
energy" has the opposite value ,'4mTp for h =—0. It is
tempting to simply assume again B2X/Bs(=g)= —1.
(The derivative with respect to the field, h, and energy
now differ in sign. ) This turns out to be wrong. Physical-
ly the value of g for the down-spin line corresponds to a
state with a different value of the total spin and might
therefore be expected to be different. This second effec-
tive exchange will be denoted g~.

or

1

nz, 1+ , (gn, g—nz——,)— (9.11)

kink self-energies is not that given by Eq. (8.3). Rather,
as discussed above, a real solution is required. However,
the value of X= 4—nTp for h =0 can be used as a
boundary condition for this new solution. Physically, the
complex two-particle and real kink self-energies must
agree when the imaginary part of the former is zero, since
then both give the exact energy for the transition
S,= ——,

' to S,= —,'. More formally, it is noted that
—2X„2X„and X are given by identical expressions in
terms of impurity two-particle self-energy, i.e., X itself.
All three therefore correspond to the transition energy

S,= ——, to —, at the one common point h =0. However,
each can, and does, have a different behavior for finite h.
Finite h moves X into a region where it is complex, while
—2X, and 2X, belong to manifolds with different total
values of the spin, and for this reason have a different
field dependence as will be shown below. Hence this iden-
tification of the h =0 values of these "self-energies" gives
only one boundary condition on a second-order equation
and still leaves the derivative of the real kink self-energies
to be determined.

The second boundary condition follows if the ground
state is to reflect the requirements of time-reversal sym-
metry. Because the kink "self-energies" determine the en-
ergies which enter the partition function, not only do they
correspond to exact energies but the lowest such energy
corresponds to the ground state. In turn, since the ground
state is not degenerate the leading term in the field must
be h . The linear in h term in the kink "self-energy"
must cancel the explicit Zeeman energy h/2. This im-

plies B2X/Bs( =g) =—1, giving the second boundary con-
dition necessary to fix the real solution —2X, for small h

and for up spin, corresponding to the ground state. Note,
the absence of a term linear in h in the ground-state ener-

gy reflects an absence of a spontaneous magnetization.
For h =0, Eq. (5.11) yields d X/dh = —2g /X, which
gives the expansion

It must also be recognized that each of Eqs. (9.10) and
(9.13) have two branches. As was pointed out in Sec. V in
connection with Eq. (5.8), the individual expressions for
X, and X, are odd. It follows that the first and third
terms on the right-hand side, and all terms even in h,
change sign with the sign of h or the energy. As was
pointed out above, the intermediate-state energy associat-
ed with the "exponential tail, " i.e., the admixture g* term
in Eqs. (9.11) and (9.12), is negative while (9.13) corre-
sponds to positive values of h. The branch which deter-
mines g» in (9.11) and (9.12) is therefore not the same as
that for (9.13).

Finally, substituting the relevant values for the deriva-
tives into Eq. (9.12) for the polarization gives the impurity
susceptibility. The derivatives with respect to the energy
are equivalent to derivatives with respect to the field h for
up spin and —h for down spin. Taking the appropriate
branches this gives

dX,
=g = 1+h /4—~Tp+ (9.14)

and

dX,
=g =+1—h/4n'Tp+

GfE,
(9.15)

i.e., to the order displayed, g»(h)= —g(h). Substituting
into Eq. (9.12) yields a susceptibility,

X= (}Lt)sin Tp, (9.16)

which is the exact result. Recall, since the g factor is 2,
h =2H, ignoring O(pJ) corrections.

The fact that this is the full impurity susceptibility re-
flects the compensation theorem. Equation (9.16) is
reproduced directly from the quasiparticle energies in the
next section. The fact that the compensation theorem is
satisfied is also discussed. As a consistency check, it is
noted that if the wrong branch of Eq. (9.13) were taken
for the evaluation of (9.15) the impurity susceptibility
would be zero and the compensation theorem would not
be satisfied.

The fact that g = —g» = —1, demonstrates explicitly,
within the present formalism, the well-known result that
only one electron per scattering channel compensates the
impurity. This results from time-reversal considerations
once it is determined that the ground state is energetically
nondegenerate.

This relationship between the g's is very important for
another reason. It is the exact opposite of the perturba-
tion limit when g»=g, and shows that the effective
impurity-conduction-electron interaction is purely poten-
tial in the strong-coupling limit, i.e., it is of the form

ng, n~, =1+(gn—« gn~, ) . — —t (e)(n~, +nq, ), (9.17)

X,= ,' (4n Tp h h /+—nTp+ — ) . — (9.13)

with g =1.
As noted above, the absence of a term linear in h when

Eq. (9.10) is added to the Zeeman energy reflects the ab-
sence of a finite magnetic moment for h =0. If then
n~, —n~, is to be zero, it must be g~ = + 1. This gives

where t is some parameter. These conclusions about the
nature of the strong-coupling fixed point are consistent
with those of Wilson. It will be used as a check in the
next section.

It is seen that then the requirement g = —1 for the up-
spin ground state corresponds to the down-spin excited
state g=+1, i.e., the value corresponding to the fixed
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point of the general scaling equation. Since the one limit-

ing value implies the other, the value g = —1 is also seen

to correspond indirectly to one of the significant limiting

points of the scaling equation.

X. CONDUCTION-ELECTRON PROPAGATORS

The last step in the present development is the calcula-
tion of conduction-electron quantities for states close to
the Fermi surface and in the strong-coupling limit. This
will permit the (re)calculation of the susceptibility, the
specific heat, and the resistivity.

