PHYSICAL REVIEW B

VOLUME 33, NUMBER 5

Optimal three-body correlations and elementary diagrams in liquid *He

E. Krotscheck
Department of Physics, Texas A&M University, College Station, Texas 77843
and Max-Planck-Institut fir Kernphysik, D-6900 Heidelberg, West Germany*
(Received 13 May 1985; revised manuscript received 28 October 1985)

Within the framework of the variational theory for strongly interacting Bose liquids, we study the
optimal determination of three-body correlation factors. The Euler-Lagrange equation for the
three-body correlations suggests an iterative procedure in which the three-body correlation factor is
expressed as a series of diagrams containing only the pair distribution function. The long-
wavelength behavior of the three-body structure function agrees formally with the prediction of
quantum hydrodynamics. The simplest approximation for the optimized three-body correlation
function is identical to the prediction of second-order correlated-basis-function perturbation theory.
We show that this simplest approximation sums essentially the same sets of diagrams that are in-
cluded in non-optimized hypernetted-chain calculations with three-body correlations. Along with
the three-body correlations we include those elementary diagrams of fourth and fifth order which
have a comparable topological structure. The predictions for the ground-state energy and the pair
distribution function are substantially improved compared with hypernetted-chain calculations re-
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stricted to two-body correlations.

I. INTRODUCTION

Much of the success in the present microscopic under-
standing of quantum liquids has been initiated by the ob-
servation that the exact ground state of a Bose system can
be written in the form
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The cause for the success of this idea' is that the form
(1.1) of the wave function, the so-called Feenberg form,?
allows in a relatively straightforward way the accurate
calculation of expectation values, either by integral-
equation methods! or by direct Monte Carlo integration.’
Integral equation methods such as the hypernetted chain
(HNC) summations are less accurate than Monte Carlo in-
tegrations, but it is easier to asses fine details (such as the
long-ranged behavior,! or anisotropies in an inhomogene-
ous system?) by the optimization of the correlation factors
uy(ry,r,y, . . ., 1,) through solving the variational problems

SE
Bu,,(rl,rz, e ,r,,)

=0 (n=1,2,3,...). (1.2)
The optimization of the correlation functions is an impor-
tant prerequisite for the study of the low-lying excited
states of the system. Apart from this, the correlation fac-
tors obtained by optimization can also be used successful-
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ly® in more accurate Monte Carlo evaluations of the ener-
gy expectation value

_(‘1’0|H|‘l’o>
(W W)

but it is much harder to use direct Monte Carlo methods
as a guidance to find optimal pair correlations.®

Of course, it is not practical to solve Eq. (1.2) for all n,
but it is fortunately sufficient to keep only the first few
components of the wave function (1.1). The treatment of
n =1 is necessary only in an inhomogeneous system.* It
leads to a generalized Hartree equation for the one-body
density. We need not be concerned with that aspect of the
theory in the present case of the bulk liquid.

An elegant and practical method for solving the Euler-
Lagrange (1.2) for n =2 has been given by Campbell and
Feenberg’ in their “paired phonon analysis” (PPA). The
method has proven sufficiently efficient to be applied also
in simple inhomogeneous systems.* The wave function
obtained by omitting all correlations for n£2 is usually
called the Jastrow choice.

The first serious approach to include three-body corre-
lations in the wave function was reported somewhat later
by Woo and Coldwell.® Campbell and co-worker>!° for-
mulated a systematic optimization procedure for arbitrary
n-body correlations in the form of a perturbation expan-
sion. A superficial interpretation of these early studies
seems to indicate that three-body effects are treated there
in low order, and that the equivalent of HNC summations
with three-body correlations!! might be preferable. One
of the results of this work show this to be incorrect, and
the second-order correlated-basis-function (CBF) treat-
ment of Campbell to be, when used with a re-optimization
procedure for the two-body correlations, in fact of com-

(1.3)
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parable diagrammatic structure to the work of Refs. 11.

A problem that is closely related to the structure of
three-body correlations is the question of the so-called
“elementary” diagrams. The hypernetted-chain approxi-
mation contains all the important formal ingredients of
the ground-state correlations qualitatively correctly, but it
fails to give the correct saturation energy and density. In
order to achieve quantitative agreement of HNC type cal-
culations with experiment or Monte Carlo simulations,
these elementary diagrams must be included somehow.
Some studies are found in the literature that calculate'?
the elementary diagrams or estimate their effect by “inter-
polation”!?® or “scaling.”!*

From the viewpoint of a variational theory, the physical
meaning of three-body correlations and elementary dia-
grams is different. While three-body correlations improve
the wave function, elementary diagrams improve the ac-
curacy of the energy evaluation for a given Jastrow wave
function. From the viewpoint of perturbation theory, the
two problems do not have a clear distinction. A careful
analysis of the perturbation series for the ground-state en-
ergy'*16 shows that the Jastrow wave function fails at
fourth order, while elementary diagrams contribute only
sixth and higher-order corrections. This shows that one
should first go beyond the Jastrow choice of the wave
function before attempting to include elementary dia-
grams. One can easily see that essentially the same di-
agrammatic structures are involved in both the series of
elementary diagrams and the three-body correlation ef-
fects. There is no point in including one effect while leav-
ing the other one out.

