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%e extend our previous (microscopic) study of the macroscopic dynamics of planar spin glasses to
the case where the system has a remanent magnetization. In addition to employing, as macroscopic
variables, the magnetization normal to the easy plane and the rotation angle about the axis normal

to the easy plane, we utilize the result that random microscopic anisotropy which is bilinear in the

spins leads to an in-plane macroscopic anisotropy with uniaxial symmetry. The present work is

more phenomenological than the previous study, but as a consequence it is simpler to make predic-

tions which are directly applicable to experiment. The zero-wave-vector mode, which involves the

macroscopic variables identified above, is found to be field dependent when the static field is in the

easy plane, so that it should be amenable to ESR measurements. (This mode can be described as a
"longitudinal" mode, in the language of Heisenberg spin glasses. ) As the measuring field is rotated
in the plane, the resonance develops a complex angular dependence. This work also considers relax-

ation effects associated with the above macroscopic variables. Furthermore, since the in-plane mac-

roscopic anisotropy is not fixed to the lattice, it is susceptible to change; we have, in addition, stud-

ied this slow anisotropy motion.

I. INTRODUCTION

The present paper is an extension of the work of Ref. 1,
which considers the question of how one identifies the ap-
propriate macroscopic variables for planar spin glasses
and establishes the form of the macroscopic in-plane an-

isotropy which can be expected to occur. Having estab-
lished the fundamental variables and anisotropy, in the
absence of a remanent magnetization, the normal modes
were studied in the long-wavelength limit. To go beyond
this work and include a remanence, it is simplest to go to
a more phenomenological approach. That has been done
in the present paper, where we consider the effect of a
remanence and an external field on the normal modes. In
addition, we consider the effects of relaxation associated
both with the macroscopic variables and with the aniso-
tropy. For a brief review of the experimental and thmret-
ical work which has already been done on XY spin glasses,
the reader is referred to the Introduction of Ref. 1.

In Sec. II we study the normal modes for a remanent
magnetization mo and a field H in the plane (not neces-
sarily parallel to one another). For the parallel case, we
find a resonance involving ( m„my, 8, ) for which

co =y (E+moH)/X (H~ ~mo, in plane), (1.1)

where X is the susceptibility normal to the plane. As a
consequence, this resonance is tunable by varying 0, and
therefore it should be suitable for study with (fixed-
frequency) electron-spin resonance (ESR) spectrometers.
Moreover, by varying the orientation of the applied field,
one can produce a more complex dependence of the reso-
nance on field orientation; some examples of the possibili-
ties are given.

In Sec. III we consider relaxation effects associated
with the macroscopic variables and how this gives a finite
linewidth to the normal modes. Section IV discusses what

happens on a time scale long enough that the macroscopic
anisotropy can reorient in the plane: this leads to the in-
troduction of a memory angle e„and its dynamics is
treated both in terms of time-dependent torque measure-
ments and transverse susceptibilities. Finally, Sec. V pro-
vides a summary and discussion.

II. DYNAMICS FOR 8+0, I~O
Equation (4.13) of Ref. 1 yields the result that, for an

external field normal to the plane, the resonance frequen-
cy cannot be adjusted. This does not appear promising
for one of the more useful probes of the spin-glass state:
electron-spin resonance —because ESR spectrometers have
only a limited amount of tunability. In order to give the
resonance some tunability, we will permit the system to
have a remanence mo, and we will consider that. there is
an applied field H. Moreover, we will consider only the
case k =0 (which is relevant to ESR); although from
(4.13) of Ref. 1 it is clear that by replacing K by
(E +p, k ), one may incorporate the effect of finite k.

In Ref. 1 we have discussed why the transverse vari-
ables mi and 8i are not good macroscopic variables.
Nevertheless, in order to obtain an approximate macro-
scopic description of how the system behaves in the pres-
ence of a magnetic field H, we will include them, use
them, and then discard them. Note that we will only con-
sider the case yAH &&J,D, so that the magnetic field can
be considered to be a perturbation. This is a very reason-
able assumption, on comparison with the material param-
eters given in Table II of Ref. 2; for y=2. 8X10 cgs, J
typically corresponds to 10 —10 G. It will be useful to
introduce two sets of orthonormal triads, as in the case of
the isotropic spin glass. ' The first, (n, p, Q), will be asso-
ciated with the planar spin-glass state, with q normal to
the plane of the system and n associated with the direc-
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tion of the remanence, if any. The second, (N, P,Q}, will

be associated with the anisotropy energy, with Q fixed
along the normal to the plane (taken to be '2) and N being
associated with the (history-dependent) preferred direction
for n, as is taken to be the case for the isotropic spin
glass. %e will thus replace the energy density
(4.3}—(4.5) of Ref. 1 (which predicts no unidirectional
anisotropy) by