Because of the single-loop rule, for a single impurity,
there is no self-energy for the conduction electrons in the
Dysonian sense. It should not be surprising that there is
no such self-energy part; after all, as was discussed in Sec.
III, there is not even such a self-energy for the single-

impurity potential scattering problem. However, there is
a well-defined t matrix and/or reaction matrix and the
quasiparticle energies can be determined from its poles.
This can be used to define an effective "self-energy. " In
order to directly obtain real energy corrections the limits
s-+0 and 2D/N~O will be taken in this inverted order
and lead to a reaction matrix formalism.

It is possible to define a self-energy for a system with a
finite concentration of impurities. The finite concentra-
tion problem is also the most direct way of evaluating the
resistivity. These alternative methods will be discussed to-
wards the end of this section. In this case the regulariza-
tion of the model is of a more usual form.

The conduction-electron scattering matrix is the sum of
twa three-particle propagators. One such propagator cor-
responds to the longitudinal self-energy and the other to
the transverse or spin-flip self-energy, both are illustrated
in Fig. 25. However, whichever self-energy is considered
the intermediate states can individually be classified as ei-
ther longitudinal or transverse, depending upon whether

they contain antiparallel lines of the same or net different
spin.

Consider an nth-order contribution to the scattering
matrix; it contains n local moment lines but only one
Abrikosov prajection factor e~x. As noted earlier, the lo-

cal moment lines are all assigned positive complex fre-
quencies in order that the contribution from the pole of
any impurity propagator is proportional to e . Because
there is only one projection factor there can only be one

impurity propagator per diagram which contributes. The
corresponding thermal function is either ne, or q„nhwi hc
serves to classify contributions into one of two classes.
Clearly no repeated part of a diagram can contain an im-

FIG. 25. Conduction-electron self-energy can be considered
as being the sum of two three-particle propagators as illustrated
here. Each such contribution has a prefactor of a d-electron oc-
cupation number, but does not involve repeated factors which

contain such occupation numbers.

u g akHkA t
k, k'cr, cr'

(10.1)

The paint of the exercise is to compare the Abrikosov dia-
grams in Fig. 26 with the regular impurity scattering dia-
grams shown in the same figure. The corresponding is in-
dicated. The related diagrams have the same value, and
therefore without needing to evaluate them it is clear that
the remaining diagrams cancel.

The longitudinal diagrams for the present prablem have
an identical structure, the only difference is the sign of the
vertices change when the spin labels are changed. This
does not materially change things and only the same sub-
set of diagrams, as for simple-impurity scattering, are re-
quired. Notice, however, because of this spin dependence
of the vertices, the internal impurity lines will carry a
noncanceling dressing corresponding to the case discussed
in Sec. VIII in relation to the propagator (8.6}. Notice
also the two diagrams [Figs. 26(b) and 26(c), which differ
in that one conduction-electron line has been transferred
from the right to the left directed impurity line], add to
give a contribution which is not logarithmic divergent
near the Fermi surface, i.e., the logarithmic divergent
parts of the two individual diagrams cancel. In contrast,
if an extra minus sign were needed when the line is
transferred the logarithmic contributions would add. On
the other hand, because of the different sign for the longi-
tudinal vertex inside a transverse diagram the logarithmic
parts af the two diagrams in Fig. 27 do add. [Incidental-
ly, Coleman's vertex correction generates Fig. 26(b) but
not Fig. 26(c}, and therefore the cancellation of the loga-
rithmic part does not occur without vertex correetians. ]

The totality of relevant diagrams are counted, as in ear-
lier sections, by taking the important longitudinal dia-
grams as skeletons and dressing their vertices. The ele-
mentary O(J) longitudinal vertex has an O(J ) dressing
sho~n in Fig. 28. The leading logarithmic series is then

purity thermal function. Such repeated parts of the
scattering matrix lead to the energy correction or "self-
energy" for the quasiparticle poles. Because there is no
thermal function in the "self-energy" the relevant dia-

grams can again be evaluated by essentially the same rules
of thumb used earlier. The only significant difference
which stems from the (odd) three-particle nature of the

propagator is the absence of the factor ( —1) ' associated
with n„ the number of electron lines which lie on the
right-to-left —directed impurity line.

%hen evaluating conduction-electron quantities, the
Abrikosov representation of Sec. II, Eq. (2.4}, which in-

cludes the potential scattering in the longitudinal ex-

change vertices will not be used. Rather, it is somewhat

easier to use the standard version of the representation
and account for the potential scattering by standard tech-
niques as, for example, illustrated by the diagrams in Fig.
4. However, the potential scattering is irrelevant to the
strong-caupling limit and sa, in practice, will be ignored.

To better understand the nature of the counting prob-
lem it is useful to consider the simple-impurity scattering
problem in its own right using the Abrikosov representa-
tion. The combination ne, +n, =l is inserted in the
potential scattering term u gk k.akak to give
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FIG. 26. Correspondence between potential scattering diagrams in the Abrikosov representation and those in the standard
multiple-scattering formalism. While, in general, there are more diagrams in each order of perturbation theory with the former
method, the sum of the diagrams shown in equal to the diagrams of the standard formalism sho~n below. Other diagrams in the
fourth order and beyond cancel.

generated by including longitudinal vertices between the
transverse ones, in all possible ways. The four relevant
time orderings which increase the order of a diagram by
one, for the first of the illustrated vertices, are shown in

Fig. 29. Dressing a vertex with longitudinal vertices
which lie to the exterior of the transverse vertices corre-
sponds to some dressing of another skeleton and must not
be included.