A few words are in order here to justify the recon-
sideration of the problem of elementary diagrams and
three-body correlations. The energy expectation value
with respect to a Jastrow wave function is known from
variational Monte Carlo calculations. A simpler, HNC-
type calculation can at its best reproduce these results but
yields in bulk “He hardly any additional information. On
the other hand, most of the important formal structure of
the many-body problem (i.e., the ring and ladder dia-
grams) are contained in the HNC approximation, elemen-
tary diagrams contribute at most quantitative shifts of the
general picture. Bridging the gap between the HNC ap-
proximation and variational Monte Carlo results is there-
fore, as a stand-alone task, a problem of a predominantly
technical nature. The situation is a bit different for the
three-body correlation function u3(r,ry,r3). The study of
the properties of this function gives insight into the struc-
ture of “backflow” correlations, which are hard to uncov-
er from a wave function obtained by an exact Green’s-
function Monte Carlo (GFMC) solution of the
Schrodinger equation. Conclusive information on the
structure of the three-body correlations can be obtained of
course only from an approach which determines three-
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body correlation via the optimization procedure (1.2).

Among others, we have undertaken the present effort
with the goal of applying the theory to inhomogeneous
systems. In the surface or in thin films of liquid-*He sys-
tems, a wealth of experimental information is met by rela-
tively little understanding of the correlations. The optim-
ized Jastrow-HNC method provides a qualitatively reason-
able* description of the anisotropy of the correlations in
these systems. But the predicted surface tension of liquid
“He is about a factor of 2 too small compared with the ex-
periment, and improvements of the theory must be sought
before reliable predictions can be made for the propaga-
tion of ripplons and third sound or on the behavior of im-
purities. We formulate, therefore, the theory with its ex-
tension to inhomogeneous systems in mind.

The paper is organized as follows: We give in the next
section a brief discussion of the paired phonon analysis
for the optimization of the two-body correlations. The
energy expectation value in the presence of three-body
correlations is calculated to sufficiently high order to al-
low for a meaningful unconstrained optimization. The
derivation of the Euler-Lagrange equation for the three-
body correlation factor is quite straightforward. We
derive this equation only in the approximation in which
we choose to work, but we display and discuss also the ex-
act form of the equation. At the same time, the elementa-
ry diagrams are identified that give rise to the same topo-
logical structures as the three-body correlations.

Section III derives the long-wavelength behavior of the
three-body static structure function as obtained by the in-
clusion of optimized three-body correlations. We show
that one obtains a structural agreement with the predic-
tion of quantum hydrodynamics.!” The last section, Sec.
IV, describes our numerical procedure and presents the re-
sults. There, we have decided to treat elementary dia-
grams, as far as possible, in the old-fashioned way: we
calculate them. Formulating the theory in momentum
space leads to simplifications such that the relevant fifth-
order elementary diagrams can be calculated from the
four-body term without additional effort. Thus, we ex-
haust essentially the effect of the fourth- and fifth-order
elementary diagrams calculated by Smith.!? This brings
the ground-state energy within 0.5 K of the GFMC re-
sults. This about as far as one can go without excessive
numerical effort. To improve upon the accuracy, one
may apply enhancement factors to the non-HNC contri-
butions. Thus we adopt the idea, but not the ideology, of
Ref. 14 on a much more modest scale.

II. ENERGY AND EULER-LAGRANGE EQUATIONS

Using the wave function (1.1) and including correlation
factors up to n =3, we can write the energy expectation
value of a translationally invariant system in the form

E=7 fd3’1 fd3r2p2( [t—r|) o( |1y —n, | )*%Vzuz( [ry—13])

1 #

~3 8m fd3’1 fd3’2 fd3"3Pa(fbl‘z,l's)(vf-i-V%+V§)u3(r1,l‘z,r3).

(2.1)
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In Eq. (2.1), v(r) is the two-body interaction, and the p,(r,r, . . .
reference we introduce also the n-body distribution functions g,(ry,r,, . . .

