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Recently it has become possible to perform experimental studies on spin glasses with strong aniso-

tropy forcing the spins into a plane. We have undertaken a theoretical investigation of the macro-

scopic dynamical behavior of such systems, beginning with a determination (at the microscopic lev-

el) of the appropriate macroscopic variables. Classical spins are considered at T=o. In the absence

of weak random anisotropy in the plane, we predict spin waves with a linear dispersion and derive

an expression for their velocity. %hen weak random anisotropy in the plane is included, a micro-

scopic calculation shows a gap at zero wave vector. This uniform mode has no field dependence for
a static field normal to the plane, and therefore ~ould be difficult to observe using electron-spin res-

onance; however, the following paper shows that, in the presence of a remanence induced by a cool-

ing field, the resonance frequency becomes field dependent for a static field in the plane. A formal

expression for the in-plane macroscopic anisotropy constant is derived, employing both microscopic

and macroscopic considerations. Assuming bilinear microscopic anisotropy, there is only uniaxial

macroscopic in-plane anisotropy (to which Dzyaloshinsky-Moriya anisotropy does not contribute).

A macroscopic study is made of the normal modes including both exchange and random anisotropy.

I. INTRODUCTION

The properties of spin glasses with single-ion uniaxial
anisotropy have attracted considerable interest recently,
both experimentally and theoretically. On the experimen-
tal side, Albrecht et al. ' have been able to employ the
same magnetic impurity (Mn) in three different hosts (Zn,
Cd, Mg) with the same hexagonal crystal structure. The
single-ion uniaxial anisotropy is found to yield Ising-like
(ZnMn), XY-like (CdMn), and Heisenberg-like (MgMn)
behavior. More rceently, Baberschke et al. have been
able to employ the same hexagonal hosts (Y,Se) with four
different impurities (Er, Dy, Tb, Gd), finding the same
three categories of behavior. The positions in temperature
of the susceptibility cusps were found to be at least in
qualitative agreement with the mean-field theories. ~

The above work concerned itself solely with the static
behavior of these systems. It is also of interest to consider
the dynamic behavior and, in particular, the normal
modes (which are treated in the present paper). Of the
three categories mentioned above, the Heisenberg case
(negligible uniaxial anisotropy) has already been studied
extensively, both experimentally and theoretically.
A number of questions remain in that case. Of these,
perhaps the most important are the difficulty in observing
the second transverse mode, the nature of the anisotropy
relaxation, ' ' and the remanence decay. ' The normal
modes are reasonably well understood, both with exchange
only and with an additional weak random anisotropy, al-
though it is still unclear why the S(k,to) studies of Huber

and co-workersio' ' (not including anisotropy) do not yield
peaks corresponding to spin waves with co =ck.

The microscopic Hamiltonian we shall consider has the
form

H =H,„+HD+H (1.1)

where H,„=——,
' g, JJS; SJ is the exchange term,

Hts —, D g,.S„is—a—strong uniaxial anisotropy terin, and

H,
„

includes the possibility of weak in-plane anisotropies
(to be considered in Sec. III). The effects of HD depend
on the sign of D and its magnitude compared with J
(which we take to be a value characteristic of the ex-
change interaction). For D=O, the spin directions (in an
equilibrium configuration, with no external field) are ran-
dom to the eye, i.e., they are distributed equally over
directions in spin space. For small

~

D ~, the spin com-
ponents continue to span all directions in spin space, with
some skewing towards (D&0) or away from (D&0) the
XY plane. On the other hand, there are finite critical
values of

~

D/J ~, beyond which the spin components
essentially collapse into the z direction (for D&0) or
into the XY plane (for D&0). Then the equilibrium con-
figurations will be exactly those of the Ising of XY spin
glass with Hamiltonian H, and the magnitude of D will
be manifested only through the dynamics. (The reason
for this collapse in the XYcase can be seen most easily by
observing that the stability of the ground state is deter-
mined by studying the eigenvalues of a quadratic form:
starting with a large D/I ratio, the planar solution is
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stable, and only at a finite critical value of D/J does an
instability occur, producing z components in the spins.
At that point, the spins can undergo a continuous transi-
tion to a three-dimensional configuration, with some
skewing towards the XF plane. Similar reasoning holds
for large negative D/J. )

