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Phonon calculations of thermodynamic properties of solid 4He

above its high-pressure triple point
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The self-consistent phonon theories are applied to the calculation of the high-density phase dia-

gram of He. We show that inclusion of cubic anharmonic correction terms brings the theoretical
phase diagram into agreement with the experimental phase diagram.

I. INTRODUCTION

Recent diamond-anvil-cell measurements on He at
high pressure' have produced evidence for a triple point
around 300 K with a new solid phase along the melting
curve. Subsequent theoretical investigations based on the
correlated cell model and extensive molecular dynamics
(MD) simulations"' have identified this new phase as a
bcc solid. The aim of the present study is to show that a
self-consistent harmonic phonon theory, corrected for
anharmonic effects, also predicts that the bcc solid is the
stable phase of He at the temperature of 300 K. Both ex-
perimental and theoretical ' studies of the low-density
fcc phase of solid helium have revealed that, as the densi-

ty increases along the melting line, the difference between
the experimental phonon dispersion curves and those cal-
culated from the self-consistent harmonic (SCH} theory
diminishes. This result indicates that an accurate descrip-
tion of high-density fcc (and presumably also bcc) solid
helium near melting could be obtained by adding the cu-
bic anharmonic term to the SCH theory (SCH + C).

In Sec. II we examine phonon theories of various de-
grees of sophistication in order to establish that the
SCH+ C approximation is needed to obtain the correct
phase diagram of dense solid helium. Using an Einstein
approximation for the cubic correction term in the
SCH+ C theory, we calculate in Sec. III the free energies
of the fcc and bcc phases and show that near melting at
T-300 K the bcc solid is the stable phase.

From a comparison between the phonon dispersion
curves obtained from MD simulations and the SCH
theory, it appears that the bcc phase is more anharmonic
and anisotropic than the fcc phase which explains the
shortcoming of the simple approximations considered in
Sec. II.

II. THERMODYNAMICS AND PHASE DIAGRAM
FROM "SIMPLE" APPROXIMATIONS

Although "simple"" approximations, as the harmonic
ones, are known to be inadequate to describe the near
melting anharmonic solid, they may be of value to study
the transition between two solid phases, due to cancella-

tion of errors in both phases. For instance, the free ener-

gy difference between two solid structures, say, fcc and
bcc, could give information about the relative stability of
one phase with respect to the other at a given thermo-
dynamic state. With this in mind we used various ap-
proximate theories to calculate the fry energy of fcc and
bcc solid He at T =400 K and volume u =4.51
cm /mole, near the melting line where anharmonic effects
are important and the bcc structure known to be stable.
The conclusions reached for this point apply also in a den-

sity domain near the melting line. The potential used in
these calculations was a modified Aziz potential' which
differs from the original one by a slightly less stiff repul-
sive part allowing for a better representation of the melt-

ing curve. "
The free-energy results for the fcc and bcc phases ob-

tained from the various "simple" approximations con-
sidered in this section are summarized in Table I. First it
is seen that the harmonic approximation predicts an un-
stable bcc phase (due to unstable transverse 110 modes).
This instability demonstrates the importance of anhar-
monic effects in the bcc solid. The high-temperature ex-
pansion" (including terms up to order P, where
P= I/ks T) of the harmonic free energy is inadequate in
the bcc phase insofar as it does not predict this instability.
In the fcc phase the high-temperature approximation for
the free energy is 5% lower than the exact harmonic re-
sult.

The self-consistent phonon theory (SCP) is the most ap-
propriate method of taking account of anharmonic effects
in solids. Before discussing the results of the first-order
approximation to the SCP theory [the self-consistent har-
monic (SCH) theory] and corrections to it, we consider a
somewhat simpler approximation, the self-consistent Ein-
stein model (SCE} which consists of minimizing the free
energy with respect to the frequency coE, of 3X indepen-
dent identical harmonic oscillators (see, e.g., Ref. 12).

For the thermodynamic state considered, the SCE
model gives the fcc solid as the stable phase (cf. Table I).
The optimum frequency coE determined from the SCE
model can be used, following Dobson, ' as a starting point
in an iterative solution scheme for the self-consistent har-
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TABLE I. Free energy of fcc and bcc solid He at T =400 K and v =4.51 cm /mole. All calcula-
tions are done with a modified Aziz potential {Ref. 1).