This prescription is in agreement with the usual one:
T~TL plus LT and L~TT for generating the leading
logarithmic series. Here, e.g., T~TL means that the
next higher order is obtained by replacing a T vertex with
a T vertex with a TL combination connected by an extra
electron line. However, again it might sama surprising
that this is used to generate only the simple combination
of vertices TLL LLT in all orders.

The effective "self-energy" o (s) which corrects the
energy of a quasiparticle with spin o corresponds to the
multiple scattering diagrams shown in Fig. 30. First, cor-
responding to bare longitudinal vertices, to 0 (J),
o =(J/2)S, for the up-spin quasiparticle illustrated in the
figures. The 0(J2} parts are illustrated in Figs.
30(c)—30(f). This purely longitudinal contribution is cer-
tainly not logarithmic divergent; however, it must be re-
called that the scheme which generates the real "self-
energy" involves retaining a finite infrared cutoff
C -2D/N, which for the purely potential scattering prob-
lem of Sec. III leads to the n tanmx term in addition to the
usual principle part. This requires further examination.

The difference between the present and potential
scattering problem is the presence of a natural infrared
cutoff of order 4mTO. Because the longitudinal vertex

cr (s)= (oS, /—Np)g(s oh) .— (10.2)

The dependence upon the field has been explicitly includ-
ed in the argument.

The fact that o(x} is given in terms of g(x) still leaves
a problem, since in fact there are two g's, the one denoted
simply g and g', and two branches for each g. The
relevant "g" is fixed by comparison with the results of the
preceding section.

The diagrams shown in Fig. 29 are the beginning of
those for the "self-energy" of the up-spin quasiparticles.
A comparison of the effective vertices involved with those

changes sign with spin label, the relevant dressing corre-
sponds to the propagator (8.6} of Sec. VIII and has a value
+4ttTO for small positive or negative energies. This finite
value for the self-energy provides an infrared cutoff. Be-
cause of this cutoff the m tannx term is absent, leaving
only the negligible principle part. Further discussion of
this important point is to be found in Sec. XI.

The self-consistent parquet approximation for the ener-

gy corresponding to the poles of the scattering matrix is
therefore obtained by simply summing the TT, TLT,
TLLT, . . . , TL LT series referred to above. Finally,
since the interior of o is transverse the impurity lines
should be dressed with the longitudinal self-energies for
the same reason as the longitudinal self-energy was in-

cluded, to make the calculation self-consistent, in each of
the earlier parts of the calculation. As would be expected,
since this is the effective interaction vertex, the result for
the effective "self-energy" (i.e., the energy correction to
the poles) within the self-consistent parquet approxima-
tion is given in terms of the quantity g introduced earlier:

FIG. 27. While the logarithmic parts of Figs. 26(b) and 26(c)
cancel, those of the transverse diagrams shown here add to gen-

erate the O(J ) contribution to the effective longitudinal in-

teraction.
FIG. 28. The two O(J ) vertices which dress the O(J) vertex

to generate the first terms in the logarithmic series.
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FIG. 29. These diagrams are of third order and generate the next logarithmic order after the digrams Fig. 29. Each diagram in the
time ordering shown is of the form TLLT. The next order in the TL LT series is obtained from the previous order in the same
way.

in the impurity diagrams shows, for such a quasiparticle
below the Fermi surface interacting with an S,=+—, im-

purity line, that the effective longitudinal interaction ver-
tex is the same as that denoted g in the preceding section.
On the other hand, if the impurity spin sign is changed
the relevant vertex involves g'. The results for the
opposite-sign quasiparticles can be determined by the
particle-hole-spin symmetry of the Hamiltonian. With
this the net self-energy cr~(e) is spin independent. Because
of this and corresponding to the discussion of the propa-
gator (8.5), the quasiparticle poles are not shifted by the
impurity dressing. Again, further discussion of this is to
be found in Sec. XI.

With the expansions for g'(s) or g(e) obtained in Sec.
VIII the various results can be summarized by the follow-
ing, in the strong limit:

cr (si,~)=(1 /2')[1 (ek /2n T—o)+ ], (10.3)

where the value s=ek~ appropriate to the energy shell has
been used. This result coincides with Nozieres's model, '

i.e., the quasienergies are

sk ——sk +(1/2')[1 (ek /2@To—)+ ] . (10A)

The density of states is obtained by differentiation:

& (e)= p(1+(1/Np)[(e crh )/MT—]+ ),dn

(10.5)

which is consistent with an Abrikosov-Suhl peak pinned
to the opposite-spin Fermi momentum. This density of
states corresponds to a susceptibility:

(10.8)

Gk (e)=Is [ek +cr(—e nh)]j— (10.9)

the expected simple form for fermonic quasiparticles. [To
be more specific, excluded from (10.9) are poles with asso-
ciated energies which lies 4n To or more away from the
Fermi surface. ]

Having obtained the relevant exact results for the
single-impurity limit it is perhaps interesting to turn to
the finite, but small concentration problem using the con-

X= (pq )'/~TO (10.6)

and a ratio:
& =[(M/X)/(4C„/C„)] =2 . (10.7)

The susceptibility is double that expected from the density
of states at the Fermi surface because the "self-energy" is
a function of ek rather than ek, which would not dou-
ble the susceptibility, or ek, which would have the peak
pinned to the same spin Fermi surface and would result in
there being no contribution to the susceptibility from the
change in the density of states.