If the strong uniaxial anisotropy forces the spins nor-
mal to the plane (D&0), the dynamics is expected to be
dominated by the strong anisotropy energy driving the in-
dividual spins back to equilibrium. Thus, if 'R is the pre-
ferred direction, the system will absorb energy only when
driven with a rf field along 2 and y. If the uniaxial aniso-
tropy is the same for each spin, then the resonance fre-
quency will vary as yD if the anisotropy constant D great-
ly exceeds J. (Here, y is the gyromagnetic ratio. ) Includ-
ing exchange will lead to some broadening, which can be
thought of as follows. Without accounting for J in the
dynamics, the system is completely degenerate. (The up
spins resonate at co =ya, whereas the down spins resonate
at co = yD. ) W—hen J is included as a weak perturbation,
degenerate perturbation theory will lead to a splitting of
these degenerate modes, with nearly all of the new modes
possessing a net magnetization. The spread in the mode
frequencies is expected to be on the order of J.

If the strong uniaxial anisotropy forces the spins into
the plane (D & 0), then one has the XY case. The dynam-
ics has been studied numerically by a number of work-
ers, all in agreement that there is a normal mode
with co =ck, as k ~0. This corresponds to a nearly uni-
form rotation about the z axis producing a local magneti-
zation m, along the z axis. In this case, c cc(JD)'Jz; in
fact, all modes have frequencies which go as ( JD)' J . It is
the purpose of the present paper to provide an explicit ex-
pression for c, to discuss whether or not it makes sense to
consider angle variables H„and 8~ to be conjugate to m„
and „m(relev atnto the macroscopic dynamics to be dis-
cussed in Sec. IV), and to include the effects of a weak,
random anisotropy D, ~~J. The latter introduces a mac-
roscopic anisotropy K-D, /J, so that co+0 even as
k~O: a gap develops and thus the uniform mode is no
longer "hydrodynamic" (i.e., no longer a "Goldstone
mode"). We find an anisotropy energy proportional to
cos 8, whose coefficient is nonzero only for microscopic
anisotropy with a symmetry of dipolar rather than
Dzyaloshinsky-Moriya (DM) nature. (See the latter part
of Sec. III for a more precise definition of our terminolo-
gy. ) [Note that, in a companion paper, for D»J we
study the effect of a remanent magnetization mo and a
field H in the plane, not necessarily parallel to one anoth-
er. For mo~~H, we find a k=O resonance involving
( m„m„,8, ) for which

co =y (K+moH)/X (mo~~H, in plane),

where X is the susceptibility normal to the plane. As a
consequence, this resonance is tunable by varying 0, and
therefore it should be suitable for study with (fixed-
frequency) electron-spin resonance (ESR) spectrometers.
Moreover, if one rotates the orientation of the field in the
plane, a more complex dependence of the resonance
should be observed, analogous to what is found in the
Heisenberg case. ' ' "]

5S; = —
U~J p58Jp, (2.1)

where 5S~=e~p„58;pSr' and U~~p will be determined.

By replacing 5S;~ by 58; and 58Jp by 5SJp, this can be
rewritten in the form

58;~= W,J.~p5SJp (2.2)

(where WJ p also will be determined). Then, (2.2) is in-
verted to yield

5S; =X;J p58jp. (2.3)

The time derivative of (2.3), combined with (2.1), then
yields

~ ~

XiJ p58J p = —UJ p58J p . (2.4)

The normal modes are found by letting 58Jp-e ' ', so
that

Uj (gp5J8 p —Jcd XiJ'(zp58J'p (2.5)

