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The analysis of a recently proposed experiment, designed to study the one-dimensional localiza-

tion of third-sound excitations, is extended to higher frequencies. Transmission resonances are

predicted for a discrete set of frequencies. The disorder is introduced by randomly distributing iden-

tical parallel strips of a modified substrate. These strips can be produced in such a way that they ei-

ther modify the thickness of the part of the superfluid film located on the strips or change the effec-

tive third-sound speed in these regions. The main features of the localization and the transmission

resonances are studied in detail. The system described here is shown to be conceptually far simpler

than its electronic analogs. Experimentally, the analogs of inelastic scattering and interaction effects
in the electron problem can be easily controlled.

I. INTRODUCTION

Since the early work of Mott and Twose' and Borland, ~

the problem of electron localization in one dimension has
been the subject of a considerable amount of research. In
the references we list several review articles. A num-
ber of rigorous results have also been obtained. s'

It has been shown that all electronic states (except for a
set of measure zero) in random one-dimensional systems
are localized. In usual experimental situations at low tem-
peratures the conductivity is determined by thermally ac-
tivated hopping. ' However, Lifshitz and Kirpichenkov
have investigated the tunneling of quantum particles
through a disordered array of 5-function barriers" and
found that a particle with an energy near that of an eigen-
value of the random Hamiltonian would find the disor-
dered region almost transparent. Azbel has studied the
problem of localization by a random distribution of
scatterers located on a finite one-dimensional lattice. He
showed that such a system has transmission reso-
nances. '2'~ Azbel has also considered finite-temperature
effects in his model. ' He showed that the conductance
G(T) should have the same type of temperature depen-
dence as thermally activated hopping, i.e., InG ( T)
——T '~ . Under certain circumstances a different tem-
perature dependence has also been predicted. '

The conduction at very low temperatures can therefore
proceed by two mechanisms: thermally activated hopping
and resonance transmission. The first (second) is expected
to be dominant when the inelastic characteristic length 1;

is smaller (greater) than the sample length l. '

A further complication in the analysis of the transport
processes at low temperatures is the presence of the
electron-electron interaction. ' In disordered systems this
effect is more important than in ordered ones.

Currently, a significant theoretical and experimental ef-
fort is being devoted to the analysis of transport phenome-

na in one-dimensional electronic systems. The goal is the
separation of the contributions to the conductivity. '

Less attention has been given to nonelectric localization
problems. 's This situation is beginning to change. Jackie
analyzed the conditions for experimental observation of
phonon localization in nearly-one-dimensional solids 9

Mcourn et al. studied the contributions arising from the
localization of surface polaritons to the scattering of po-
larized light by a randomly rough grating; Baluni and
Willemsen considered the transmission of acoustic waves
through a sequence of alternating layers with random
thicknesses. ' Pendry and Kirkman investigated how dis-
order restricts the bandwidth available for signaling pur-
poses in various one-dimensional systems.

Recently, we proposed an experimental arrangement
that should permit the detection of localized one-
dimensional acoustic waves. i The excitations that are lo-
calized are third-sound wave and the randomness is intro-
duced by a disordered array of parallel identical strips of a
second substrate. We studied only the case of long-
wavelength excitations (the Rayleigh scattering limit), for
which the localization length g as a function of the fre-
quency E decreases as g-E .' ' ' Cohen and Machta
suggested another experiment to localize third-sound
waves; they propose a two-dimensional system in which
the disorder is introduced by dusting with small particles
an otherwise clean substrate.

In this paper we extend the investigation initiated in
Ref. 23 to higher frequencies and we also consider a
second type of scatterers obtained by roughening random
strips of the substrate. Localization and resonant
transmission are predicted to occur under conditions
which can be obtained experimentally with relative ease.
Their analysis is simpler than in the electronic problem,
since (A) at sufficiently low temperatures (below a few
tenths of a degree Kelvin), the intrinsic attenuation length
(for the uniform substrate) can be made extremely large
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(indeed, much larger than any possible experimental sub-
strate). The analog of the inelastic electron-phonon
scattering effects can therefore be neglected. The condi-
tion It »1 for resonant tunneling is then satisfied. (8)
The interaction between excitations {expressed through
the nanlinear terms in the hydrodynamic equations) can
be made arbitrarily small by controlling their amplitude.
(C) The scatterers are macroscopic and can be built essen-
tially identical to each other. As a consequence there is a
closer correspondence between theory and experimental
reality.

The details of the proposed system are ex lained in Sec.
II. We use multiple-scattering techniques to transform
the boundary-value problem arising from the random dis-
tribution of scatterers into an equivalent many-body prob-
lem. We then calculate a configuration-averaged Green's
function, obtaining a renormalized speed of sound and an
attenuation length.

In Sec. III we use a diagrammatic formalism, previous-
ly applied by one of us to study the localization of saund
waves by a random array of hard-sphere scatterers, to
calculate the intensity propagator. The intensity propaga-
tor is related to the canfigurational average of the squared
Green's function, and it can be calculated by solving a ki-
netic equation. First, we solve it using a ladder approxi-
matian, which yields the Boltzmann diffusion coefficient.
We then sum the maximally crossed diagrams and use the
self-consistent approximation of Vollhardt and Wolfle s

to obtain a transcendental equation far the localization
length. This equatian is solved and transmission reso-
nances are predicted and analyzed.

Section IV contains a final discussion of the advantages
and limitations of the system discussed here. Finally, in
Appendix A we give the exact form of the T matrix, and
in Appendix 8 we treat the effect of a nonvanishing in-
trinsic dissipation in the calculatians of Sec. II.

II. THE PROPOSED SYSTEM
AND THE AVERAGED GREEN'S FUNCTION

A. Background: A superfluid fitm on a stripped film
on a stripped substrate

The theory of third-sound modes on a thin helium film
is similar to the theory of shallow water waves, except
that the restoring force is provided by the van der Waals
interaction between the helium film and the atoms in the
substrate.