Finally, this susceptibility corresponds to a crossover
ratio:

W'= T~/Tp (m/e)'~—

confirming again that the present methods yield exact re-
sults.

Because of the potential-like form of the effective in-
teraction in the strong-coupling limit, Eq. (9.17), it is pos-
sible to write a simple expression for the exact
conduction-electron propagator. Using the same methods
as above to sum the series, the two contributions to the
scattering matrix simply add in such a may that the result
is proportional to nq, +n~, =1, so the exact propagator
near the Fermi surface is

FIG. 30. Dressed longitudinal series. The dressed 0 (J) contribution (a) generates the leading parquet approximation. Because of
the nature of the Kondo problem there is a natural infrared cutoff or order m.TO which suppresses the size-dependent m talc term
that was generated in the potential scattering problem considered in Sec. III.
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ventional method to take the thermodynamic limit. With
this it is possible to obtain the resistivity in a direct way.
Since the results obtained above are of the form of those
for simple potential scattering the relevant formulas can
be deduced from a comparison between those derived in
Sec. III. In particular, the t matrix which yields the ener-

gy shift (10.4} is written down. Combining this with the
usual impurity averaging technique' gives, for the
conduction-electron self-energy,

o (s)=(cb/~p)/[ib, (e—ah—)], (10.10}

where the width 5=4Te and c is the concentration.
While this result is suggestive of a Lorentzian it does not

contain the higher-order term of an expression in e/b, .
Again there is a Abrikosov-Suhl resonance at the Fermi
surface. Also, by construction, the resistivity agrees with

that predicted by Eq. (104} when the energy shift is inter-

preted as 5/2r, where again 5 is the phase shift. Following
Nozieres, ' the zero-field conductivity is

oo——, np2u~—e /(c sin25), (10.11)

2 (gP'B ) g [Gkt(in ) Gki(i~a }] (10.12)

It is necessary to perform the sum over the complex fre-
quency for the exact propagator and this gives different
results. Explicitly this is done using the kink methods.
Consider the O(J ) contribution as drawn in Fig. 31(a).
This is a vacuum polarization diagram which has been
differentiated with respect to one of the conduction-
electron energies ek. Such a differentiation generates two

where for h =0, 50——2r/2, i.e., sin 5= l. Using either Eq.
(10.4) or (10.10},the phase shift for a finite field is related
to the polarization, m =p(5, —5, )/2r via, e.g.,

5,= 5O 2rm /—2p =50 (2rX/—2p, sp)& .

Finally, this section provides a discussion of the com-
pensation theorem. It turns out that if instead of using
symmetry one carefully examines the effective vertices in-
volved, then Eq. (10.3} is not strictly correct. The down-
spin "self-energy" should involve g rather than g' with
the net effect that the first term in the expansion, Eq.
(10.3), should have an opposite sign for this spin direction.
This does not alter the quasiparticle energies near the Fer-
mi surface, since the phase shifts +2r/2 both move a given
level in such a way that it lies midway between two of the
original unshifted levels, i.e., odd E levels become even N
levels, as in Wilson's work. The fact that the phase shift
is opposite does imply a net change of polarization of the
quasiparticles. This correctly reflects the compensation of
the impurity. In the weak-coupling limit, because the
field is large the spin is along the direction of the field.
Using the same argument that leads to the Friedel sum
rule implies opposite phase shifts corresponding to the un-

itarity limit, i.e., 5,= —5,=2r/2, if there is to be no net
moment localized near the impurity site in the strong lim-
it.

There is, however, no net polarization of the conduction
electrons; this reflecting the compensation theorem. To
see this the polarization is obtained via the usual formula:

FIG. 31. By reordering the frequency sums, the contribution
to the conduction-electron occupation number illustrated in (a)
can be cast in either of the forms (b). These alternative forms il-
lustrated there is a contribution proportional to the occupation
number of the propagator to the right of these two diagrams
times the derivative of the corresponding d-propagator self-
energy. The conclusion is related to that associated with Fig.
23, except here the derivative is generated by splitting the con-
duction electron rather than the d-electron line. This notwith-
standing, these "admixture" terms are equal to those in magni-
tude but opposite in sign, a generahzation of the perturbation-
theory result.

types of terms. First, the one coming from the differen-
tial of the thermal function nk associated with the energy
sk. A second set of terms comes from differentiating the
denominators which contain this same energy. The form-
er contribution corresponds to the O(J } kink self-energy
for the quasiparticle, i.e., a term which appears in the ex-
act ck. The latter terms can be written as the derivatives
of impurity kink "self-energies, " see Fig. 31(b), essentially
in the same way as such terms were obtained in Sec. IX in
connection with the d-electron occupation numbers. In
fact, the total of these terms are identical, except for a
sign, to the similar terms involving derivatives found in
that section, i.e., there is an "admixture" term:

2 (gVa }(gne& g'net }—
This exactly cancels the conduction-electron polarization
and represents a generalization of the perturbation-theory
result. [This, of course, ignores the O(J) term which is
negligible in the scaling limit. ]

XI. DISCUSSION AND CONCLUSIONS

In this paper the author has developed a new approach
to the construction of a scaling theory for the Kondo
problem. The resulting theory leads to exact results for
the strong-couphng limit. Rather than treating the effec-
tive conduction-electron interaction at the Fermi surface
as the fundamental quantity, here attention is focused
upon X, which is a self-energy for the transverse suscepti-
bility. In the weak-coupling limit this can be viewed upon
as the energy required to make a sudden spin flip of the
impurity spin. In general, it determines the energy re-
quired to excite the impurity from a ground state to an
excited state, and in particular, in the strong limit, it cor-
responds to the energy required to make a transition from
the singlet ground to the triplet excited state. The quanti-
ty which plays the role of an effective interaction is
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g =dX/dh. Here h, the field in energy units, is used to
control the cutoff in the logarithmic integrals of the
theory.