The significance of (2.5) lies in the fact that both X;J p
and U,J ~ are Hermitian, thus permitting conventional
orthogonality theorems to be employed. The eigenmode
58Jp' has ei~enfrequency co„and eigenvalue co„(by time
reversal, 58Jp'* has the eigenfrequency —co„).Moreover,
orthogonality of nondegenerate modes is expressed as

(2.6)

For co„&0,one can multiply (2.6) by —ice„and then em-
ploy (2.3) to obtain

In Sec. II we provide a discussion of the circumstances
under which one can define a macroscopic rotation angle
8. (This is relevant to the issue of 8, vs 8„and 8~. ) In
Sec. III we consider the computation of the spin-wave
velocity and, with weak random anisotropy, the macro-
scopic anisotropy constant. Section IV considers the mac-
roscopic dynamics with both spin stiffness and anisotropy
and provides physical reasons for the invariance of the
macroscopic anisotropy under rotations by m and why the
DM interaction does not contribute to the macroscopic
anisotropy. Finally, Sec. V provides a summary.

II. DEFINING A MACROSCOPIC ANGLE

In two previous papers Halperin and Saslow' and
Saslow' have employed a macroscopic rotation angle 58,
assumed conjugate to the magnetization 5m, together with
the corresponding commutation relations from which the
macroscopic dynamics was derived. However, that
derivation was carried out only in the context of isotropic
Heisenberg spin glasses. Since the present problem in-
cludes strong planar anisotropy, the previous derivation
must be generalized. We do not attempt a precise defini-
tion of 58 for large rotations.

We first summarize the formalism of Ref. 13, which is
based on that of Ginzburg. (Our choice of units is such
that iii= 1.) We consider N classical spins of unit length,
in a volume V, at temperature T=O, and cast the equa-
tions of motion in terms of the deviation angle 58; of the
spin S; at site i. This is done in two ways. First, the
linearized equation of motion for the deviations 5S; from
the equilibrium orientation S,' ' is written in the form
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(2.7} H;—:y 'BH/BS; (2.14)

If we consider the case of uniaxial anisotropy, a uniform
rotation about the z axis corresponds to m =0, so that
with 58,' '=58,&0, (2.7) and (2.3) imply that

0= g 5S.'"'= g X,„p58,'p' (~„~0). {2.8)

Then,

QXijgp jp—g QXijzp jp+ g ijzz x
lJ ll lj i1

fJXK

fj

where we have employed (2.8). Hence, with

(2.10)

This permits us to define the macroscopic rotation angle
58, by writing an arbitrary 58j, as a sum over r0„+0nor-
mal modes and over the uniform rotation mode:

58jp= g 58jp'+58, 5p, . (2.9)

is the local field at site i .In the absence of an external
field, (1.1) gives

yH, = g JjS,—DS.z,
1

leading to the equilibrium condition

g JjS' '=A, ;S,' ',

(2.15)

(2.16)

where A,; is the local field in equilibrium. Linearizing
about equilibrium, (2.15) leads to

5Si ——5Si XA,iS'; '+S'; 'X g J;j5Sj DSSi—,'2
J

=S',"X gJ,j5Sj—~,5S, —D5S.a . (2.17)

We can now use (2.17) to obtain Uj~p, W j~p, and X,j~p
more explicitly. Writing 5S,=58XSIO', (2.17) yields

X~ =X ' +Xi~

(2.10) becomes

(2.11)
5Si~—e~pgip —g Jijeyq+8j„Sg„A,ieyq+8—;„S;„(0) (0) (0)

J

58, =X 'QX~j,p58jp. {2.12) (0)
D5yz ~zp88i p&iv i (2.18}

This will be correct, to 0(k), as a definition for the mac-
roscopic angle associated with long-wavelength excita-
tions.