,I,) are the familiar n-body densities. For further
s T =pu(ry,1y, . . ., 1,)/p", where p is the one-

body density. The two-body correlation factor u,( | r; —r; | ) is renormalized to include, in a diagrammatic expansion, all
those three-body terms that have one coordinate dependence integrated out, i.e., we define

Z([r—r | )=uy( | ry—1y | )+p f d’r; us(ry,r,r3) . (2.2
Using (2.2), the energy expectation value (2.1) takes the form
E=E;+E;, (2.3)
with
i 3 3 ﬁz 2
E(2)= 2 fd ry fd rzg(rl,rz) v( |r1—r2| )—EV uz( |r1-—r2| ) , (2.4)
E(3)=——ﬁiEi fd3’1 fd3’2 f43’3[83(r1,l‘z,l’3)—8(1'1,1'2)—3(1'1,1'3)—g(rz,f3)+2]
8m 3!
X (V34 V34 Vus(ry,1513) . 2.5)
The optimization condition for the two-body correlations Ey(|r—n|)=p f d3ry[g(r,,1;3)g(r,r;)—1]
can be formulated in various ways; we present here the
formulation that allows for the most efficient numerical Xuy(ry,113) , 2.9)

implementation. In that formulation, a particle-hole in-
teraction is defined as
8’E
V —_n|)=—. (2.6)
pul P12 | 8p1(r;)8py(ry)

[To apply the algorithm (2.6), one has to allow for an in-
finitesimally small nonuniform density component and
keep the two- and three-body correlation functions fixed.]
This particle-hole interaction defines through linear
response theory a density-density response function, from
which one obtains the static form factor S(k)
=1+4p f d3r[g(r)—1]exp(ik-r) via frequency integra-
tion. The case of the homogeneous system is especially
simple. One finds

-1

S(k)=

4m =
1+;’£7Vp_h(k) , 2.7

where the dimensionless Fourier transform
flky=p f d’r explik-1)f(r)

is denoted by a tilde. Of course, the energy functional
must be sufficiently accurate to allow for an un-
constrained variation with respect to either the two-
body correlations or the pair distribution function
gl(r,r))=g(|rj—r,|). The HNC theory provides the
necessary information on acceptable approximation
schemes. In the presence of three-body correlations, the
HNC equations are

g(r)=exp[@(r)+N(r)+E;(r)+E(r)],

= [Stk)—1]
Niky=22

(2.8)

Here,

and E(r) is the familiar sum of elementary diagrams,
which may now also contain three-body correlation func-
tions u,(r;,r;,rx). It is convenient to use the HNC rela-
tions (2.8) to eliminate #,(r) from the energy expectation
value (2.4) in favor of the pair distribution function g (r).
Thus we arrive, for the two-body part of the energy per
particle, at

E/A:ﬁz’-fd3rg(r> U(r)—4—ﬁ:l—-V2[lng(r)——N(r)—E3(r)

—E(r)] +E(3)

EEHNc+AE3+AEe s (2.10)

where

EHNC=£2)_fd3"g(r) v(r)—‘zﬁ—z”TVz[lng(r)—N(r)]}

(2.11)
is the energy per particle in HNC approximation,
P
AE; =L [ drg(nVIEs(n+E (2.12)

is the contribution arising from three-body correlations,
and
sE,=%2 [ d*rg(nV2E(r) (2.13)
¢ 8m
is the contribution from elementary diagrams. The ad-
vantage of the formulation (2.10)—(2.13) is that three-

body correlations enter the theory only through the
Jackson-Feenberg kinetic energy E|3), the three-body con-
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tribution E;(r) [cf. Eq. (2.9)] in the HNC equations, and
the elementary diagram structures. The total energy func-
tional which appears as a correction term in the particle-
hole interaction ¥, ;(r), includes these corrections. The
derivation of the new Euler-Lagrange equation is straight-
forward. We obtain the general form

V,,.h(r)=g(r)[v(r)+Av(r)]+§ |VVg(r)|?

+[g(r)—1]w(r), (2.14)
where
S(AE, + AE,
Avir)= L XBE +AE) (2.15)
P og(r)

is the correction term due to three-body correlations and
elementary diagrams, and

7k

w;(k)=— 4m

[2S(k)—1][1-S~Y(Kk)]*. (2.16)

The next task is to derive a Euler-Lagrange equation
for the three-body correlation factor u3(r;,r;,r). To this
end, one has to include at least all terms in the elementary
diagram sum that contain two three-body factors and all
terms in the three-body distribution function that contain
at least one three-body factor. For consistency, the topo-
logically corresponding diagrams containing only two-
body distribution functions should be retained. Figure 1

FIG. 1. Graphical representation of the connected part
83(ry,13,13) —g(ry, 1)) — g(r;,13) — g (r5,13)+2 of the three-body
distribution function. The representation is exact if the shaded
triangle is interpreted as the set of all irreducible, non-nodal
three-body diagrams. The set of diagrams included in the calcu-
lation of the three-body Jackson-Feenberg kinetic energy is the
one obtained by approximating the shaded triangle by the
three-body correlation function.

shows the diagrammatic representation of the terms that
must be kept in the three-body factor

83(1'1,1'2,1'3)“8(rhfz)—g(rl,l‘3)—g(tz,r3)+2 .