The properties of the third-sound excitations are sub-
stantially modified if we place on the original substrate an
array of parallel identical strips of a second substrate.
(See Fig. 1.} Since the equilibrium film thickness, which
is determined by the van der Waals interaction, is modi-
fied when going from one substrate to the other, the por-
tion of the film located on a strip acts effectively as a
scatterer for the third-sound waves. To a good approxi-
mation, the equilibrium thickness on a strip, III z, is related
to that on the original substrate, hi, by the equation
hi/hi ——(a2/ai)', where a2 and a, are the respective
van der Waals force constants. The phase velocity of
third sound, c, is the same on both regions. We will call

S

FIG. 1. Sketch of the random arrangement of parallel strips
of a modified substrate. The positions of a detector d~ close to
the source s and of a second detector d2 far from it are indicat-
ed.

these strips van der Waals (vDW) scatterers.
We assume that the temperature is low enough so that

the normal helium component can be neglected. Given
the relatively long wavelength of the third-sound waves
we will also neglect surface tension.

The velocity potential P(x), whose spatial derivative
U, =BPIBx is the velocity of the superflow, satisfies the
differential equation

B~P 1 8|)) I BQ

Qx2 c2 Qt2 c2 t}t
(2.1)

Here, I is a phenomenological damping constant, 3'32

which accounts for the residual (T~O) damping of
third-sound excitations and which has been interpreted by
Rutledge and Mochel as a surface friction. ' Experiments
performed using a uniform (no strips) vitreous quaitz sub-
strate yield I'h =1.0 atomic layers/sec. ' Since this turns
out to be a very small value when compared to the at-
tenuation due to substrate disorder, we leave the discus-
sion of the effects of intrinsic dissipation for Appendix 8
and set I =0 in the remainder of the text. (Note, howev-
er, that the lifetime of the localized excitations to be dis-
cussed in Sec. III will be determined by I . We estimate it
to be of the order of seconds. }

The boundary conditions can be derived by noting that
the region where the film thickness changes is very nar-
row far thin films. If d is the distance over which the
thickness changes, A, the third-sound wavelength, and a
the strip half-width, we will have, in general, d «A, and
d «a. Consequently, the waves effectively react to a
sudden variation in the film thickness at the edges of the
strips. If XJ is the position of the center of the jth strip,
the boundary conditions are

i(x, t) =PJ(x, t) at x =XJ—a,
BQJ. i Bpj'

hi (x,t)=h2 (x, t) at x =XJ—a,
Bx Bx

(2.2)
$&(x,t)=PJ(x, t) at x =XJ+a,

BQJ BQJ.
h2 (x,t}=h, (x, t) at x =Xi+a .

Bx Bx

Here, PJ is the velocity potential for the film on the
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strip, and Pi, and Pi are the potential corresponding to
the regions at the left and the right of the strip, respec-
tively. The conditions on the derivatives are obtained by
using mass conservation.

If the strips form an ordered array XJ jb——, with b being
the distance between strip centers„ the behavior of the
third-sound excitations can be described by elementary
methods. A simple band structure with alternating al-
lowed and forbidden regions for the wave number was ob-
tained in Ref. 33. There, we also compared the boundary
conditions (2.2) to those occurring in a square-well elec-
tronic Kronig-Penney potential.

In this paper we consider the distance between strips to
be random, specifying only the strip density n (Se.e Fig.
1.) Our treatment allows overlapping strip configurations.
The initial conditions are similar to those used previous-

23,24, 27

6(x, t &0 Ix')=0 (2.7}

Bt
(x, t =0

I

x') =5(x —x') . (2.8)

GE(x Ix')=&x
I GE Ix'& . (2.9)

Here, GE (x I
x'} are the Laplace transforms of the retard-

ed and advanced solutions of Eq. (2.6):

GE(x Ix')= f dte'"+-""6+-(x,t Ix'),

with e~0. In particular, the coordinate representation
for the Green's operator in the absence of scatterers is

(2.10)

As in Ref. 27, it is convenient to introduce an operator
notation in such a way that the matrix elements of the

+Green's operator 6 —in a coordinate representation are

({}(x,t &0)=0 (2.3}

&x
I GE, Ix'&= (—E+te)2+c2

2
' —1

5(x —x'} .

(x, t =0)=f(x), (2.4)
(2.11)

B. Multiple-scattering formalism

The velocity potential can be written in terms of a
Green's function as

P(x, t)= J dx' 6 (x, t
I
x')f(x') . (2.5)

The Green's function satisfies the differential equations

for a given initial perturbation f(x).
An alternative disordered substrate can be created by

"roughening" some pieces of an otherwise smooth sub-

strate. The effective speed of sound c, in the pieces of the
film on the roughened parts can be substantially smaller
than that on the smooth substrate. These pieces of film
therefore act as very efficient scatterers (indices of refrac-
tion N =cle, as high as five for roughened Si have been
reported }.

The rough regions may be distributed as a random ar-
ray of strips similar to that in Fig. 1. We call.these strips
index-of-refraction (IR) scatterers. It is not difficult to in-
clude both possibilities for the scatterers (i.e., simultane-
ous changes in the thickness and speed of sound) in the
formalism. The velocity potential satisfies a wave equa-
tion with speed of sound c on the unperturbed substrate
and c, on the strips, and the boundary conditions (2.2)
must be satisfied.