Because a uniform rotation about another axis (e.g., x)
is not associated with a zero-frequency mode, it is not
possible to define 58„or58„in the same rigorous fashion.
Indeed, it may not make much sense to define such vari-

ables because they are not associated with a collective
mode. Actually, the 58j, are a complete set of variables,
since there are, for N spins, 2N transverse degrees of free-
dom satisfying a first-order differential equation, which
can be rewritten in terms of N58j, 's satisfying a second-
order differential equation. Indeed, this has been used as
a strategy in explicit numerical studies. Thus, some
linear combinations of 58j, s, Ilo't corresponding to a hy-
drodynamic mode, must be made equivalent to a macro-
scopic 58„and 58». However, 58, has exhausted all of
the true hydrodynamic modes, so that 58 and 58„would
only be artificial constructs. The physics of this system is
simply that, if a spatially uniform, oscillating magnetic
field were applied in the x direction, as its frequency
would be varied, different modes would cause absorption.
Indeed, Grassl and Huber find a broad distribution of
eigenfrequencies in their study of the XF spin glass on a
three-dimensional lattice. As a consequence, the picture
presented in Ref. 27, in terms of m„and 8„,is correct in
the order of magnitude of the eigenfrequency [-(JD)' ],
but incorrectly gives the impression that there is a single
such mode.

To derive the dynamics, we begin with the equation of
motion

8;=yS;xH, , g.13}

comparison with (2.1) gives

U„.„=[5.„(S',"S,"')—S,'„"S,'."]X,j
D5ij (5~~ —5m5~ S—„'Si'a)— (2.19)

—1
Xij p=(II )ij p. (2.21)

An alternative and more transparent approach is to
analyze (2.17) by components, employing 5S~ and 58 as
the variables for each site. [With these variables it will be
straightforward to show that all eigenfrequencies vary as
( JD)'~ .] The z component yields

(2.22)

and the z component of the cross product of S'; ' an
(2.17) yields

58~ =A,j5$qg+D5S~ , =D5S;, (D &&J) . (2.23)

Combining (2.22) and the time derivative of (2.23) then
yields the N second-order differential equations

58 = DA,.jS,' 'Sj~'5—8j, (,D &&J) .

With 58~ -e '"', the eigenmodes satisfy

(2.24)

(2.25)

where Aij ——Aij=A, ;5j—Ji. Furthermore, with 5S;=58;
XS; ', (2.17) and (2.2) yield

Wj P=A;;5 y5yjP+D. 5,j5 5P, , (2.20)

where 5~y=5 y
—S 'Sy'. Note that the projectors in

{2.20} properly have no inverse, but if we invert within the
subspace of transverse spin components there are no diffi-
culties, leading to
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Since A, ,j—
~

J ~, we see that co-(DJ)', as indicated ear-
lier. Physically, this follows since 5Sa is driven by ex-

change torques ( J}associated with 58a, and 58a is driven

by anisotropy torques (D} associated with 5S. . Note
that by g. A,,j=A,; —Q.Jj——0, the uniform rotation

58j,——const is an eigenmode with co=0. [This would be
true even without the approximation of (2.23) so long as
D is strong enough to force the equilibrium orientations
of the spins into the plane. ]

A noteworthy feature of (2.25) is that, in the D »J
limit, there is a one-to-one correspondence (absent in the
Heisenberg case) between the true resonant modes and the
eigenvalues of the Hessian (linearized Hamiltonian) opera-
tor. The latter are the modes of a "relaxational" dynam-
ics which replaces the actual precessional dynamics by a
viscous damping which is more convenient computational-
ly.2s The approximation of relaxational dynamics is valid

only for studying the long-time relaxations, but (2.25)
shows that for XF spins, known numerical results for the
density of states, etc., of the relaxation modes can be
directly translated to results for the true resonance modes.
In the case of Heisenberg systems, such a correspondence
can be justified in the long-wavelength limit. Note that
a similar result was obtained in Ref. 20.