It is emphasized that the invariant charge g, i.e., the
variable in the scaling equation, is not unique and the
present choice of such a charge is different from that in
the scaling theory of Abrikosov and Migdal. ' lt is ar-
gued that there must be an optimal choice of the invariant
charge. %'ith such a choice the susceptibility, and other
quantities, in the strong coup-ling limit, are simply related
to the charge. Historically, it has not proved possible to
obtain any results for the strong-coupling limit using the
invariant charge chosen by Abrikosov and Migdal.

Also of importance is the fact that the present choice of
invariant charge leads to the especially simple scaling
equation:

=g2/(1 —g) .

This is of closed form and, as a result, is capable of cou-
pling the weak to strong hmit.

It is shown that X, on the relevant energy shell, is real
and finite in the strong-coupling limit when the field
h ~0. This value of X corresponds to the energy required
for the transition marked 1 in Fig. 19. This is the small-
est energy which causes a transition to an excited state of
the impunty and directly implies that the ground state as-
sociated with the impurity is nondegenerate in this same
limit. In turn it can be readily appreciated, from the re-
quirements of time-reversal symmetry, that this energetic
singlet must also correspond to a spin singlet.

In order to calculate the impurity susceptibility one is
led to study the single-particle propagators for the Abri-
kosov fermions associated with the S,=+ —,

'
levels. This

introduces two new but related quantities denoted X .
The X /2 are the spin-dependent part of a (kink) "self-
energy" for the single-particle propagators. Given the fin-
ite energy to the first excited state of the impurity (and
zero temperature), the "self-energy(ies)" of interest are
real.

For h =0, the difference between the spin-dependent
parts of the single-particle (kink) "self-energies" and the
value two-particle self-energy, placed on shell, correspond
to the same transition energy i.e., again that marked 1 in
Fig. 19, and must have the same value. This provides one
boundary condition for the integration of the scaling
equation for X . The second boundary condition needed
to obtain a solution in the strong limit is again obtained
by time-reversal symmetry. It is found that, in fact, the
X have different expansions which meet at h =0. These
are two relevant values for dX/dh, one for each of the
S,=+—,

'
propagators. These values are g = —1 and

To understand the physical origin of this differentiation
between g and g, consider the relative orientations of the
conduction electron and impurity spins for a given mani-
fold of fixed total z component of the spin, S,+s,. On
such a manifold, the Zeeman energy (for equal g factors)
is a constant of motion and can be ignored. Taking the
net conduction-electron polarization to be in the up direc-

tion, the antiferromagnetic interaction favors the down,
"binding, " orientation for the impurity spin. The vertex

g, for S,=+ —,, which involves impurity-conduction-
electron interactions in this binding arrangement, corre-
sponds to a state which evolves towards the ground state,
while g', for S,= ——,, involves the "antibinding" config-
uration and is associated with a state which evolves to-
wards an excited (triplet) state. The relative
intermediate-state energies involved in the dressed vertices

g and g' are therefore different, and it is to be expected
that the vertices, g and g', will have different values.

The strong-coupling relationship, g= —g, is easily
seen to reflect impurity scattering which is potential-like.
On the other hand, in the extreme weak-coupling limit g
and g' are both equal to —,'pJ where J is the bare ex-

change coupling constant, i.e., the weak-coupling limit
corresponds to an equality g =g' which indicates pure
exchange scattering. These two different relationships be-
tween g and g' can be viewed as reflecting the asymptotic
symmetries of the weak and strong fixed points. Between
these limits neither of these symmetries is satisfied and
the Kondo problem might be described as exhibiting "bro-
ken asyinptotic symmetry. " This does not seem to have
been recognized in earlier scaling and diagram approaches
which preserve the asymptotic symmetry of the weak-
coupling limit.

The properties of the conduction-electron quasiparticle
states near the Fermi surface (s~Tc) are somewhat
surprising, at least at first sight. In particular, these con-
duction electrons do not have any "mixing width. " Usu-
ally conduction-electron states which undergo potential,
or other types of scattering, acquire a width because the
original momentum label is no longer a good quantum
number, i.e., these scattering states are a linear combina-
tion of the original plane-wave states. This is not a real
many-body relaxation width, and in particular it can be
eliminated by taking the thermodynamic limit in the un-
conventional way described in Sec. III. However, the el-
imination of this width usually has a cost, namely the
conduction-electron "self-energy" defined in that section
is singular on an energy scale dictated by the infrared cut-
off D/N. This cutoff represents the lowest energy differ-
ence between the original k state and any state with which
it mixes. In the present case the cutoff is not D/N. It
does not go to zero in the therinodynamic limit but rather
reaches a fixed limit of the order 4n.To. This directly im-
plies that there is at least one regularization (i.e., method
of taking boundary conditions) in which there is no mix-
ing width even when the thermodynamic limit is taken in
the regular fashion. This absence of a mixing width for
conduction-electron states which lie in a continuum is
very unusual for impurity scattering problems.

Usually, for a scattering process to not have an associ-
ated mixing width reflects (i) that the scattering is inelas-
tic and (ii) that there is some kind of conservation princi-
ple. For example, inelastic scattering in which the
momentum is conserved does not necessarily lead to a
mixing width. However, for there to be a finite range of
energies for which there is no such width would require
not only the conservation of momentum but also a gap in
the spectrum of the object off of which the conduction
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electrons scatter. The fact that similar criterion would be,
in some way, satisfied within the Kondo problem, in the
strong limit, is what seems surprising.