In the wave-number representation we obtain

GE(p I
p') = &p I

GE'
I
p'&

dxdx'e t et" GE+-(x Ix'} .2' (2.12)

A + A + A + A + A
G E,i =6 E,o+ G E,oT i (E)G E,o . (2.13)

To calculate the matrix elements of TJ, we first define
the ket vectors,

I

0&'-=6 EJ I p & (2.14)

with
I p & being a momentum eigenstate. Then, the

desired matrix elements are given by

&p I
T ' (E}

I pi & =[GE+,o(p)l '&p
I

it' &'-[GEo(pi)1

—5(P —Pi)[GE,O(Pi)l '. (2.15)

With the definition

If there are no scatterers present, GE (p I
p')

= GE~O(P)5(P —P').
The multiple-scattering formalism can now be intro-

du~ in the usual ma~er. 26'7 If Gi ls the Grmn's
operator when there is only one strip present at X&, we can
first define a Ti operator whose matrix elements form the
transition matrix for that single strip:

8 l 8
2 2 6(x, t Ix')=0

Bx c Bt
(2.6a) &p IP&-+=(27r) '~ Jdxe '~ &x I1(&+-, (2.16)

and

82

ax 2

Q2
G(x, t Ix')=0,

&s
(2.6b)

outside and inside the strips, respectively, together with
the satne boundary conditions as P [Eqs. (2.2}]. The ini-
tial conditions are

we can obtain a solution for our matrix elements by solv-
ing the differential equations

82
(E+ie) +c &x

I
p&„—+z ——(27r) ' e ' (2.17a}

Bx
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2

(E+ie) +c, &x j g&e ——(2e") '/ e ', (2.17b)

&p j T '«) jp-i&=&p j T'«}jpi&'

& p j
T+-( —E) j p) & = &p j

T +(E)
j p-i &',

&p j
T'-(E) jp&=& —p j T +(E)

j
—-p&,

&p j
T'(E)

j
—p&=& —p j

T'(E) jp&

(2.19a)

(2.19b)

(2.19c)

(2.19d)

and an optical relation,

Im&p j
T +(E) jp&-=+(n/2Ec}( j &p j

T+-jp& j

+ j&pjT'-j —p&j')

{2.20)

for p =Elc.
The N-strip (N ~ cc ) Green's operator can be expressed

in terms of an infinite series of individual Ti operators:

N
G E =G E,o+ g G E,oT i*(E}GE,o

N

+g G i,oT (E)G koT J (E)G E,o+ ' ' '

j+1
(2.21)

where no two consecutive Tt operators can have the same
label.

C. The averaged Green's function

Assuming the strips are randomly distributed, the
Green's function averaged over the random locations of
the scatterers (this spatial averaging is denoted by

&,„) is diagonal in the wave-number representation:

«p j G2 jpi»-=5(p —pi)&Gz+i. (p)& ~

=5(p —p i )[c p —(E+ie)i—X~ (E)]

{2.22)

The lowest-order diagrams for the self-energy
X~ {E)= yz(E)+i cr~(E) are shown in Fig. 2. The rules for
their evaluation are identical to those in Refs. 27 and 35.
The leading contribution for low densities yields

X~ (E)=2irn &p j T -(E)
j p & . (2.23)

The Laplace components of the velocity potential at
{x, t) generated by the point source at x' are obtained via a
Fourier transform of Eq. (2.22):

sphere A, 8, and C denote, respective1y, the regions
x &X —a, Xj—a &x &Xi+a, and XJ+a &x. The
boundary conditions are those in Eqs. {2.2). After a
lengthy but straightforward calculation we obtain

&p jTJ'-{E)jp, &=.'" '
'&p j

T'-(E) jp, &, {2.1S}

where the location of the strips appears only in the ex-

ponential factor. The matrix elements &p j
T +(E) j-pi &

are given in Appendix A. They satisfy the identities

+ ~ 0 ~

(c)

FIG. 2. Self-energy diagrams. The f' operators are denoted
by crosses aud the restrictions on the sums in Eq. {2.21) forbid
diagrams containing the element ~ .

eo ip(x —x')
GE+(x,x') = dp

c p Ei —yz{E—) itrz—(E)

(2.24)

Evaluating the integral in Eq. (2.24), it is possible to de-
fine a renormalized sped of sound c and an effective at-
tenuation parameter I'. This attenuation is due to des-
tructive interference effects originating in the scatterers.
The integral can be approximately evaluated by substitut-
ing E/c for p in the self-energy terms, whose coefficients
are small and thus become important only in the neigh-
borhood of p =+Elc. (This would not be the case at low
frequencies if there is a high density of strong scatterers,
but then higher-order diagrams must be included. } Defin-
ing ri= 2Ea /c, r =h i /h i, and

D(x)=x [4xi+(xi—1) sin (AN)]

we obtain, for the renormalized speed of sound c,

c i(E) ci{1 4nari 'D(—rN) I(rN+1)isin[ri(N —1}]

+{rN —1)isin[ri(N + 1)]I ),
(2.25)

with its long-wavelength (iI « 1) limit

c~c [1—(na lr)(r Ni —2r + 1)] .
The effective attenuation I'(E) E 'erz(E), where

p =E/c, is

I (E)=2nc(1—D(rN) f(rN+1) cosfri(N —1)]
—(rN —l)icos[ri(N+ I)]j ),

(2.26)

with its long-wavelength limit

I ~(n/2)cr vi (r N 2r N +2r 2r+1—) . —
The corresponding attenuation length is I.,(E)
=2cI' '(E).

We note that r and N always appear in the combination
rN, except in the arguments of the circular functions.
These arguments are modified because of the phase lag
caissed by an index of refraction different from unity, an
effect that is not present in the vDW scatterer case. The
variables E, a, and c apple in the combination
rt=2Ealc [except for the factor na in Eq. (2.25)], which
is 2n times the ratio between the strip width and the
wavelength A.=2rrc /E.

Equations (2.25) and (2.26) show some interesting quali-
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FIG. 3. (a) Renormalized speed of sound snd (b) effective at-
tenuation for van der %'aals scatterers with r =1.26. In the
lower scale we only specify g=2Ea/e, while in the upper scale
we give the values of v=E/2~ corresponding to a =0.005 cm
and c =103 cm/sec.
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FIG. 4. Renormalized speed of sound for index of refraction
scatterers. The unreuormahzed speeds of sound c correspond to
experimental values on smooth substrates (see text). The fre-
quency v is v=E/2m.

tative features that are not evident from the long-
wavelength limit studied in Ref. 23. The renormalized
speed of sound and the attenuation parameter are plotted
in Fig. 3 for vDW scatterers in the case r =1.26, corre-
sponding to a ratio of about two between the van der
Waals constants. We have chosen a relatively high strip
density ( n =40 strips/cm). /The magnitudes we actually
graph are (c c)/2irac a—nd I /2nc, since, except for negli-
gible corrections, they are functions of ri and r alone. ]
The renormalized speed of sound for IR scatterers is
graphed in Fig. 4 for several values of the index. The
values for c have been taken to be approximately those
corresponding to clean Si substrates. The curves for

N =3 correspond to c =2040 cm/sec (film thickness of
about 7 layers), that for N =2 corresponds to c =900
cm/sec (film thickness of about 13 layers), and that for
N =1.5 corresponds to c =750 cm/sec (film thickness of
about 16 layers). In all figures we take the strip width to
be 2a =10 cm.