Description

Harmonic
(momentum expansion)

Harmonic (exact)

Optimum Einstein
SCHi-Einstein

Anisotropic Debye
SCHWA-Debye

SCH
SCH+ CE

4.44
4.58

5.175
4.811

4.849
4.810

4.809
4.462

4.49
unstable (imaginary frequencies

for the T110 modes)
5.319
unstable (imaginary frequencies

for the T110 modes)
4.989
unstable (imaginary frequencies

for the T110 modes)
4.825
4.395

monic phonon spectrum. If one iteration is performed the
corresponding free energy (denoted SCHi-Einstein in
Table I) is seen to be in very good agreement with the ex-
act SCH result for the fcc phase, whereas the bcc phase
turns out to be unstable. The latter result reinforces our
previous conclusion concerning the stronger anharmonici-
ty and indicates anisotropy of the bcc phase. It suggests
to resort to a two-frequency optimum Debye spectrum in
order to calculate the free energy. The latter is obtained
by minimizing the free energy with respect to a longitudi-
nal (coDL) and a transverse (oiDq) frequency.

The corresponding free-energy values are clearly an im-
provement on the SCE values despite the fact that the fcc
phase is the stable phase for the thermodynamic state con-
sidered (cf. Table I, results denoted anisotropic Debye}.
As for the SCE model, the frequencies AD~ and r0Di ob-
tained for the "anisotropic Debye" model can be used as
initial values in Dobson's procedure for determining the
phonon frequencies. Performing one iteration (result
marked SCHi-Debye in Table I} we find that the bcc
phase is unstable.

When extended to a large density and temperature
domain the SCE and anisotropic Debye models allow for
a qualitative description of the phase diagram of high
density solid He. The triple point associated with the
bcc-fcc transition is predicted at very high temperature,
—1000 K (a precise location is not possible because the
melting curve is not sufficiently well known'), and the
domain of the fcc phase in the density-temperature dia-
gram curves back to the 7 =0 K axis as predicted by
Young et al. ' However, this result should be considered
with caution since the transition pressure at T =0 K is 7
Mbar far beyond the validity of the pair potential descrip-
tion of He.

Considering the SCH theory corrected for cubic anhar-
monic terms as a reference to the simple approximations
so far considered, Table I shows that the errors on the free
energy are rather small in the fcc phase but considerably
amplified in the bcc phase leading for most approxima-
tions to an unstable behavior. Finally, none of the ap-
proximations considered in this section is capable of giv-
ing a quantitative description of the fcc-bcc transition
line.

III. SELF-CONSISTENT HARMONIC
APPROXIMATION AND IMPROVEMENT

D„„(q)= g (e ' —1)4pv(Rol ) ~

I
(2)

The force constants 4&„(Rol ) are the second derivatives of
the potential between atoms 0 and I averaged over the dis-
tribution, assumed to be Gaussian, of their relative dis-
placements u from their lattice positions:

4&„(~g)=( Utroq))
a a

"op rl v

1

[(2n ) detA]'~

X I du exp( ——,u.A .u) U(roi),
~~Op ~~I v

where ro=Ro+no, ri ——Ri+ui, roi =ri —ro, and
Q =QI —Qo.

The displacement correlation matri~

A„„(Roi)= (u„u„}
is related to the frequencies and polarization vectors
through

A. Self-consistent harmonic approximation

As mentioned above, the SCH approximation is the
lowest order self-consistent phonon theory. Since
comprehensive reviews are available (see, e.g., Ref. 15), we
will state only the central equations of the theory, follow-
ing the work of Moleko and Glyde. '2

The frequency
coque

of a phonon having wave vector q
and branch A, is calculated from the usual expression of
the harmonic theory:

coque
= g s„(q,A, )Dq„(q)s„(q,A, ), (1)

p, v

where e„(q,A, ) is the polarization vector and D„„(q) the
dynamical matrix expressible in terms of the force con-
stants 4„„(Roi}between atoms 0 and I associated with the
lattice sites Ro and Ri (Rol ——R& —Ro),
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1
X coth(PAcoqp, /2) .