III. SPIN STIFFNESS AND ANISOTROPY
CONSTANT ( D py J)

(k) 1

ujz u +kaq aj + 2 kakpC apj+

with

()g (»

ak.
„

' 'j ak ak

(3.2)

is not a constant, so that k is not a complete label for the
eigenfunctions, since %a~ and 4apj must be determined.
Multiplying (2.25) by 58( )~ and summing on i yields

D58(k) j(, jS(~0).S(0)58(k) 2 58(k) 58(k) (D ))J) (3 3)

Expanding in powers of ka, we see that the left-hand side
has no terms of O(k ) or O(k'), by gj A,;j =0. Thus the
left-hand side is of 0 (k }. As a consequence,

cok =C k

where

i.X~e.',DX,,S(,-o).S,(o)e~,
c —=

2 (D»J),

%@——%@—saA~,

(3.4)

(3.5)

Since, on the average, the system is spatially isotropic, and
here a and P are spatial indices, we have

From the preceding section one can obtain the eigen-
modes in the long-wavelength limit. We will treat only
the case D »J. Consider (following Ginzburg )

(3.1)

as a possible solution to (2.25) as k ~0. Note that

(0) (o)- i —e (o) (o)-+ ai ~j Si Sj +pj T5ap+ yi~ij Si 'Sj q yj ~ (3.6)

Moreover, since the actual magnetic susceptibility is given
by

(y/V) Q,. S,,
X~ =mg/Hg —— -(y j(j/V)D

H,
with the spin stiffness p, defined by

2
Ps =C X~,

we find that

e„',z,,s(" s,'"q»
3/a /2

(3.7)

(3.8)

(3.9)

Note that (3.4) implies that the spin waves have linear
dispersion, in agreement with the numerical calcula-
tions 20 24

Let us now include a weak random microscopic aniso-
tropy within the plane. In (1.1) we must thus employ

(3.10)
1J

(We will take D to be the characteristic magnitude for
the anisotropy D,jap's, analogous to J for the exchange. )

Note that in (3.10) we have taken H to be bilinear in the
spin variables; as for the exchange term, normally the
most important types of anisotropy are of this form.
These may be interactions between spins (i+j }, the most
important examples of which are the dipolar interactions
and the (effectively random) anisotropic exchange
interactions —namely, the DM and pseudodipolar interac-
tions. ' They might also be single-spin interactions
( i =j), such as random uniaxial anisotropies.

In addition, however, there may be nonrandom,
crystal-field anisotropies in the easy plane, very weak
compared to D and J. In the most common crystal struc-
tures these will be fourfold or sixfold anisotropies. As
noted in Ref. 31, such anisotropies can yield a macroscop-
ic anisotropy just as do random microscopic anisotropies.
[The key observation needed to explain this fact is that,
although to first order in D /J there may be no correla-
tion energy between the spins and the microscopic aniso-
tropy, to second order such a correlation will exist, thus
leading to a net macroscopic anisotropy. It is not only
random spins and random microscopic anisotro-
py29 M "'i that can lead to a macroscopic anisotropy; this
can also occur for random spins and nonrandom micro-
scopic anisotropy, i' and (according to Ref. 13) nonran-
dom spins and random microscopic anisotropy. ] Further-
more, in the presence of a nonzero magnetization, there is
a contribution of O(D ) which couples to m, just as in
other magnetic systems; however, since m is typically
quite small in spin glasses, this term is expected to be
dominated by the terms of O[(D } /J] (to be discussed
below}, which are independent of m. Note that random-
ness in z does not effect the system, since the strong pla-
nar anisotropy keeps the equilibrium spin orientations
away from the z axis.