We note the following:
(1) At low frequencies the waves are slowed down by

the scatterers. However, as we increase the frequency, c
oscillates between values higher and lower than c, becom-
ing more and more sensitive to the presence of the strips.
For relatively weak scatterers c is not very different from
the speed of sound on the original substrate, but for
stronger scatterers the deviations are quite large at low
frequencies. This can be seen to occur in the N =3 curves
in Fig. 4 at frequencies v(15 kHz if n =20 cm ' and at
v & 5 kHz if n =10 cm '. Indeed, under those conditions
the approximation of using only the lowest-order diagram
to evaluate the self-energy does not yield accurate results,
and higher-order diagrams must be included. We believe
that the contribution of these diagrams will be to decrease
the difference between c and c at low frequencies. It is
not difficult to verify, taking the limit E~O, that in the
vDW case the contributions of the first and third dia-
grams in Fig. 2 have opposite signs, while the second dia-
gram is irrelevant (the IR case is more difficult to treat).

(2) For vDW scatterers, the randomness-induced at-
tenuation is a periodic function (approximately a squared
sine), which vanishes when the strip width is an integer
multiple of the half-wavelength (2a =jk/2, for
j= 1,2, . . .). We expect resonant transmission to occur at
these wavelengths. This is confirmed in Sec. III, where
the localization properties of third-sound waves are dis-
cussed. An analogous effect is found if we consider the
transmission coefficient for a third-sound wave incident
in an ordered collection of parallel, identical strips: If the
relations between strip width and excitation wavelength is
2a =jk/2, the transmission coefficient for the whole ar-
ray becomes unity. i The attenuation is also proportional
to strip density. If n =40 strips/cm, r = 1.26, and
c=10 cm/sec, then 1=2X10 sec '. This is much
larger than a value reported for intrinsic dissipation '

(I'=1 sec ). Similar results are obtained in the IR case.
Even if the intrinsic dissipation is substantially increased
in the roughened regions, it does not seem probable that I
will become of the order of I . Therefore, it is reasonable
to neglect intrinsic dissipation completely in the problems
we are considering here, except inasmuch as it determines
the lifetime of the localized excitations. An experimental-
ist can easily verify that he is measuring I and not I by
performing a measurement of I in a uniformly roughened
substrate. We remark that, for the IR scatterers, the at-
tenuation length obtained from the average Green's func-
tion is not always physically meaningful. %'e will return
to this point in Sec. III D.

III. LOCALIZATION OF THIRD-SOUND %EAVES

In this section we analyze the localization of the third-
sound waves in the random substrate. We first define the
intensity propagator and derive the kinetic equation it sat-
isfies. We then solve this kinetic equation and use the



33 LOCALIZATION AND RFSONANT TRANSMISSION OF THIRD-SOUND %AVES. . . 3107

self-consistent approximation of Vollhardt and Wolfie s

ta calculate the frequency-dependent diffusion coefficient
and the localization length.

A. Kinetic equation

4) (k, u) IE) =

P, E

P[+, E+

8(P-Pj) +

P, E Pt, E

The analysis of the localization effects involves363~ the
average of the squared Green's function, 6 (x, t lx'),
which is proportional to the energy density at position x
and time t due to a disturbance created at the source point
x' at t =0. It is convenient to rewrite its Laplace
transform as follows:

P„(x I
x')= f dt exp[i (to+is)t]62(x, t

I
x'}

GE+gu/2(x I
x')Gs'dE

2K

(3.1)

In using the convolution property of the Laplace
transform we have introduced a new frequency E, which
can be related to the microscopic fluctuations whose su-

perpasition at a given time yields the tatal P(x, t lx').
The external frequency to is related to the temporal
behavior of the "envelope" P(x, t

I
x'). The internal fre-

quency E is the one relevant to any "microscopic" experi-
ment prabing the individual excitations of the system.

The intensity propagator (PE(k, to)&,„ is the k and co

Fourier component of the average intensity resulting from
the E Fourier companent of a pulse excited at the origin:

( PE(k, to) &,„=fd (x —x')exp[ ik (x——x')]

x (Px „(x I

x'}&,„. (3.2)

We note that the T matrix is not symmetric and
GE (x

I
x)+Gz-( xI )x. However, because of the low

scatterer density, we will evaluate the relevant vertices at
the poles p =+E/c of GEO(p). Using the symmetry of
the pole locations and the properties (2.19) of the T ma-
trix, it is easy to see that the results do not depend on the
ordering af the spatial arguments in Gs (x

I
x'), which we

have substituted by Gz (x'
I
x) in the developing the for-

malism for (Pz (x lx')&,„. This allows us to keep a

(b) P, E+

Ypp (k, wlE)
I

P, E

(c)

i

Upp (k, culE) =
I

I(

FIG. 5. (a) The integrand 4 in the intensity propagator can
be expressed in terms of a vertex function V. (b) The irreducible
components of V can be separated to form an irreducible vertex
function U. (c) The lowest-order irreducible diagrams. (An ir-
reducible diagram is one which cannot be split into two disjoint
parts by vertically cutting both solid lines. )

p+ ——p+k/2,

E~ ——E+co/2,

(3.4a)

(3.4b)

and l is the total length of the system, assumed to be
much larger than any other relevant lengths (except for l;,
which, as we have seen, can be taken to be infinite for all
practical purposes). The averaged product of the two
Green's functions in Eq. (3.3) can be represented in terms
of the diagrams shown in Fig. 5.2s'3s The corresponding
analytical expression is

closer analogy to the electron-localization problem. Us-
ing the notatian introduced in Eq. (2.12), we can write

( PE(k, to) &,„=I ' fdp dp i ( (p 4. I
6 E++

I p ]+ &

x(pi- I
6 z- I p- »-

(3.3)
where

«p+ IGs+ lpi+&&pi IGx lp »..=(1/2~)&6(p+ E++i~)&.,&6(p

X [5(p —p, )+ V~& (k, to
I E)(G(p~+, E++ie) &,„(6(pi,E —ie) &,„] .