It is not difficult to understand both requirements (i)

and (ii} within a singlet ground-state model. This singlet
ground state might be written as

IS&=2 '"(lit& les& —lit& let&), (11.2)

Since X(e) changes sign at e=O and is odd, this sum is
essentially zero. The only corrections come from band
edges and imply such contributions contain a small factor
of c/D.

A "self-energy" which involves an impurity intermedi-
ate state

I
S&, and which can thereby lie within 0 (D/N)

of the initial state, is necessarily of 0(L ). However, it,
and all higher-order similar terms, necessarily involve the
above very small sum at least twice. As a result, all con-
tributions, except the dressed 0(L} terms, are negligible.
Stated another way, there are no significant scattering
processes which involve an intermediate-state energy

where i denotes an impurity state and e the state of the
conduction electron(s) which compensate the impurity.
The operators S+,S, and S*, which operate only on the
impurity spin state, do not have any matrix elements
within the ground state. The presence of a gap, and the
inelastic nature of the scattering, is then associated with
the finite binding energy of the singlet.

In fact, the action of each of these operators on
I
S & is

to generate some state of the triplet manifold, i.e.,

I
T+&=—

I
T, s.=»= li» I«&-s'Is&,

I
T &=

I
T—, S,= —1&= lit& let&~S IS&,

while

I
TO& =

I
T,S,=O&

=2 '"(Iit&
I
&1&+ I&&& le»}~s'ls& .

Clearly the effect of repeated longitudinal scattering is to
take the impurity ground state

I
S& first to

I
TO&, then

back to
I
S &, then

I
TO&, and so on, alternating between

the singlet and triplet. Transverse scattering takes
I
S & to

I
2'+ & or

I
T—&. Another transverse scattering event

results in a linear combination of
I
S & and

I
TO&. How-

ever, it is easy to see, when both the S+S and S S+
paths are taken together, that the

I
S & amplitude cancels.

This is equivalent to the observation that the combination
of vertices TT is an effective longitudinal vertex, i.e., as
usual the longitudinal diagrams, or the processes which
they represent, can be taken as a skeleton set to be dressed
by including the series L +TT+ TLT+

One then must examine the skeleton longitudinal pro-
cesses. Without any impurity dressing, the LL "self-
energy" is

(J/4N) g(s —sk)
k'

while adding the two-particle impurity self-energy results
in

(J/4N) g [e—ek+X(e —ek )]

which is within 4m'To of the ground state. This can be
thought of as refiecting some special conservation princi-
ple (or selection rule) for the scaling limit.

(It might be noted that it is possible to have momentum
conservation over a limited range even with impurity po-
tential scattering. A suitable potential can be constructed

by taking the Fourier transform of a spectrum which is
zero for some finite range of momentum. For example,
the potential

u I 5(x)—2[sin(kox)/x] I (11.3)

which corresponds to impurity scattering with a strength
4Toe This is .indeed infinite in the strong-coupling limit
e~O. In fact, the present results are, by and large, com-
patible with these earlier notions.

As was noted in Sec. V, in the U=ao limit the so-
called "no crossing approximation" would lead to an
identical scaling equation, i.e., Eq. (5.11). However, that
approach is not equivalent to the present one for several
reasons. Most specifically, the scaling equation would in-
volve the energy e rather than the field h as the variable.
Because the no crossing approximation involves a mixture
of longitudinal and transverse diagrams, the correspond-
ing self-energy is not a function of only c (or e+h), and

reflects a spectrum in which the minimum transfer of
momentum is ko. }

The fact that in a particular regularization there is no
mixing width does not imply that there are not others in
which such a width does occur. (In terms of the simple
potential scattering example given above, the 5 function
might be absorbed into the unperturbed conduction-
electron energy as an energy-independent shift. In this
case the second term alone does lead to a inixing width
-cpu .) The inverse process, in which a mixing width is
eliminated, is in fact well known and corresponds to the
methods of phase-shift analysis. In this case a mixing
width obtained by calculating the t matrix is converted
into an energy shift of the conduction-electron states.
This energy shift is the one which would be obtained if in-
stead the reaction matrix formalism was used. In the
preceding section the inverse process was used, i.e., the t
matrix was obtained from the reaction matrix formula-
tion. It is via the r matrix that the resistivity is usually
calculated. Results have been given in that section.

These different possible regularizations are also impor-
tant for a correct understanding of the nature of the effec-
tive interaction in the strong limit. After Anderson
er al. , Wilson, ' and Nozieres, ' it is usually stated that
the strong limit corresponds to an effective infinite ex-

change, i.e., a limit J,rr~ao. The resulting ground state
is a singlet and the phase shift at the Fermi surface is
n/2. Here the same results follow, i.e., there is a singlet
ground state and 5=m/2. However, the effective interac-
tion vertices g and g' do not diverge, but rather attain
finite values. These two pictures are not inconsistent.
The difference is associated, again, with the use of a reac-
tion matrix formalism in the present work. When the ef-
fective r matrix is constructed, as in Sec. X, it is of the
orm