2 2

——' IC[(n N) +(p P) ]
2+zg 2g J

——,'Ei(g Q)~ —m H+ n
Xj

(2.1)

In this expression, the first two terms give the energy cost
due to magnetizing the system, where we have introduced
the Xj '-J term to permit the system to magnetize in the
plane. The second two terms give the anisotropy energy,
where the term in K (-D, /J) is due to random micro-
scopic anisotropy D, and serves to align n with N and p
with P, and we have introduced the Ei (-D) term to
prevent q and Q from becoming significantly misaligned.
The last term gives the interaction of the magnetization
with the external field H and an internal field whose mag-
nitude, being proportional to the remanence, is history
dependent. For our purposes, we will treat the remanence
as fixed and we will consider only the case where H is in
the plane. The equilibrium conditions are that

(2.2)

(2.3)
8m~

where in (2.2}, (m, n, p, t]) change by 5m=5$Xm, etc. ,
under the rotation +. In the limit of large D, the strong-
est constraints lead to Q~ ~Q and rn, =0. Moreover, within
the plane we have

(2.5)

where we have dropped terms which do not depend upon
8, or rn, and we take H to lie in the plane. Minimizing
this, we deduce that

m~=inpn+XiH (H in plane} (2.4)

Use of q~ ~Q enables us to reduce the anisotropy term in E
to —,'Ii cos (8,—8,—), where 8, —8, gives the orienta-

tion within the plane of n with respect to N. As a conse-
quence, if we consider 8, fixed at the value 0, and take H
to make an angle OH with respect to N, the energy may be
rewritten as

2~z 2——,K cos 8,—rnpH cos(8g —8'�)
2X

6I& ——Op+ m. —sin
K

sin(28p}2~pa
(2.7b)

as appropriate. Note that by inverting (2.7) one can ob-
tain 8p as a function of 8H and thus the equilibrium aniso-
tropy torque

I p"—— ,' E—s—in(28p) (2.8)

Let us now consider the problem of how the normal
mode associated with in, and 8, is modified by the
remanence and the applied field. Because of the large an-
isotropy, rotations about any axis in the plane will be
suppressed. Physically, this means that if we formally
consider a rotation 8i about an axis in the plane, then this
variable can quickly adjust to its local equilibrium while
the slower variables are changing in time. This means
that the in-plane component of (2.3) continues to hold and
therefore (24) is valid during the course of the low-
frequency motion. As a consequence, (2.5) serves as the
effective energy which drives 8, . Thus, the equation of
motion for in, is given by (4.6) of Ref. 1 with e given by
(2.5):

rn~ = —7' (2.9)

58, =y
Bm,

(2.11)

Combining (2.10) and (2.11), we find that the oscillation
frequency is given by

&80

120 .

where m~m+QXm and 8~8++ under the rotation
Q. Explicitly, on linearizing 8, about 8p, so 8, =8p+58„
we have

rn, = —[K cos(28p)+mpH cos(8p —8H )]58 (2.10}

where 8p is given by (2.7). The equation of motion for 58,
is given by (4.11) of Ref. 1:

0= = —,K sin(28, )+rnpH sin(8, —8H)
BE

Bez
(2.6)

From (2.6}we find that the equilibrium angle 8p satisfies

0
0 30 60 90 &20 &50 &80

e„

8~ ——Op+sin
E

sin(28p)
2mpH

(2.7a)
FIG. 1. 80 as a function of 8H, for H:—H/(K/mo) represen-

tative of the three regimes H & 1, 2 &H & 1, and 0&H & z .
See discussion in Sec. II for details.
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FIG. 2. a) =a)/a)() as a function of 80, for H representative of

the three regimes H g 1, 2 &H & 1, and 0 &H & —,. See discus-

sion in Sec. II for details.
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FIG. 4. 80 as a function of 80, for co representative of the

two regimes Gp 1 and 0 & co & 1. See discussion in Sec. II for de-
tails.