A„„(R I )= g ( I —e ')e„(q, h, )s„(q,A, )

q, A,

(5)

lh

3

10

fq 0 0]L [q q q]l [q q 0]L

=((p—a))( ", )+(a)5„„.
r

(8)

The authors of Ref. 16 have shown that for a first-
nearest-neighbor interaction, the factorization (8) is actu-
ally exact to sceond order in the displacements u for an
fcc crystal. This result is easily extended to the case of a
bcc crystal. To second order in u,

r~r„R„R (u2) (R u)
1 — +4

R R R

(uqu, ) ((R u)(R~u„+R„u~))
R2

—2
R4

Using these expressions we have calculated the frequen-
cies

coque
iteratively until a free energy was obtained con-

The set of coupled equations (1)—(5), which define the
SCH approximation, are solved iteratively. The frequen-
cies coq~, which are solutions of these equations, minimize
the free energy expression

p+scH= 2 p g (u(roI))+ g In[2sinh(pkcoqq/2)]
I (+0} (q, A. }

——,P g ficoqq coth(Pftcoqz!2) .
(q, A, }

For an interaction potential u having spherical symmetry
the second derivative of the potential is (r —=rot )

(1 Q r~rv
u(r)=(p —a) +a5q„,

Br& Br„r2
with a=(1/r)(Bu/Br) and p=B u/Br .

Following Jayanthi et al. ' we then write the average
force constants in the approximate form (R=Ro~ )

4„„(R)=((P—a) ", )+(a)5„„
r
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FIG. 2. Same as in Fig. 1 for bcc He at v =4.173 cm3/mole.

verged to within two parts in 10 (this is achieved with 8
iterations for the fcc solid and 12 for the bcc solid). The
sums were carried out over —,', of the total Brillouin zone
with a grid equivalent to 3999 points in the full zone for
fcc and 3455 points for bcc.

The phase diagram calculated within the SCH approxi-
mation has a triple point at -700 K well above the exper-
imental value (-300 K). For the thermodynamic state
considered in Table I the stable phase will thus be the fcc
phase. This failure can be attributed to the neglect, in the
SCH approximation, of the higher-order anharmonic
terms arising in the expansion of the crystal potential en-

ergy. These terms introduce width and shift in the pho-
non response function. In Figs. 1 and 2 comparison is
made between the dispersion curves for longitudinal pho-
nons calculated from the SCH thcery and by MD simula-
tions5 at 330 K near tnelting. (The SCH results reported
in Figs. 1 and 2 are for the original Aziz potential which
has also been used in the MD simulations. ) The differ-
ence between the SCH and MD dispersion curves appears
to be smaller than the difference observed, at lower pres-
sure, between the SCH and experimental dispersion curves
for fcc He. As in the latter case, the experimental results
could be reproduced with good accuracy by a theory
(SCH + C) which corrects the SCH approximation for cu-
bic anharmonic terms in the crystal energy expansion; ' '.7, 8, 17

fq 0 0)L 'jq q OjL

10

0.1 5—

I I I i

0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 0.2 0.4

q(2~/ag

FIG. 1. Dispersion curves for fcc He at T =330 K and
v =4.165 cm /mole using the Aziz potential (Ref. 9). Solid line,
SCH approximation; circles and dotted line, MD simulations.
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FIG. 3. Lindemann ratio 6=((u ) )' /R, versus pressure at
T =400 K.
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FIG. 4. Dispersion curves for fcc He at T=330 K and
U =4.21 cm /mole in the SCH approximation. The potential
used is the modified Aziz potential of Ref. 1.
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FIG. 6. Isothermal elastic constants at T =400 K calculated
from the SCH dispersion curves. Solid line, bcc; dotted line, fcc.

such a theory is expected to give good results also in the
present case.

From Figs. 1 and 2 we also note that anharmonic ef-
fects are somewhat stronger in the bcc than in the fcc
phase. This observation is confirmed by the fact that the
mean-square displacement of the atoms from their lattice
positions is larger in the bcc phase (cf. Fig. 3).

B. Improved self-consistent phonon theory

From Sec. III A it is apparent that accurate values for
the free energy could be obtained by including anharmon-
ic cubic terms. A method which treats the cubic anhar-
monic term as a perturbation correction to FscH has been
introduced by Goldman et al. ' The correction term b,F&
to the FscH free energy is, however, rather comPlicated,
involving a lengthy calculation with a double summation
over the Brillouin zone. An estimate can be obtained
within the framework of an Einstein approximation. ' '
This approximation introduces two major simplifications
in the calculation of ~3. First, all frequencies toqz are
replaced by the same value coE obtained as the average of
the SCH frequencies

Second, as a consequence, the distribution of displace-
ments u is spherically symmetric. The final expression
reads

bF3 = —A [12n(co@)z+12n(coE)+1]
48M coE

x g g @'p„(Roi),
I a,P, y

where 4 tie is the average of the third derivative of the in-
teraction potential over the Gaussian distribution of dis-
placements defined in (3), and

n (coE ) =(e —1) (12)

The constant A is introduced in order to compensate for
the fact that by replacing all

toque by the average value coE,
~3 will be underestimated ( dd z —co ). Moleko and
Glyde' propose the value A =2.36 for the case of the fcc
solid. When an identical value of A is used for the bcc
solid the phase diagram calculated from the free energy,

pp SCH+CE P SCH P
N

E=
3N ~ qA, ~

(q, A, )

(10) is very similar to the one obtained within the SCH ap-
proximation, with a slightly lower triple point at 580 K
still overly high compared to the experimental value.
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FIG. 5. Same as in Fig. 4 for bcc He.