We use the usual diagrammatic conventions: small circles
represent the coordinates r; of particles, a dashed line be-
tween two points r; and r; represents a function
h(r;,r;)=g(r;,r;)—1, and a shaded triangle a three-body
factor uj(r;,rj,rg). A solid dot implies integration over
the coordinate space of the associated particle and a densi-
ty factor. The representation of the three-body distribu-
tion function satisfies the sequential relation between
g3(ry,15,13) and g(ry,r,). Note that the graphical repre-
sentation shown in Fig. 1 is exact if we interpret the shad-
ed triangle as the sum of all three-point diagrams which
are non-nodal in all three external points. (A diagram is
called nodal in an external point if there exists an internal
point though which all paths which connect that external
point to any other external point must go.)

Figure 2 shows the sets of elementary diagrams that
must be included. In particular, we see that the inclusion
of these diagrams contains, after trivialization of the full
three-body correlation factor, the so-called backflow form

u3(ry,ry,03) = [Vin(| 1y —12 | )- V(| 1y—13] ) +c.p.],

where c.p. stands for cyclic permutations of 1,2,3. The
approximation shown in Fig. 2 contains essentially all dia-
grams included in Refs. 11; it goes far beyond that work
in the computation of the three-body kinetic energy (cf.
Fig. 1).

After the relevant diagrammatic structures are identi-
fied, it is straightforward to derive a compact expression
for the energy correction term. Since the calculation is
somewhat tedious, we bypass the technical details. One
works most conveniently in momentum space. We define

FIG. 2. Set of elementary diagrams included in the present
calculation that contain one or two three-body correlation fac-
tors u3(r;,r;,rg).
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173(k1,k2,k3)=p2fd3r12 fd3’13 explik;-rip+iky ry3)us(ry, ),
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(2.17)

with r;;=r; —r; and k;= —k;—k,. Additional abbreviations are

X3(r,05,03)=h(r3)h(r3)h(ry;)

and

X5(r,1p,13)= lzﬁ% l[vzh(’xz)h("ls)h(’23)+C-P-] .

(2.18)

(2.19)

(The quantities X; and X3 have a more general definition, which will be given below.) In terms of these quantities and

the set of “non-nodal” diagrams

X(r)=g(r)—1—-N(r),

the three-body contribution to the total energy is

1 #

3 2402m% 2m

X

TR

XS(k)S(k3)S (k3)8(k;+ky+k3) .

m 5.

X 3(ky,kj,k3)

[ &%k, [ @k, [ @k, @50k, ko ki)

[2k, -k, X (k)X (ky)+c.p. ]+ [k3(1—2X (k) +c.p. 1X3(k;, ky, k3)

ki k3 k3

Stk TSty TSy

3(ky, ko, k3)

(2.20)

This form is easily minimized with respect to u;(k;,k;,k;), which leads to

[k;-k X (k)X (ky)+c.p. ]+ 5 {ki[1—2X(k))]+c.p. ) X3(ky, Ko, k3)+ (4m /#)X '(ky, k5, K3)

i3(ky,ky k3) = =8k 4k, +k,,0

Equation (2.21) is more general in the sense that its
algebraic structure is identical to the structure of the exact
Euler-Lagrange equation for the three-body factor. The
quantities X(r;,r,r;3) and X3(r,r,,r;) must be defined
more generally in that case: Xj(ry,r,,r;) is the set of
three-body diagrams in terms of the two-body correlations

f%(r,-j)— 1=exp[u,(r;)]—1
and
fg(fi,fj,l'k)— I=exp[u;(r;,1;,10)]—1

that is non-nodal in all three external points, except the
three-body correlation factor u;(rir,r;). The quantity
X5(ry,1,13) is obtained graphically from X;(r,r,,r;) by
replacing, in turn, all two-body bonds f,(r;;)—1 by

firy) v(r,-j)—zﬁ—;—vzuz( [ri—r; )],
and all three-body correlations f §(r,-,r,-,rk)—1 by
—B%fg(r,»,rj,rk)(v,?+‘7,2-+v;2¢ Jus(r;,1j,1k) .