( I/pN)(4To/e)/[ I (4Tole)i—m'],
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so would not lead to (5.11) if written as a function of the
field. Also, usually that approximation is formulated in
terms of what is essentially a single-particle self-energy
rather than the two-particle self-energy used in the present
derivation of (5.11}. Because of its single-particle nature
it does not exhibit broken asymptotic symmetry, i.e., dif-
ferent strong-coupling self-energies for the "up" and
"down" propagators. If the two-particle self-energy were
calculated it ueuld most probably lead to (5.11),but again
for that quantity as a function of the energy. The strong-
coupling limit would therefore correspond to a~0. Here,
in contrast, the strong limit is A~0 for the self-energy,
on shell, i.e., for a finite energy. This difference is impar-
tant because for T =0 there must be discontinuities in ei-
ther the single- or two-particle self-energies at an energy
corresponding to the separation between the singlet and
triplet. Singular behavior does occur in the no crossing
approximation. Here it is this singlet-to-triplet separation
as a function of field which is actually calculated. Clear-
ly, on physical grounds, with increasing fields this
evolves, without singular behavior, into that between the
S,=+ —,

'
levels. When single-particle self-energies are cal-

culated in the present work no attempt is made to connect
them with perturbation theory and it is again the value of
the (i.e., kink) self-energy on shell which is of interest. On
shell, the longitudinal diagrams do not contribute and are
not to be included. In fact, it has been shown here that
the Dysonian single-particle longitudinal self-energy is not
unique, indicating that any approximation which involves
such diagrams in an essential way can only be correct by
accident. It seem probable that it is the similarity of the
results of the no crossing approximation to those derived
here which accounts for the remarkable success of that
method.

Within the present formalism, the following picture of
the formation of the Kondo ground state emerges. As is
well known, the ground state is an energetic and spin sing-
let. The compensating conduction electrons adjust them-
selves in such a way as to provide a cutoff for the loga-
rithmic (and other) integrals of the theory. This implies
that there is an unusual conservation principle in that
conduction-electron states within 47rTp of the Fermi sur-
face only interact significantly with states outside this
range. An interesting concept, which the present work il-
lustrates, is that of "broken asymptotic symmetry. " The
symmetry exhibited by the renormalized weak-coupling
theories (i.e., g =g' }is broken in the exact solution.

It is relatively easy to generalize the present methods to
the general spin problem and to the Anderson model in
the magnetic, i.e., large-U, limit. The generalization to
this Anderson model used the Abrikosov method for this
model. Results of these calculations will be published
elsewhere.

Of more interest is the prospect of applying the same
methods to the lattice problems. Particularly, because of
the absence of the linked cluster theorem this would ap-
pear prohibitive. However, the Abrikosov method for the
Anderson lattice has been studied with some success. ' In
fact, the application of the near Fermi surface properties
of the heavy-fermion problem seems relatively straightfor-
ward; this because the symmetry in the strong limit is the

same as for plain potential scattering (despite the existence
of the effective electron-electron interaction). With this
symmetry only the combination n~, +n~, ——1 appears.
Because of this a separate calculation of the partition
function is not needed. It is hoped that results for the lat-
tice models, using the present methods, will be forthcom-
ing in the near future.

ACKNO%'LEDGMENTS

The author wishes to thank T. K. Lee for helpful criti-
cism of the manuscript. This work was supported in part
by a U.S. National Science Foundation (NSF) grant (No.
DMR-81-20827) and, in the early stages, in part by the
Swiss National Fund for Scientific Research.

APPENDIX

In this appendix are given some details of the way in
which the various bubbles overlapping bubbles type of
vertex corrections cancel against each other and transverse
dressings of the same bubbles. Some of these cancella-
tions will only be valid for an isotropic exchange interac-
tion.

Even in the fourth order where these vertex corrections,
etc., first occur it is prohibitive to directly derive each of
the contributions to the relevant two-particle and kink
self-energies. For this reason use will be made of the rules
of thumb derived in the text. Also, since such fourth-
order diagrams involve four integrations upon
conduction-electron energies a quick method of evaluating
the in(h/D) divergences will be used. This latter method
will first be illustrated by using it to evaluate the O(J )

self-energy.
The O(J ) self-energy, Fig. 3(a), on the (nominal) ener-

gy shell is

(J/E) g [nk, (l —nk, )/(sk, —Ek, —h)] .
k, k'

(Al)

If the sums are converted to integrals, this becomes

(p1) f ds f de'(s —s' —h) (A2)

If then the variables of integration are changed so that

y =a —s' and if only the most divergent small y part of
the integral is retained, this becomes

(A3}

The "trick" of interest is that used to convert (A2) into
the first line of (A3). When used on such logarithmic in-
tegrals it reduces the number of integrals by factor of 2.
It is not difficu}t to include those parts of the integrals
omitted in (A3); however, they are not important for the
evaluation of the leading divergence and will not omitted
for clarity in what follows.

Turning out to the actual omitted O(J ) contributions,
it is first useful to consider together the overlapping terms

(pJ) f dyy(y —h) '=(pJ) D+h f dy(y —h)
I

=(pJ) [D —Ii ln[ —Ijt/(D —h)]I .
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f dec f de'e'(c, ' —h) '(s —e') '(e —h) (A4)

and is also zero by symmetry (make the interchange of

which occur in the kinked "self-energy" and which arise
from the dressing of the line other than the one which
carries the self-energy of interest. Specific diagrams are
illustrated in Fig. 32. The partial fraction expansion se-

quence used here is different, but equivalent, to that sug-

gested in Sec. IX. The sequence is tailored to keep the
same vertex at the top of each diagram. The diagrams
cancel against a diagram vertically below. There are
many similar cancelling pairs not illustrated here. This is
a very good cancellation since it is associated with the fact
that nq, +nq, 1 is a——constant of motion.