y [EC cos(280)+moH cos(Hp —HH )]
N

Xm
(2.12)

In the simplest case, where H and n are along N (so that
80 and HH are zero), this yields the simple relationship

y (K+moH)
(H/ [nf /N) (2.13)

(2.14)

In Figs. 1—5 we have plotted a number of relevant
curves. To do so, it was useful to define

H =H/(Klmo) co=—co/coo (2.15)

Figures 1—3 give 80, co/c00, and I 0"/K as a function of

Thus, with a remanence and a static field in the plane,
when one performs a transverse ESR experiment it should
be possible to "tune" the resonance to the microwave cavi-
ty by varying the strength of the static field. Note that
for H along z, co is given by

cos(28O"'}=—

and then (2.7b} applies beginning with the value of 80

which makes HH continuous; 80 is then increased to m.

(This leads to a discontinuity in 80 because the system

develops a dynamical instability, signified by 8=0.) F«
0 &H & —,', (2.7a) applies for 80 increased from 0 to 80

'" in

the first quadrant, where

sin(280 '")=—2H (0 &H & & ) (2.17}

and then (2.7b) applies as 80 is stepped down «Q.
In Figs. 4 and 5 we plot 80 and H as a function of 8H,

for various values of co. This was done by noting that
(2.6) and (2.12) may be combined to yield

sin(280)
tan(8H —Hp) =—

co —cos(280)

HH, for various values of H. For H & 1, (2.7a) applies for
all 80 which was increased from 0 to ir to produce the cor-

responding values of 8~. For —,
' &H & 1, (2.7a) applies for

80 increased from 0 to 80"' in the first quadrant, where

1/2

3 2( —' & H & 1), (2.16)
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FIG. 3. I o"/E as a function of 80, for H representative of

ihe three regimes H & 1, 2 &H & 1, and 0 &H & 2. See discus-

sion in Sec. II for details.
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FIG. 5. H as a function of 0~, for co representative of the
two regimes co ~ 1 and 0 & 6& 1. See discussion in Sec. II for de-
tails.
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III. PHENOMENOLOGICAL RELAXATION
EFFECTS

Let us now consider the effect of relaxation on the vari-
ables m, and 8„assumed to be not far from local equili-
brium. We expect that we must augment the nondissipa-
tive terms by

(3.1)

d8, 1
8, (3.2)

where T, and U, are phenomenological relaxation times.
These must be added. to the right-hand sides of the ap-

propriate parts of (2.9) and (2.11}. For H~~N, {2.9) and
(2.11) become

1
yn, = —y(K+ynoH)8, — m,

Z

(3.3)

which then leads to the following cubic equation for p,
where p:—cos28o.

p, —p, (2' +3 cos 8H)

+p, [(a~)+1)(pi +3)cos 8~+co sin 8H]

—(co +1}cos 8H ——0 (2.19)

Since the quadrant is chosen to be consistent with {2.18),
there are at most three acceptable real roots to (2.19). For

& 1 there is only one real solution. For 0&8&1 there
are either one or three real solutions, but we only choose
those which can be reached by the following experimental
procedure: starting with 8 ——0 and H =0, 0 is applied at
the orientation 80 and increased until resonance occurs.
If all real solutions had been accepted, the curves in Figs.
4 and 5 would be extended so as to be symmetrical about
90'. These solutions are represented by dashed lines.

A A A
~ ~

(N, P,Q) can rotate in the isotropic case, here N and P
can rotate about Q. This means that B, [introduced after
(2.4)], which determines the orientation of N, develops a
dynamics. Since it is possible to have N far from its
equilibrium orientation n, we will not assume that 8, —8,
is small. From Ref. 3 for the isotropic case, we can ex-
pect that e, is driven dominantly by the anisotropy
torque, so we take

B= yFI—',""'=—y sin[2(8, —B,)], (4.1)

where F is a phenomenological constant with the dimen-
sion of inverse magnetization. This simple equation is
surely an oversimplification, since in the isotropic case the
anisotropy relaxation displays multiple relaxation times.
Nevertheless, it should provide some guidance. Setting
yFK=r ' and considering the case where 8, and B, are
driven as e '"', (4.1}yields

B,=8,(1 ivor—)

I,'"= K8„K—=—K (1+i /cow)

(42)

(4.3)

Thus the anisotropy torque should be frequency depen-
dent, with the important property that K-+0 for iu~O,
since then the orientation B, has enough time to com-
pletely relax.