One can now also invoke the usual dressing procedure to

k3/S(k)+k3/S(ky)+k3/S(ks)

2.21)

[

reduce X;(ry,r,,13) and X3(r,r,,13) to their “basic” struc-
tures by expressing them in terms of the pair distribution
function h(r)=g(r)—1 and (in X3 V?g(r) and
(V34 V3 + V3)gs(r,,1p,13). The first contributions to the
three-body quantities in this dressed representation is the
superposition approximation given in Eqgs. (2.18) and
(2.19).

In Eq. (2.21) we recover the convolution approximation

7§k, ko ks)=—8 1k 41,0

Kk, kX (k)X (ky)+c.p.
k2/S(ky)+k3/S(ky)+k3/S(k3)

(2.22)

used by Chang and Campbell'® if we neglect the non-
nodal three-body quantities X3 and X3. The first correc-
tion term to the convolution approximation is the super-
position approximation, (2.18) and (2.19), which can be
written as

(V%+V%+v§)x3<r1,r2,r3)-%”xg(n,rz,m

zZ[Vh(rlz)'Vh(rn)h(r23)+c.p.] . (2.23)
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FIG. 3. Four-, five, and six-body elementary diagrams in
terms of the pair distribution factor g (r)—1 that correspond to
those shown in Fig. 2.

The generalized definition for X; and X3 provides a sys-
tematic route to improve upon the three-body correla-
tions. But we will see that the correction term (2.23) is, in
the vicinity of the saturation density, only a rather small
modification of the convolution approximation (2.22).
The convolution approximation (2.22) should therefore be
adequate for most practical purposes. We see also that
the so-called backflow form of Refs. 11 can be obtained
by setting the energy denominator in the convolution ap-
proximation (2.22) equal to a constant. More convention-
ally, however, one means with backflow a current-current
coupling term in the particle-hole interaction. The parti-
cle hole interation (2.14) derived from any variational
ground-state theory is local independently of the presence
of three-body correlations. One hesitates therefore to
identify correlations of the structure (2.22) with the
Feynman-Cohen backflow. These correlations should
more appropriately be identified with static three-body
correlations; a relation to the Feynman-Cohen backflow
cannot be derived from a ground-state theory.

The remaining task is the calculation of the elementary
diagrams of a topological structure equivalent to the ones
kept for the three-body correlations. These diagrams are
shown in Fig. 3. For a given approximation for the
three-body correlations and the choice of the elementary
diagrams one may now also make a comparison with the
perturbation series of the ground state of a weakly in-
teracting Bose system. The relation between this pertur-
bation series and the optimized Jastrow-HNC approxima-
tion has been studied most thoroughly by Jackson et al.'®
who find that the Jastrow-HNC approximation fails in
fourth order of the perturbation series. One can easily
verify that the inclusion of three-body correlations in the

1

convolution approximation (2.25) is exact to at least
fourth order in the energy. Higher-order terms in the per-
turbation series are not available in the literature. Since
the superposition approximation for X; and X3 plus the
set of elementary diagrams shown in Fig. 3 exhausts all
diagrams up to fifth order in the pair correlation function,
we conjecture that this approximation gives the energy of
a weakly interacting Bose system correctly up to the fifth
order.

III. THREE-BODY STATIC FORM FACTOR

The graphical representation of the connected part
83(ry,15,13) —g (1, 1)) —g(ry,r3) —g(ryr3) +2  of  the
three-body distribution function shown in Fig. 1 leads, for
the three-body static structure factor, to the exact repre-
sentation

S(ky, ko, k3) =8y 4, +k,,05(k1)S(k)S (k3)

X[1+4@5(k,kp,k3)+X;5(k, ko k3)] . (3.1)

The first term in Eq. (3.1) is the ordinary convolution ap-
proximation, the remaining terms are the corrections due
to the inclusion of three-body correlations and Abe dia-
grams. To be able to make general statements about the
three-body structure factor we must, of course, assume
throughout this section that X;(r;,r,,r;) and X3(r,,1,,13)
are included exactly in the sense of the diagrammatic defi-
nition given in the preceding section. Xj;(ry,r,,r;) and
X4(ry,1513) are short-ranged functions, and the long-
wavelength behavior of the two-body quantities S (k) and
X (k) is

S(k)~ ik as k—0+ (3.2)
2mec,
and
X(k)=1—1/S(k)~—2mc, /#ik as k—0+ , (3.3)

where c, is the velocity of sound predicted by the long-

wavelength limit of the particle hole interaction (2.14),
med =Vop(04) . (3.4)

Keeping in Eq. (2.21) only the contributions that dom-
inate as k; —0(i=1,2,3), we find

[k, kX (k)X (k;)+c.p. ]+ (4m /#)X 5(0,0,0)

a(ky,kyky)=— Sk] +k,+k3,0

The three-body correlation function #; dominates the
long-wavelength behavior of the three-body structure
function (3.1):