(3.5)

The four-point vertex function V~, (k, to
I
E}cantains both reducible and irreducible diagrams. It is convenient to define

the irreducible four-point vertex function U~, which is related to V~~, by [See Fig. 5(b)]

V~,« ~
I
E)= U~, (k ~

I
E}+f dp'U~ (k ~ I E)&«p' E++t~) &-& G(p' E t~) &-Vp„(-»—~ IE} . (3.6)

The first few diagrams that contribute to U~, are shown in Fig. 5(c}. Equation (3.5) can now be integrated over pi to
yield

@,« ~
I
E)=f dpi &

&—p+ I 6E+ I pi+ &&pi- I
6 x Ip-

=(G(p+, E++ie) &,„(G(p,E —iE) &,„1+f dp2U~, (k,co
I E)ep, (k, ro

I
E) (3.7)
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The function 4~, related to the intensity propagator by

(Px(k, co)),„=(2n.) ' f dp 4~(k, co
i E),

can be shown to satisfy a generalized Boltzmann equation. Defining

6(G(p)),„=(G(p+,E++ie}),„—(G(p, E i—e)),„,
and using Eq. (2.22), we obtain

[2E~-2"kp+&~+,(E+)-&; (E )]+,(k,~
i
E)=«G(p))., 1+f dp2&pp, (k,~

i E)+p, (k,~
I
E)

(3.8)

(3.9)

(3.10)

A considerable simplification ensues if we note that, for small k and co, and a low density of scatterers, we can use the
approximation

b, (G(p)),„=2inc 5(p (E/—c) ) . (3.11)

8. The ladder approximation

We solve Eq. (3.10) to lowest order in the density by keeping only the first diagram in Fig. 5(c). Under these condi-
tions, the irreducible four-point vertex function is given by

UI', (k.~lE}=2~n&p+
I T'«+}lpi+)&p2- l~ « )lp-) -. (3.12)

The superscript 8 in Eq. (3.12) stands for Boltzmann: To this order the kinetic equation has the form of a Boltzmann
equation. Neglecting the k and co dependence in U~~, and using Eq. (3.11) yields

[2Eco 2c kp+—2icrp(E))4p(k, co
i
E)=(2in/c )5(p (E/c)—)

\

X 1+2~n p2p T+E p2 p2 T E p 4'p2 m E . 3.13
J

X=(vr ni/Ec)
( (p [

T+
)

—p) i (3.15)

with the matrix element evaluated at p =E/c. With this
notation, the substitution of Eq. (3.14) into Eq. (3.13)
leads to the following pair of equations for g+ and f

(Eco c[k [ ~ p (
+X—)g+ Xf =in—/c (3.16a)

(Eco+c
(
k

( ~ p i +X)P X/+ =in/c—(3.16b)

Here the optical relation, Eq. (2.20), has been used, with
one modification: For self-consistency, we have replaced
c by the renormalized speed of sound c.

For sinall
~

k
~

and co, Eqs. (3.16) yield

=(m/c E)[ ico+Da(E)k ]— (3.17)

where the "Boltzmann" diffusion coefficient Da(E) is

Dg(E) = c 4r N +(r N 1) sin (qN)—
(r N 1) sin (AN)—(3.18)

The k dependence of the real part of the self-energies has
bxui kept to the lowest order. This renormalizes the
speed of sound appearing on the second term of the left-
hand side.

Writing the solution 4~ in the form

4p(k, co
i
E)=5(p (E/c) }Q—-(k,co

i E), (3.14)

we note that f- is evaluated at only two points as a func-
P

tion of P. I.et g-=P+ if pk &0 and P-=g if pk &0;
define

l

Here, ri=2Ea/c. Equation (3.17}is a valid representation
for

(k [ &2iX (
/(cE}-cD~ '(E)=qo . —

Here, qo is a wave-number cutoff. Naturally, Ds(E)~ oo

if r,N~1. The diffusion coefficient also diverges when
Nri=jm, for all integers j. In this case we expect
resonant transmission instead of localization. This is con-
firmed below.

Using Eq. (3.17) in conjunction with Eq. (3.8), we find
that the intensity propagator exhibits a diffusive hydro-
dynamic pole,

(PE(k, co) ),„= 1 c 1
(3.19}

2c 3 E i co+Da (E)k—

C. Maximally crossed diagrams

Since localization is a result of wave interference, the
relevant information about localization must be contained
in the irreducible four-point vertex function U~: this isPPi
the function that may show a singular behavior. We next
express the diffusion coefficient D (E,co) in terms of U~~ .PP I

D(E,co) depends on both internal and external frequen-
cies. Its behavior as co—+0 determines whether or not the
excitation is localized. Indeed, U~~ turns out to divergePPl
when co~0, but is regular when k ~0.

We define the auxiliary functions

:-(k, co
i
E)=f dp 4~ (k, co

i E) (3.20)
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:-,(k,~
~
E}=Zf aqqe(k, ~

~
Z) . (3.21) p,E, pz,E,

Integrating Eq. (3.10) over p, and using a Ward identity
that expresses energy conservation, we find that these
functions satisfy the equation,

SURD
= + + + ~ ~ ~

2Eco"(k,co
~

E) c—k:-i(k, cu
~
E)=2imlcE. (3.22)

If we multiply Eq. (3.10}times 2p and then integrate over

p, we find, after some algebra, a second relation between
:- and:"I which is valid for small values of c0 and k:

FIG. 6. MaxiraaHy crossed diagrams.