FIG. 7. High-pressure phase diagram of He calculated
within the SCH+ CE approximation. The solid circles denote
MD results.
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TABLE II. EQuilibrium pressure and vo1umes of the fcc-bcc phase transition in the SCH+ CE
model; P ~~ is calculated from a Simon equation (Ref. 22).

300
330
370
400
500

141
190
226
249
341

Uf (cm /mole)

4.61
4.24
4.04
3.99
3.61

ub (cm3/mole)

4.64
4.27
4.07
4.01
3.63

Pmelting

120
140
167
188
266

The authors of Ref. 19 pointed out that the effects of
thermal defects should be incorporated into a description
of the near melting solid. This is, however, not the case
for the present work where the vacancy concentration is
expected to be negligible ( —10 ). The origin of the
discrepancy is more likely to lie in the rather crude esti-
mate of lLF3. In particular, the constant A need not be
the same in the fcc and in the bcc phase, especially since
anharmonic effects are larger in the latter phase.

From the MD simulations at T =330 K the equilibri-
um between the two solid phases was obtained for the
volumes UI =4.165 cm /mole (fcc phase) and Us ——4. 173
cm /mole (bcc phase). For the volume U =4.169
cm /mole [= —,

'
(us +UI )] the free energies of both phases

would be almost equal: we use this remark to determine
the value of the parameter A entering the correction term
~3 [Eq. (11)] in the bcc phase.

Using the value A =2.36 in the fcc phase'2 we find
A =2.77 in the bcc phase a slightly higher value as ex-
pected on the basis of the larger anharmonicity of the bcc
phase. Using this value of A the bcc phase is the stable
phase for the thermodynamic state U =4.51 cm3/mole
and T =400 K, as can be seen from Table I.

IV. RESULTS AND CONCLUSION

The dispersion curves calculated in the SCH approxi-
mation at T =330 K and U =4.21 cm3/mole for the fcc
and the bcc structures are shown in Figs. 4 and 5, respec-
tively. The good agreement with the MD results in the
long-wavelength region (cf. Figs. 1 and 2) implies that a
good estimate of the isothermal elastic constants
c~~,c~2,e44 can be obtained. ' ' ' These are plotted in
Fig. 6 as a function of pressure for T =400 K. The al-
most linear dependence on pressure, except in the near
melting region, indicates that anharmonic effects are less
important than in the low-density solid. The larger value
of the ratio AN ——2c~/(ct~ —ct2) for the bcc structure
stresses again the larger anisotropy of this structure.

At the melting pressure the Lindemann ratio 5 (mean-

square displacement divided by the nearest-neighbor dis-
tance) is equal to 0.15 as expected on the basis of the Lin-
demann criterion for the thermal melting of a classical
solid, "indicating a rather classical behavior of very dense
helium at T = -300 K.

The high-pressure phase diagram of He computed
from the SCH+ CE free energies is shown in Fig. 7 (the
values used for A in the expression of dd'3 are those quot-
ed in Sec. III). The domain of the bcc solid along the
melting line ends at a triple point with temperature
T =285 K, close to the experimental value (300 K). Fig-
ure 7 also includes two points of the bcc-fcc transition line
determined by MD simulations. The discrepancy be-
tween the MD and SCH+ CE results reflects partly the
difference between the potentials used in the MD (original
Aziz ) and SCH+ CE (modified Aziz') calculations, and
partly the shortcoming of the SCH+ CE approximation.

The volumes of the fcc and bcc phases along the transi-
tion line are summarized in Table II. The error on the
variation of volume through the transition is estimated to
be 50%o as a result of interpolation of the free energy
curves as a function of volume in the double-tangent
Maxwell construction.

To summarize briefly, we have shown that if cubic
anharmonic terms in the potential energy are incorporated
into the self-consistent phonon theory, the corresponding
higher-pressure phase diagram of eHe is in good agree-
ment with the MD results and experiment. Nevertheless,
this theory should be viewed only as a "minimal theory"
because of the approximate evaluation of the cubic anhar-
monic term and the neglect of higher-order anharmonic
terms in the free-energy expansion.
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