#i kikyk;
S(ki,ky,k3)=—58
ko, k;3) ktetk® | 20 | T Tk,
» k,-k2+ +JT'g,(o,o,O) 3.6
c.p. —_— . .
kik, P Ci

k3/8(ky)+k3/S(ky)+k3/S(ky)

as k;—0+ . (3.5)

f

The form (3.6) of the long-wavelength structure is iden-
tical to the one derived by Berdahl from a quantum-
hydrodynamic model.!” There, the constant X ;(0,0,0) has
been connected to the Griineisen constant

u=2 g;- . (3.7)

To make a similar connection in our variational model,
we follow the diagrammatic derivation of Ref. 18 for the
connection between the quantity c, [cf Eq. (3.4)] and the
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hydrodynamic velocity of sound

, d [zd(E/A)

"4 dp

(Note that ¢ and c, are identical only for the exact
ground-state wave function.)

A diagrammatic construction of the quantity
X5(ry,rp1y) starts from the energy expectation value
E/A. We assume E/A to be represented by a series of
n-body diagrams; each of these diagrams carries a factor
p" ~!; thus, we write

. (3.8)

E/d=3S p*le, (3.9

n=2
where the e, depend on the density only through the den-
sity dependence of the optimal two- and three-body corre-
lations. The set of non-nodal diagrams X3(r;,r,,r3) can
be obtained from such a graphical expansion of the energy
by letting, in turn, each triple of internal points be exter-
nal. Thus, each n-body diagram contributing to the ener-

]

#i kikaks
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gy generates n(n —1)(n —2) diagrams contributing to
X5(ry,15,13). Taking the long-wavelength limit of this
three-body function yields therefore an expansion in terms
of the same diagrams as the energy, but with a weight fac-
tor n(n —1)(n —2) for each n-body diagram, i.e.,

X5(0,0,0)= i nin —1)n —2)p" Ve, .

n=3

(3.10)

If we ignore the density dependence of the optimal
correlation functions, we can also calculate the Griineisen
constant from the energy expansion (3.9) and obtain

1

Uy = S nn—17%" e, . (3.11)
* zmci n§2 p "
In other words, we arrive at the relation
X4(0,0,0)=mc(2u, —1), (3.12)

and obtain for the long-wavelength part of the three-body
structure function

S (ky,kpK3)=—8 4k, +Kk,0

2me, | ki+ky+ks

We find, therefore, exactly the same situation as for the
two-body structure function in the sense that the
equivalence of the hydrodynamic prediction agrees with
the prediction of the variational model only if the density
dependence of the optimal correlation functions is negligi-
ble. The rigorous equivalence of the sound velocities ¢

J

kiky

k
2 +c.p. |+2u,—1| as k;—0. (3.13)

I

and ¢, has so far not been demonstrated in the variational
model for any finite truncation of the Feenberg function
(1.1).

It is also interesting to examine the long-wavelength
behavior of the optimal three-body correlations. Using
(3.3) in (3.5), we find

i3(ky,ky, k3) = —8y 4k, +ky0

i

The result (3.14) allows interesting conclusions on the
density dependence of the three-body correlations in the
vicinity of the spinodal point ¢, —0: In this limit, the
contribution from the convolution approximation van-
ishes, whereas the correction term becomes the dominant
one.

We have given here, to our knowledge, the first micro-
scopic derivation of the structure of the long-ranged por-
tion of the three-body structure function. The derivation
has been general enough such that one does not expect the
result to be changed by the inclusion of four-body correla-
tions. We have provided a proof that Berdahl’s hydro-
dynamic model leads to the correct analytic form. The
identification of our u, with the exact Griineisen con-
stant is not yet completely clear, but we expect that the
discrepancy is due to the finite truncation of the Feenberg
function (1.1).

IV. NUMERICAL PROCEDURES AND RESULTS

In our numerical work we have adopted the superposi-
tion approximation (2.18) for the irreducible three-body

2mey | {(ky-ky/k ky+c.p.)+[X 5(0,0,0)/mc2 ]}
ki+ky+ks

as kl—>0 . (3.14)

f

quantities contributing to the three-body correlations. It
is very economical to evaluate the elementary diagrams in
momentum space: In that case, the five- and six-body
contributions to the energy arising from the elementary
diagrams shown in Fig. 3 can be obtained without any ex-
tra effort from the ingredients of the four-body elementa-
ry diagram. We have not included in the numerical
evaluation the six-body diagrams: these are only a small
set of all six-body elementary diagrams and are repulsive,
whereas the sum of all sixth-order elementary diagrams is
attractive.”” The question is immaterial for the corre-
sponding triplet-correlation terms: their contribution to
the energy is only of the order of 0.1 K at saturation den-
sity. We show in Table I the contribution to the ground-
state energy from HNC diagrams Eyyc, triplet correla-
tions in the convolution approximation of Campbell, ES>,
and the four-, five-, and six-body corrections E$". Also
shown is the contribution to the energy from four- and
five-body elementary diagrams, E* and E*, respective-
ly. These values agree reasonably well with the calcula-
tions of Smith.'”> We expect therefore that the two five-