%ith H,„,uniform rotations about the z axis can cost
energy, so that (2.22) develops a modified value for A,;j
and the equilibrium mean-field A,;:
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kij5ap—= (A i5jj —Jj )5ap~ j( jjap

=(A.; 5,j5.P J—,j5.P D—,LJ.P),
(0) (0) i (0)

A,;S;a—:g JjjSjp —+A, ,'S;a
J

j. (0)g (J(&5ap+Dqap)Sjp
J

Then (2.25}becomes, for the k=0 mode,

D—jjaaS; Sj ]58' .j. (0). (0) (0)

(3.11)

(3.12)

(3.13)

theory can be employed to find the symmetry properties
of the macroscopic anisotropy. To do this, we imagine
that the spina rotate rigidly and uniformly from their "un-
perturbed" orientations. Then the anisotropy torque per
unit volume takes the form

I a"=(y/V)cap@;pH r'"'

= (1/V)cap@;PDgjrqSjq
(0) j.=(I/QeaprRppR„I S~pD~irl, Sj„,

where S jr' gives the equilibrium orientations (in the plane)
and Rpp is the rotation matrix about the z axis:

To lowest order in D, we may take 58& to be given by
the D1=0 solution [i.e., 58j,(0)=a]. Then, with the an-

isotropy constant E (an energy density) defined by

7' E=co+zz,2 =— 2 (3.14)

(3.13) and (3.7) yield

(1/—V}QDjjap[(Si'p'Sja'+Si'a'Sjp') S'i"—Sj"'5'ap] .

It is useful to define

(0) j. (0)A prl I' =(1/+—S~'jr D~i re~'

(3.15)

(3.16)

which, because of the symmetry of the system, must have
the following form:

A p re ——A15p~ 5'+ A15p r5~ +A15p~5~ r, (3.17}

where 5P„——5P&
—(z)p(z}„is the projector into the plane.

Combining (3.15)—(3.17) then yields

Rpp =5ppcos8+(z)p(z)jr(1 co—s8) ep—pj„(2)jsin8 .

(3.20)

In writing this, we assume that we know what three-
dimensional rotation the system undergoes. Furthermore,
we do not permit the system to undergo local rearrange-
ments. In contrast, for a real experimental system the ro-
tation is specified only to the extent that the remanence is
rotated, which could be performed by any of a continuous
infinity of three-dimensional rotations. Moreover, the
system has time to undergo local rearrangements which
lower its energy. This leads to a decrease in the anisotro-

py torque and, therefore, in the effective anisotropy con-
stant. On the other hand, in the limit of low temperatures
such relaxation is inhibited and (3.20) becomes more
quantitatively valid. In any event, the argument that fol-
lows is expected to give the correct symmetries of the
macroscopic anisotropy torque.

There are three terms in each of Rpjr, R&&, and
A p &&&, so in principle I ~" can have as many as 27 terms:

K =4(A2+Ai) . (3.18) I', =e,p„[5pjrcos8+5P,5jr, (1—cos8) —epjr, sin8]

Note that if the S p' do not correlate with the D,j p (as for
the ground state when Di =0), the terms in (3.15}are un-

correlated and therefore the sum goes to zero. Since the
correlation is produced by the random anisotropy acting
against the exchange, the correlation angle is of 0 (D, /J),
so that E is of 0 (D, /J), as in the Heisenberg case.
(Here we have replaced D by D, to remind ourselves that
this anisotropy is associated with randomness. ) Since
X~ is of 0 (D '), (3.14) yields the result that
ojo-Dr(D/J) j

One can learn a great deal by studying the anisotropy
torque as a function of (finite) angle of rotation 8 about
the z axis. This has bcmf done experimentally by static
torque measurements, by transverse susceptibili-

ty, ' and by measuring the magnetization as a function
of the strength and orientation of the external field (e.g.,
the asymmetric hysteresis loop in Heisenberg spin glasses
with weak anisotropy, which is a signature of the uni-
directional anisotropy '). In the present case, the

t

X [5„qcos8+5~5„g(1 cos8) eq„,s—in8]—
j.x (A15p„5r„+A25p r5„„+A15p„5„r). (3.21)

However, this expression is overly general, since arbitrary
rotation axes are permitted, whereas only rotations about
0 are of interest to us. Restricting ourselves to this case,
we find that P' and jj,

' must be normal to z, so the middle
terms in Rpp and R&& cannot appear [cf. (3.20)]. As a
consequence, the number of possible terms reduces to 12.
Now, note that the term A~ correlates the spin indices
with one another and the spatial indices with one another,
so that the spin and the spatial coordinates remain uncou-
pled; as a consequence, this should yield no anisotropy
torque, an assertion which is verified by explicit calcula-
tion. This reduces the number of possible terms to eight:
four for A2 and four for A3.