PP' & E —
&

E p — p p2 p p2pp2U~ -"I,a) E=m E c ",a E 323

Usmg Bq. (3.23), we can eliminate the function =I from (3.22) to obtain the following equation for the intensity propaga-
tor:

(Pz(k, co)),„=(2m) ':(k,co
~
E)=(2cE ) '[—ico+D(E,co)k2]

where the diffusion coefficient D (E,ai ) is given by

D(Eco)=4rE c '
jl dpdpibG(p)bG(pz)pp2U~, f dpp —[Xz+(E) Xz (E)]—bG(p)

From this equation it follows that

D '(Eau) =Ds '(E)+(cl4nE )f dp dpi ppz EG(p)EG(pi)5U, (0,
~
E),

(3.24)

(3.25)

(3.26}

where

5 Uzz, (O,co
i
E)= U~, (O,co ( E)—U~, (O,c0 i E) . (3.27)

into Eq. (3.26) it yields

D '(E )=D '(-E)+ fgcE o ica+Da—(E)q

5 U~~, =[ca (E)ln ][—~'co+De(E)q'] (3.28)

where cr(E) is the imaginary part of the self-energy
evaluated at p =E/c. This contribution has again the
form of a hydrodynamic diffusive pole. When substituted

We have taken k =0 in 5U~~ since it can be explicitly

verified that the maximally crossed diagrams represent
nonsingular functions of k. We have again used a self-
consistency arguinent to substitute c for c.

We must evaluate the corrections to the Boltzmann dif-
fusion coefficient D~(E) due to the diagrams in 5U~~, .
One particular subset of these, that of the maximally
crossed diagrams shown in Fig. 6, is essential for an
analysis of localization. z' These diagrams can be
resummed by rotating the "hole" line in Fig. 6, 180', and
using spatial homogeneity to reverse the momenta on that
line. An equation pair formally similar to Eqs. (3.16) en-
sues. Final)y, we obtain, for small co and q =p +pi, that
the contribution 5U~ of the maximally crossed diagrams

18

(3.29)

Here we have introduced the hydrodymunic cutoff qo dis-
cussed above. The necessity for a finite cutoff arises from
the nondiffusive behavior of the excitation for lengths
smaller than qo ', at these short lengths there is effective-
ly ballistic propagation of the excitations.

D. Self~onsistent theory: The localization length

In the self-consistent theory of localization, we replace
the low-density hydrodynamic pole appeiiring in the per-
turbative result (3.29) by an exact hydrodynamic pole. 2'

In practice, this means substituting D(E,co) for the
Boltzmann diffusion coefficient D~. Thus, D(E,ro) solves
the following equation:

1 1 a(E) &0 dq+D(E,a)) Dg(E) ~cE o ico+D(E,a))q—

(3.30)

Here, D~(E) is given by Eq. (3.18), and n(E) can be ob-
tained from Eqs. {223)and (Al):

Upon integration, Eq. (3.30) yields the transcendental equation
T ' 1/2

D(E,co)=D (E) 1—
mcZ

' 1/2
D(E,ro)

arctan r
l CO

Vo

o'(E)=Ds '(E)Ec {1+rN(N r 1) sin (gN)[4rN —(¹+1)cos[g(N —1)]+—{Nr —1}cos[g(N+1)]I) . (3.31}

(3.32)
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P.OG

E 2

0
0

FIG. 7. Localization (solid line) and attenuation (dashed line)

lengths for vD% scatterers with r =1.26. The horizontal scales
are identical to those in Fig 3.

wide transmission resonances, which occur at values of
the third-sound wavelength A, =c/v that satisfy jA, /2=2a,
for j=1,2,3, . . . . These values correspond to the eigen-
frequencies of an isolated piece of film located on a strip
of width 2a. For these frequencies the transmission coef-
ficient for an isolated scatterer is unity; since the scatter-
ers are identical, it follows that the random substrate is
transparent to the third-sound excitation.

The resonances are obtained only if we perform an ex-
act evaluation of the T matrix. A long-wavelength ap-
proximation to the T matrix, as in Ref. 23, or a white-
noise representation of the scattering, as in Ref. 24, do
not give any information about resonant behavior.

It is important to remark that reasonably short localiza-
tion lengths (g-1 or 2 cm) can be obtained at frequencies
as low as 20 kHz, a smaller value than that predicted in
Ref. 23, where an algebraic mistake was made. There Eq.
(20) should read

g(E}~—1
n Ea

(h, hz) (hz+1)
(hi —hz) (hz+1)

(3.35)

It is easy to see that the solution to Eq. (3.32) for co~0 is
given by

D(E, co~0)= icing (E—)+0(co ) . (3.33)

Here, g(E} is the frequency-dependent localization length
which satisfies the equation

cr(Eg'(E)arctan[qp(Eg'(E}t=mEc . (3.34)

Note that, taking arctan(qpg)=n/2, our result (3.34)
yields g=L„where L, is the attenuation length obtained
from Eq. (2.26). This approximation turns out to be
reasonable for vDW scatterers, for which qpg 4.5 for all
experimental values. It is not reasonable for IR scatterers,
for which qg oscillates as a function of E and even van-
ishes at certain frequencies.

Equation (3.34) is easy to solve numerically. We first
consider vDW scatterers. The lengths g and L, are
shown in Fig. 7 for r =1.26 and 40 strips/cm. They are
periodic functions of the frequency and )=1.15L, every-
where. The most interesting features in Fig. 8 are the

and the numerical value we gave for the frequencies corre-
sponds to rad/sec and not to Hz.

Near the resonances, the localization length can be easi-

ly shown to diverge as
~

v —vj ~, where vj is the fre-
quency corresponding to the jth resonance. Defining the
resonance width 5v as the length of the neighborhood of
vj such that g(v) & gp if

~

v —vj ~
& Sv, we obtain

5v-cr(2@ra
~
r —1

~
) '[(r + l)ngp] '/ . (3.36)

Here, gp is a length that may be arbitrarily chosen. The
width of the resonances is such that they can be con-
sidered truly "pass" bands. The resonances become
sharper if r is increased.