33 OPTIMAL THREE-BODY CORRELATIONS AND ELEMENTARY ... 3165

TABLE 1. Contributions to the ground-state energy (column 7) from two-body Jastrow correlations in the HNC-EL approximation
Eync (column 2), the three-body part AES (column 3) and the four-body and higher-order terms A{" (column 4) arising from three-
body correlations, and the contributions AE{* from fourth-order (column 5) and AE> from fifth-order (column 6) elementary dia-
grams as a function of density p. Also shown is the velocity of sound ¢ (column 8) as obtained from Eq. (3.8).

P (A7) Eync (K) AEY (K) AEY (K) AE® (K) AEP® (K) E (K) ¢ (m/sec)
0.016 —5.39 —0.34 0.03 —0.18 —0.28 —6.16 119
0.017 —5.42 —0.41 0.04 —0.21 —0.34 —6.35 151
0.018 —5.39 —0.50 0.05 —0.25 —0.40 —6.49 178
0.019 —5.28 —0.61 0.06 —0.30 —0.47 —6.59 202
0.020 —5.08 —0.73 0.07 —0.35 —0.55 —6.64 223
0.021 —4.79 —0.87 0.08 —0.41 —0.63 —6.62 240
0.022 —4.41 —1.04 0.09 —047 —-0.72 —6.54 255
0.023 —3.92 —1.23 0.10 —0.55 —0.81 —6.40 266
0.024 —3.32 —1.44 0.12 —0.63 —0.91 —6.19 272

TABLE II. Same as Table I for the case where the pair distribution function is not reoptimized.

p (A™?) Eunc K) AEY (K) AEY (K) AE® (K) AEP® (K) E (K) ¢ (m/sec)
0.016 —5.43 —0.29 0.03 —0.16 —0.26 —6.11 128
0.017 —5.48 —0.35 0.04 —0.19 —0.31 —6.29 161
0.018 —5.46 —0.42 0.05 —0.22 —0.36 —6.42 189
0.019 —5.36 —0.50 0.05 —0.26 —0.42 —6.50 215
0.020 —5.20 —0.60 0.06 —0.30 —0.49 —6.52 238
0.021 —4.94 —0.70 0.07 —0.34 —0.56 —6.47 258
0.022 —4.60 —0.82 0.08 —0.39 —0.63 —6.36 276
0.023 —4.15 —0.96 0.09 —0.45 —0.71 —6.17 291
0.024 —3.61 —1.11 0.11 —0.50 —0.79 —5.90 302

TABLE III. Same as Table I for the case where enhancement factors are applied to the three-body and elementary-diagram terms
in order to fit the GFMC ground-state energy.

p A7) Ennc (K) AEY (K) AEYY (K) AE* (K) AE®” (K) E K ¢ (m/sec)
0.017 —5.32 —0.53 0.05 —0.31 —0.49 —6.61 122
0.018 —5.26 —0.65 0.06 —0.37 —0.59 —6.81 151
0.019 —5.10 —0.80 0.07 —0.44 —0.69 —6.96 174
0.020 —4.86 —0.97 0.08 —0.52 —0.81 —17.07 195
0.021 —4.51 —1.17 0.10 —0.61 —0.93 —-7.13 211
0.022 —4.05 —1.41 0.11 —0.72 —1.07 —7.13 225
0.023 —3.46 —1.69 0.13 —0.84 —1.21 —17.09 234

0.024 —-2.75 —2.02 0.15 —0.99 —1.37 —6.98 238




3166

body diagrams shown in Fig. 3 provide a reasonable ap-
proximation to the set of all elementary five-body dia-
grams.

The binding energy obtained here has a minimum of
—6.64 K at a density of about 0.02 A~>. The improve-
ment over the Jastrow-HNC approximation is significant,
but the energy still falls short of the GFMC value by
about 0.5 K, we will return to this point further on.

The velocity of sound can be calculated from the equa-
tion of state through the hydrodynamic prediction (3.8)
or, alternatively, from the long-wavelength limit of the
spectrum of collective excitations, cf. Eq. (3.4). We have
already mentioned that the two definitions will not neces-
sarily lead to the same numerical value for the velocity of
sound in any finite-order form of the Feenberg function.
But the numerical values for the velocity of sound ob-
tained by the two expressions agree within about 10%,
whereas the discrepancy is much larger if no elementary
diagrams and three-body correlations are included. The
close agreement between the results of two different ex-
pressions for the velocity of sound lends further credibili-
ty to our calculational scheme.