The remaining bare two-particle kink self-energy dia-

grams only have vertices on a single line. As a conse-
quence the O(J ) kink diagrams for both the single- and
two-particle propagators are the same in this order. The
important omitted diagrams, involving two O(J ) self-
energies and up spin, are shown in Figs. 33 and 34. Not
shown is the transverse dressing of the longitudinal self-

energy, i.e., diagrams similar to Figs. 33(b) and 33(c), ex-

cept that the top and bottom vertices are longitudinal.
These give zero by symmetry.

The overlapping transverse on transverse diagram [Fig.
33(a)] corresponds to an integral:

variables e~e').
The overlapping transverse with 1ongitudinal diagrams

of Fig. 34 correspond to an integral:

f «& f «'E'( —e) '(E' —s —h) '(s' —h)
—'

= f de f ds's'(e' —e —h) '(s' —h) ', (A5)

which can be integrated to give

(h/2)ln (h/D) . (A6)

However, the two diagrams in this figure have the same
central denominator, but with the opposite sign, and can-
cel against each other.

Last is the real "cross" vertex correction such as that
shown in Fig. 35(a). There are similar TLTL corrections.
Such a vertex correction generates a total of six two-
particle self-energies. The TTTT contributions corre-
spond to the diagrams in Fig. 35(b). Those diagrams vert-
ically above each other have the same (leading order)
value. The kink diagrams obtained from these simply
corresponds to putting them on their nominal energy
shells, i.e., with the external frequency icoo h E——xpl. icitly,
the sum of the first two inequivalent diagrams shown in
the top line of Fig. 35(b) is

FIG. 32. Selection of overlapping diagrams which involve both lines of the two-particle propagator. The left two pairs have the
vertices of the dressing labeled as longitudinal, I, or transverse, T. The overlapping vertex correction to the right can have any la-
bels.
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FIG. 33. On the left is a overlapping vertex correction, while on the right is a similar dressing. The middle corresponds to a direct
dressing.

EE EE E — 2 —E—E E+ + EE EE E — 2 —E —E

E'E' E'+ ' EE E— 2. A7

Evaluating the integral gi~es

—)i ln (li/D) .
However, the last term on the top line or the diagram
gj.ves

f dEa I da'E'(E —k) '(E —r.'( (A9)

and this cancels (A8). The same null result follows for
the TLTL vertex correction.

To complete the discussion of omitted diagrams, it is
necessary to consider the relevant dressing for the includ-
ed diagrams. The question at issue is the evaluation of
the effective cutoff Z =X—h first defined in the Intro-
duction. This arises from the differentiation of the loga-
rithmic integrals, Eq. (5.9), i.e., d /dh I+=Z-
=(X—h) '. It is not difficult to appreciate that the
quantity X—Ii involves the two-particle self-energy of the
transverse susceptibility evaluated at zero external fre-

quency. (Note, in particular, that the effective cutoff cor-
responds to the zero-energy limit of each conduction-
electron integration. As a result the conduction electrons
do not contribute to Z, leaving only the impurity self-
energy. Lastly, there is no frequency argument to a kink
self-energy, so the relevant impurity dressing corresponds
to the zero frequency rather than, say, the energy shell
value. ) It is trivial that the transverse dressing is zero for
zero external frequency. Thus as stated in the body of the
text, only the longitudinal dressing contributes to the cut-
off in the scaling equation. The same conclusion remains
valid when one constructs the scaling equation for this
longitudinal dressing.

One can also check that there are no omitted next to
leading corrections to this effective cutoff, Z. Now there
are real vertex corrections such as in Fig. 1(a), with all the
impurity spin labels the same, and also LLLL overlapping
terms of the structure of Fig. 9(a). In total there are four

FIG. 34. Shown are the two overlapping LTLT and TLTL diagrams.
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FIG. 35. (a) The 0(J ), TTTT, vertex correction. (b} The four two-particle self-energies associated with the four possible time or-

derings of the vertices.

such contributions, each of which is equivalent to an in-

tegral:

ce e'c' c+ -' e+e'+ -' e'+ -', A10

and gives an h ln h contribution. This cancels against the
four LTTL dressings of the structure of either Fig. 9(b) or
the direct dressing corresponding to the structure of Fig.
17(b). The corresponding integrals are, e.g. ,

(Al 1)

All TLTL vertex corrections cancel in pairs.
The evaluation of the effective cutoff Z illustrates the

resolution of an apparent contradiction. In the Introduc-
tion it was noted that the next to leading order should be
small as compared to the leading order by a factor of pJ
in the scaling limit. Yet it is necessary to include longitu-
dinal dressing in the construction of the scaling theory.
The above discussion illustrates why this is the case. In
order that the scaling equation in general, and the cutoff
Z in particular, be accurate to leading order it is necessary
to evaluate these diagrams which in the asymptotic series
are of next to leading order. It is, of course, such dia-
grams which lead to the factor ~pJ ~

'~ in the energy
scale.

Next to leading order diagrams which do not contribute
to Z can be to taken to be small. In particular, the trans-
verse dressings of the transverse self-energy shown in
Figs. 33(b) and 33(c) both give the same leading terms,
e.g., corresponding to Fig. 33(c) is a integral:

f de s f ds' s'(s —h) '(s —s')

= —f des f ds's'(s —h) (c,
' —h)

+ c. c c'c.' c—h '
c.—c' ' c' —h

(A12)

and is to next to leading order but is not needed in the
scaling limit.
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