In considering the Ai terms, note that the 5&& factor
prevents the e», terms from contributing. This leaves
the following terms in I,'", due to A2..

6 p A25pr5~~(5ppcos8 —Epp sln8)5~~ cos8 =A&(cos 8E pr5pr —sli18 cos86 pr6pr )5~~= —4A2sin8 cos8 .

The A 1 terms give the following contribution to I',":
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&,~~ i5p„5„„(5pgcos8 e—pp, sin8 )(5».cos8 e—»,sin8)

= +3[cos 86gIi'r5pr+s1n 8egpyEp~'e~r —sli18cos8(E p E'pr +Gap Ep g)) =—4Ais1n8cos8 .

Thus, collecting terms and using (3.18), we have

I "=—4(32+Hi)sin8cos8= ——,K sin28 . (3.22)

This is periodic in m; in contrast to the case of anisotropy
for Heisenber~ spin glasses, where a DM interaction gives
asin8torque. ' ' ' ' Note that, since

symmetry one has @=2. (Note that 8 is not the same as
8~, the angle of the magnetization measured relative to
the crystal axes, but rather is the orientation of 8 rela-
tive to the cooling field direction. Thus, it should be pos-
sible to distinguish the familiar cosp8 anisotropy from
the cosp8 anisotropy, by repeated measurements with the
cooling field in the XF plane at various angles with
respect to the crystal axes. )

(3.22) implies that (with 8~8, )

s'"= ——,'E cos28, . (3.23)

So far, our analysis has not made any assumptions

about the nature of the microscopic anisotropy. All forms
of microscopic anisotropy must satisfy D,&~~ DJ,p . ——
However, the most common anisotropies also satisfy the
following condition:

(3.24)

where the plus holds for the dipolarlike case (as well as
for single-ion interactions) and the minus holds for the
DM-like case. If we apply this condition to (3.16), then
we see that

(3.25)

Neglecting Ai (since it is irrelevant to the anisotropy
torque) we see that (3.25) and (3.17) imply that

A2 ——+23 . (3.26)

As a consequence, a pure DM-like interaction
( A i — A 3 ) will yield no macroscopic anisotropy torque
( j:=0). Only a dipolarlike interaction will yield a
nonzero macroscopic anisotropy torque, and that will be
proportional to sin28. It would be of considerable interest
to verify this result experimentally.

It is not difficult to see why a DM interaction cannot
contribute to the macroscopic anisotropy. The DM in-
teraction is proportional to the cross product S;XSJ,
which points in the z direction because the spins lie in the
XY plane. Under rigid rotations in the XY plane this vec-
tor is left unchanged, so that the energy (both exchange
and anisotropy) is unchanged.

Moreover, it is not difficult to see why the system has a
macroscopic anisotropy which is unchanged under rota-
tions by m. The Hamiltonian is invariant under time re-
versal and, for a planar system, time reversal has the ef-
fect of rotating the system by m. On the other hand, this
does not constrain the macroscopic anisotropy to be uni-
axial. In fact, in the case of p-fold crystal fields (with p
even), it is straightforward to show that the macroscopic
anisotropy is proportional to cosp8. However, it should
be remarked that highly symmetric crystals field lead to
high values of p: for square and hexagonal symmetry
(this latter is the case for the systems studied in Refs.
and 2) one has p=4 and p=6, whereas for rectangular

IV. MACROSCOPIC DYNAMICS

From Sec. III we have been able to determine the prop-
erties of the normal modes in the long-wavelength limit,
using a microscopic approach. Let us now consider a
macroscopic approach. The magnetization is defined via

m (r)—: gS;V,.~~
(4.1)

where R is a region of volume V and containing N spina.
For large uniaxial anisotropy (D »J), the macroscopic
angle 8,(r) defined by (2.12) becomes