Next we discuss the more complicated case of IR
scatterers. The different effective speed of sound on the
strips generates a phase change that is the source for a
richer structure in the localization length. We plot g(E)
and L,(E) in Figs. 8—10 for several values of the index of
refraction and n =20 strips/cm. The unrenormalized
speeds of sound and the indices of refraction are again ap-
proximately those obtained by Smith and Hallock using Si

06--
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FIG. 8. Localization (solid line) and attenuation (dashed line)
lengths for IR scatterers with N = 1.5 and c =750 cm/sec.

FIG. 9. Localization (solid line) and attenuation {dashed line)
lengths for IR scatterers with N =2 and c =900 cm/sec.
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FIG. 10. Localization (solid line) and attenuation (de&bed

line) lengths for IR scatterers mth N =3 and e =2040 cm/sec.

substrates. We observe the following:
(1) All the resonances occur at values of the frequency

such that the wavelength A,,=c,/v for the third-sound on
the strip satisfies

jA,,/2=2a, (3.37)

for j=1,2, 3, . . . .
(2) There are two types of resonances. At the thinner

ones (type I) the localization length diverges as
g(v)-

~

v —vi ~

', while at the wider ones (type II), it
diverges as g'(v) —~v —

v&~ . The typical width of a
type-II resonance is

5vii-0. 2c(a
~

N2 1~ ) '(neo)— (3.38)

while type-I resonances have a width
5vi-Ai(neo) '/ 5vii, where Ai is a coefficient of the or-
der af one, whose value depends on the particular reso-
nance.

{3) For a type-II resonance to occur, N must be a ra-
tional number; if N =PlQ, the following condition must
be satisfied, in addition to Eq. (3.37):

{3.39)

where m is the integer appearing in the denaminator that
results from the reduction of the fraction (P —Q)/2P to
its lowest terms, and k =1,2, 3, . . . . It is easy to see that
m =6 in case (a), m =4 in case (b), and m =3 in case (c).

(4) Experimentally, it is impossible to fix N to be a ra-
tional number but we expect that a

~

v —
v& ~

behaviar
will be observed whenever Eq. (3.39) is approximately sa-
tisfied. For irrational indices of refraction, however, the
(v—vi (

behavior will cross over to a )v —vj (

divergence sufficiently close to the resonance.
The attenuation length is considerably shorter than the

localization length (except near the type-II resonances)
and does not show type-I resonances. This last result will
be shown below to be an artifact of the averaging pro-
cedure.

Using the formulas in Appendix A, we find that the
matrix elements (p )

T+
( p) and (p ~

T+
)
—p & evaluat-

ed at p =E/c vanish at type-II resonances (as well as for
the vDW scatterers}, while for type-I resonances

F/3 = ( —1 jlexp( 2i—Ea /c) (3.40)

for type-I resonances. We conclude that the excitation
does not interact at all with the scatterers when the fre-
quency is at a type-II resonance: neither the amplitude
not the phase are modified. At type-I resonances there is
a phase change even if the transmission coefficient is uni-

ty.
To understand the reason far the behavior we have

found for the attenuation length, we consider the nature
of the configurational average. Since the number of strips
between the source and the detector delxnds on the partic-
ular element of the ensemble of substrates we consider, the
total phase lag varies from element to element. Thus, the
spatial average involves a sum over random phases, and
we conclude that although there is resonant transmission
for all members of the ensemble, the propagation on the
"average" substrate is strongly attenuated. This unphysi-
cal behavior is due to the interactions between different
systems in our ensemble or configurational average. For
the same reason, we conclude that our value for L, un-
derestimates the real attenuation length for a given experi-
mental system, even far from the resonances. However, it
becomes unreasonable only when there is none or very lit-
tle destructive forward-wave interference on each element
of the ensemble, a condition that occurs in the neighbor-
hood af type-I resonances.

The localization of the excitations is due to coherent
backscattering. The calculation for g, involving the aver-
age of the squared Green's functions, is free of the prob-
lem of artificial phase cancellations. A discussion of the
relation between g and L, for the case of an electron in a
weakly disordered lattice was given by Thouless. 3s Lu,
Nelkin, and Arita dealt with the same problem for a glass-
like disordered elastic chain.

It should be easy to distinguish experimentally between
a localized excitation and one that is merely attenuated.
A detector located at a distance dz &gg from the source
(see Fig. 1) will not record anything in any case, and will
at most give an upper bound for g (or L, ). However,
another detector, located at a distance di ~g from the
source will be able to detect thickness fluctuations in both
cases. A clear signature af the occurrence of a localized
excitation is its permanence. If the source is stopped at
t =0 and the detector at d~ does not record variations in
thickness at times later than r=d i /c, the experimentalist
is observing an excitation that is simply attenuated. Since
the intrinsic dissipation is expected to be small a localized
excitation will remain relatively unattenuated for times
t ~~, andup to t-I

IV. CONCLUSION

A detailed analysis of Anderson localization of third-
sound waves on a random substrate has been given. We
found that transmission resonances occur at a discrete set

(p (
T+

(
—p )=0 but

(p ~

T+ ~p) =(Eci/m)[1 —( —1 jlexp( 2—iEa/c)] .

Although the ratio between the transmitted and incident
amplitudes is unity for type-II resonances, it is
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of frequencies; they correspond to a set of measure zero of
extended states in the disordered system. Far from the
resonances, the localization length can be very short espe-
cially for IR scatterers. We believe that, although the ex-
citations are mostly confined to a small region containing
only a few scatterers, their tails should be able to sense the
disorder at distances beyond g. As we move toward the
resonances, the localization weakens continuously, until
the excitations can be considered to be essentially extend-
ed sufficiently close to the resonances. For typical values
of the experimental parameters, the various "localization
regimes" should be readily observable with present-day
techniques. Due to the simplicitly of the system, we ex-
pect that the analysis of the experimental data can be
made following closely the proposed theoretical model.