We have pointed out above that our treatment of the
three-body correlations is only equivalent to a direct HNC
summation with triplet correlations if the pair-
distribution is reoptimized. This has been done for the re-
sults shown in Table I. For comparison, we show in
Table II the same energies as calculated with the g(r) ob-
tained from the optimization of the Jastrow-HNC energy
expectation value Eync. We see that the reoptimization
leads to very little additional binding, but it affects the
velocity of sound notably. The effects are more signifi-
cant in the radial distribution function and the static form
factor, where the reoptimization produces an enhance-
ment of the nearest-neighbor peak.

It has been known for some time!? that there are still
significant contributions from the elementary diagram
sums from sixth- and seventh-order diagrams. Since it is
rather tedious and time consuming to compute these dia-
grams, methods have been sought!>!* to estimate these
higher-order effects. A possible route'* is to apply an
enhancement factor to the elementary diagram sum and
impose some consistency condition, such as the agreement
of different forms of the kinetic energy, to determine this
enhancement (“scaling”) factor. Other possible consisten-
cy requirements would be sequential relations between
g(ry,ry) and g;3(ry,r,,13), or Born-Green-Yvon relations
between the two- and three-body correlation factors and
distribution functions. It is clear that any approximate
theory will lead to various inconsistencies somewhere, and
each consistency requirement will lead to different scaling
factors. It seems hard to find rationalizations that are ul-
timately justifiable on a microscopic basis. We prefer
therefore to determine the enhancement factor from what
we want it to do. This is to produce agreement of the ap-
proximate calculation with GFMC data such that we can
then apply the theory to problems not yet treated by
GFMC methods, or even out of their reach. To produce
this agreement, we need to enhance the elementary-
diagram correction (AE,) by a factor of 1.35 and the
three-body correlation term by a factor of 1.18. The same
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FIG. 4. Pair distribution function g(r) from our calculation
with enhancement factors (solid line) is compared with the
GFMC data of Ref. 3 (circles) at the experimental saturation
density p=0.02185 A™". The dashed line shows the optimized
HNC approximation at the same density.

effect of enhancing the contribution from three-body
correlations can be obtained by either omitting the terms
X;(ry,15,13) and X;(r,r,,13), or by replacing the Feyn-
man spectrum in the energy denominator of Eq. (2.21) by
bare kinetic energies. Two independent factors come in
since we can compare independently Eync-+AE, with
variational Monte Carlo calculations using the PPA pair
correlation functions.® Applying these factors, and keep-
ing them constant over the whole density regime, gives the
results of Table III, which show also that we obtain with
that procedure a very reasonable estimate for the velocity
of sound.

Figure 4 shows finally a comparison of our pair distri-
bution function with the GFMC data from Ref. 3 for the
calculation using enhancement factors. The comparison
is satisfactory, but we note that the agreement between the
pair distribution functions without the enhancement fac-
tor is even better. Since most of the structure of the
nearest-neighbor peak is due to the three-body correla-
tions, it seems that no enhancement factor should be ap-
plied there, and that some of the missing energy is in fact
due to four-body effects.

To conclude, we emphasize that the main advantage of
our procedure as compared with parametrized forms of
two- and three-body correlations is that it requires no as-
sumption whatsoever on specific analytic forms of these
correlations. The optimization of the pair correlation
function is hardly more complicated than the solution of
the HNC equations with a given pair correlation function;
it requires three instead of two Fourier transforms per
iteration. The accuracy obtained as determined solely by
the sets of “elementary” diagrams which one decides to
include, and these determine the computational effort.
The optimized approach provides, therefore, the best pos-
sible set of correlations, and does not increase the compu-
tational complexity. An interesting problem for further
invstigation is the connection to the parquet-diagram
theory'® which produces a somewhat better agreement
with GFMC results, if the ingredients of that theory cor-
responding to the variational elementary diagrams and
three-body correlations are retained.!®
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FIG. 1. Graphical representation of the connected part
g3(ry,13,13) —g(1,,13) — g(r),13) — g (r2,13)+2 of the three-body
distribution function. The representation is exact if the shaded
triangle is interpreted as the set of all irreducible, non-nodal
three-body diagrams. The set of diagrams included in the calcu-
lation of the three-body Jackson-Feenberg kinetic energy is the
one obtained by approximating the shaded triangle by the
three-body correlation function.



FIG. 2. Set of elementary diagrams included in the present
calculation that contain one or two three-body correlation fac-
tors u;(r;,r;,1z).