8,(r) =—g 8 (D»J) .
1

(4.2)

2
m,

2X

ezr ————,K cos 8, + —,
'
p, ( V8, )

(4.3)

(4.4)

Here, ez arises from the strong planar anisotropy and the
terms in ex' arise from the weak random anisotropy in
the plane and from the exchange energy; E and p, were
calculated in Sec. III. Thus the total energy density is

«=«D+«~y —m. H,
~here we have included the Zeeman term also.

From microscopic theory it is well known that

C)«
CK

(4.5)

(4 6)

where m —+m++)&m and 8~8+5$ under the rotation
5$. To find the equation of motion for 8„wemay apply
the Appendixwf Ref. 13, which yields

Here we have utilized (3.7) and the fact that in (2.12),
Xj,p=5&5,pD

' for D »J [from (2.20) and (2.21)].
Thus the angles are equally weighted (unlike the case for
the Heisenberg spin glass' ). [Note that, although (2.12) is
valid only for small angles, (4.2) is sensible also for large
rotation angles. This does not happen in the Heisenberg
case, where three-dimensional rotations do not commute.
Moreover, not all definitions of the two-dimensional rota-
tion angle would share with (4.2) the commutative proper-
ty l

Associated with m and 8 are the internal-energy densi-
ties
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(4.8)

Thus, for H, &0 the equilibrium solution is h, =H„so
m, =X~H, . Note that (4.7}may also be written

d8s Bs
dt Bm,

(4.9)

if (4.5), (4.7), and (4.8) are employed. Finally, observe that
for the nonuniform case, (4.6) generalizes to

(4.10)

The normal modes about the 8,=0 equilibrium then
follow from (4.9) and (4.10), with e given by (4.3)—(4.5):

mg
~s=r (4.11}

rn, = —y(K8, —p, V28, ) .

Letting 8„m,-e'"' ' ', (4.11) and (4.12) lead to

y (K+pgk )

(4.12)

(4.13)

in agreement with what was to be expected from Sec. III.
For k=0, (4.13) reduces to (3.14), or

=y(h, —H, },
t

if the commutator [m,8,]=iyV '5~, as is the case
here .In (4.7), H, is the applied field (previously taken to
be zero) and h, is the field due to the internal interactions,
for small m, given by

As discussed after (3.18), K -D, /J and 7 -D ', so that
coo-yD, (D/J)' . Since D, cannot be due to DM in-
teractions, we expect it to be smaller (by perhaps an order
of magnitude) for planar spin glasses than for Heisenberg
spin glasses. On the other hand, D/J may be of the order
of ten, so that the net effect should be only a slight lower-

ing of the resonance frequency in the planar case (as op-
posed to the Heisenberg case).

V. SUMMARY

We have considered certain of the properties of planar
spin glasses from a microscopic viewpoint, building
around the microscopic definition of the macroscopic ro-
tation angle. It was established analytically that, in the
absence of random in-plane anisotropy, the normal modes
in the lang-wavelength limit have a linear dispersion rela-
tion {in agreement with numerical calculations~ and a
macroscopic calculation ) and an expression for the
spin-wave velocity was derived. In addition, the effect of
random in-plane anisotropy was considered and it was
shown that for bilinear interactions a macroscopic uniaxi-
al anisotropy results, with no contribution from DM in-
teractions. As a consequence, the macroscopic anisotropy
in the planar case can be expected to be smaller than in
the Heisenberg case, where the DM interactions dom-
inate. The normal modes were also studied using a mac-
roscopic formulation. It is concluded that the longitudi-
nal resonance will not be tunable with field normal to the
plane if there is no remanence. A companion paper,
which is more phenomenological, considers the effect of
remanence and sho~s that the longitudinal resonance be-
comes field dependent when the field is in the plane.
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