Three factors not considered in the theory and which
could affect the results of an experiment (although not
substantially, we beheve) are as follows:

(1} Microscopic differences betwo:n the scatterers:
Even if the strips can be manufactured in such a way that
they are macroscopically identical, microscopic deviations
from regularity may cause a lowering of the resonance

peaks.
(2) Higher-order terms in the diagrammatic expansions:

They may modify our detailed predictions, especially if
the density of scatterers (or their strength) is high.

(3) Surface tension effects: They may become impor-
tant at high frequencies if the amplitudes are not kept
small.

It is not difficult to create and control a uniform flow
in a superfluid helium film. It would be interesting to
study what the effects (if any) of such a flow would be on
the localization of the third-sound waves.
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APPENDIX A: THE FULL T MATRIX

In this appendix we give the complete expression for the T matrix corresponding to the scattering by a strip on which
both the film thickness and the speed of sound are modified. Defining / =2(oN/c and g=E+i e, where @~0and the +
( —}sign is chosen in the case of (p (

T+
~ pi ) ((p

~

T
~ pi }),we obtain

(p ~

T+-~pi)=pic (N 1)(g cp—)[AD—g(pi)(pi —p)] 'sin[(pi —p)o]

+2p, c [nD~(p)Dg(pi)] '[(rN —1) exp(+i/) (rN+1) —exp(+i/)]

X( N[A&(p) B&(p i)+pp, rg2c (N 1)i]sin[(pi+p—}o]+igcN(N 1)[piA~(p—)+re~(pi )]cos[(pi+p)o]

+ [(Nr c~+i sing)[B~(pi )D~(p}+pp i c (N 1)(g —c ~p —) ]
+(cosP+iNr sing)N[(g —cia )B~(pi)+ppic r(N 1)D~(p)]—j

Xsin[(p i
—p)o]+ (N —1)gc [ ( si up+i rN cos—p)pB~(p i )

+Np,(¹sing+i cosP)[g —c p' —rD&(p)]]cos[(p, —p)o]) .

Here we have used the following auxiliary functions:

A~(p)=g (N r —1}+cp (1 r), —

Br(p}=g N (1 r)+c (rN 1}p— —

(A 1)

(A2)

{A3}

D (p) $2N2 p2c2

The following special values, for p =E/c, are useful:

2rN cos(2EoN/c)+i (N r + 1)sin(2EoN/c)
4r N +(N ri 1) sin (2EoN/c)—

(A4)

X[2irN cos(2EoN/c)+(N r +1)sin(2EoN/c) —2irN exp( 2iEo/c)j—
2rN cos(2EoN/c}+i (Nir +1)sin(2EoN/c) i 2N r 1 sin 2EoN/c e—xp 2iEo/c) . —

4r N +(N r 1) sin {2EoN/c)—
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The ratio F/A between the transmitted and the incident amplitudes for a single scatterer is

4rN exp( 2—iEa /c)
(rN + 1) exp( —4iEaN ic)—(rN —1)i

This immediately yields the transmission coefficient.

(A7)

APPENDIX 8: THE Era aCTS OP INTRINSIC DISSIPATION

2 +i (E+is)I'
X

with the consequent modification in Eq. (2.17).
The T-matrix elements are

Although there are not many experimental data on I', it is reasonable to assume it is a function of the substrate. '

Indeed, it is quite possible that it is considerable higher for a film on a rough substrate. A complete theory should intro-

duce two I"s, one accounting for dissipation on the original substrate, and the other accounting for dissipation on the
strips. However, since intrinsic dissipation effects at low temperatures are expected to be smail, it seems sensible to take
a single effective &mping constant valid everywhere. For simplicity, we also consider only vDW scatterers (c,=c). It is
easy to extend the analysis to the c,+c case, but the formulas become far more cumbersome. The formalism is the same
as in Sec. II8, except that Eq. (2.11}must be modified to read

' —1

(x ~Gso~x'&= — (E+ie)i+cd 5(x —x'), 8

+ 2c pi(r —1) (r —1)sin[(p +pi)a)+(r +1)exp(+2ia~a)sin[(pi —p)a]
(p ~

T-(E) (pi&=
7r (r +1) exp(+2ia~a) —(r —1) exp(+2ia+-a)

(82)

where a-=[(E+ie}/c][1+iI /(E+ie)]'~ . Although the symmetry relations (2.19b) and (2.19c) are still valid, it is

clear that (p )
T+

~ pi & and (p ) T
~ pi & are not the complex conjugates of each other. The optical theorem is also

slightly modified due to dissipation inside of the scatterer: Writing n E/c+-il=/2c, which is an extremely good ap-
proximation, since I &~E for almost all E, we obtain

Im(p
~

T+-
~ p & =+(n/4Ec)(1+r~) '[(1+r)2exp(+I a/c)+(1 —r)2exp(+I'ale)]

x((p I
T+ Ip&(p I

T Ip&+&p I
T+

I
—p&( —p I

T Ip&)

for p =E/c. If I'=0, we recover the usK~3 expression for particle-number conservation.
The equation for 6@+(x,x'}can be easily obtained:

~

~

~

CO ip(x -x')
6@+(x,x') =(1/2n ) dp cipz Ei iI'E —R—(E,r—)np sin(2pa)

(83)

(84)

H cosy+ iH+ sing
R (E,r) =4ci(r —1)

H +4(1—r2)zsin g

Here, g =2Ea /c, and

H ~ ——(1+r) exp(I'a lc)+(1—r)2exp( —I'a /c) .

(85)

(86)

The renormalized speed of sound and the effective attenuation can be found with the aid of the approximation used to
evaluate the integral in (2.24). We obtain

and

na (r —1) H sin(2')c=c 1—
2ri[4r +(r 1)sing]—
4cnH+(r —1) sin gI =j. +

(H }2+4(r2—1)2sin2ri

(87)

(88)

For small values of I', these formulas are simplified if we approximate H+ ~2(1+re) and H ~4r.
It is worth pointing out that the introduction of a finite I leads to a modification of the kinetic equation (3.10), in

which the term 2i I'E should be added inside the square brackets on the left-hand side.
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