A related phenomenon can be seen if one studies the
in-plane transverse susceptibility. We will continue to as-
sume that we are operating at sufficiently low frequencies
that 8i=0, so that (2.10) holds: for Hy&0, this means
that

my ——mp8, +XiHy (4,4)

We will assume that H, =e, =e& ——0 in equilibrium and
study the response to small transverse fields. In that case
we may employ (4.3} for the anisotropy torque. We then
have, with the addition of an H, and H» oscillating as
e ' ', that (2.10) and (2.11) are modified to read

8, =y
Xm

1
8, (3.4) i coni, =—y(K+moH)8—s+y(»no XiH)H (4—5)

Im(~}=——1 1 1

z s
(3.5)

The normal mode of (2.13) thus develops an imaginary
part

i co8, =— (rn, X~H,)— (4.6)

(4.7)

For Hy =0, the solution for the out-of-plane suscepti-
bility is

so that its damping is due both of yn, and 8, relaxation
processes. (Although this mode has a magnetization
rn =y8yn„pwe assume that its relaxation to this value is
not relevant to the present discussion. )

IV. ANISOTRGPY MOTION

where

(K+moH)
COp =—P

Xm
(4.&)

To date, no experiments have been done on the in-plane
anisotropy. However, on the basis of what we know of
isotropic spin-glasses, it should be safe to assume that in-
plane anisotropy is not much different for planar spin
glasses than three-dimensional anisotropy is for isotropic
spin glasses, except that now only one axis of rotation
need be considered. Therefore, just as the anisotropy triad

Note that X~(co)~X~ for co~0, as expected.
For H, =0, the in-plane transverse susceptibility is

2 2
err P Alp

Xi (pi)—= =Xi+
Hy (cop —co )X~

(4.9)

Note that Xi (co)~m„/H„=X&+mp/H for co~0, as ex-
pected, where we use the fact that coo +y mpH/X for—
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co~0, since E~O in that limit. On the other hand, for
coo-coo»co, so that 6,=0 (frozen anisotropy), (4.9)
yields

2
eff mo

XJ ~XJ + E+moH
(4.10)

V. SUMMARY AND DISCUSSION

We have considered a number of the dynamical proper-
ties expected for planar spin glasses, emphasizing what
can be expected when one includes anisotropy, remanence,
and a magnetic field. Although they are qualitatively
similar in behavior to isotropic (Heisenberg) spin glasses,
they differ significantly in their detailed properties.

First, they have only one (rather than three) macroscop-
ic normal mode, and this mode has a very different field
dependence than any of the modes for the isotropic case.
Second, their macroscopic in-plane anisotropy has both a
different microscopic source (only dipolar-like can pro-
duce an effect, whereas DM-like dominates in the isotro-
pic case) and a different macroscopic symmetry (favoring
0' and 180' equally, rather than only 0'}.' Experimental
studies of ESR, transverse susceptibility, remanence prop-
erties (such as the isothermal remanence, the ther-
moremanence, and the remanence decay), and anisotropy
decay would be quite useful.

Moreover, studies of the hysteresis loop should be quite
interesting, since the predicted anisotropy energy is of the

classic cos 8 form, but the magnetization is forced to lie
in the easy plane, even when it is forced to "flip" (due to
an instability). Hence, dynamic studies of the magnetiza-
tion flip will not be hindered by any uncertainty in the
path of the magnetization m (in m space} as it undergoes
a flip. This same uncertainty will also be eliminated from
studies of the anisotropy motion, since here it is sufficient
to describe the movable anisotropy by a direction rather
than by a triad (as in the isotropic case). Studies of the
anisotropy decay to determine the dependence of r (or of
the multiple ~'s ) on H and T would provide a revealing
probe of the dynamical processes by which the system
"learns" a preferred direction. This is a very general and
outstanding problem whose answer is hardly more than
qualitatively understood. ' ' ' The most significant as-

pect of the anisotropy decay is that, because of the dis-
tinct separation of the r's, it appears to be a collective
phenomenon, unlike what happens in remanence decay.
At present, we have no notion of what are the collective
degrees of freedom which are relaxing, in contrast to the
case of remanence decay, where individual spin flips or
small cluster spin flips are most likely the dominant decay
mechanism.
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