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The overall features of a variational theory for finite-temperature magnetism, which has recently
been proposed, are investigated numerically for a half-filled Hubbard model. The phase diagram,
sublattice magnetization, staggered susceptibility, amplitude of local moments, charge fluctuations,
and electronic contributions to the internal energy, entropy, and the thermal expansion are calculat-
ed as functions of temperature T and the Coulomb interaction U. It is found that the local electron
correlations, which cannot be described by the static approximation to the functional integral, act so
as to reduce the effective Coulomb interaction for the magnetization, the Néel temperature, the
internal energy, the specific heat, and the entropy, while they enhance the atomic character for the
amplitude of local moments, the charge fluctuation, and the reduced-magnetization—
versus—temperature curves. Electron correlations reduce the thermal expansion, in contrast to the

case of ferromagnets.

I. INTRODUCTION

It is well known that electron correlations are important
in transition metals and compounds. The correlations
reduce the stability of magnetic long-range order as com-
pared with the Hartree-Fock approximation for the
ground state,!™* give rise to a metal-insulator transi-
tion,>>>% strongly reduce the cohesive energy and bulk
modulus,”® and enhance the amplitude of the local mag-
netic moment.®~!1® These effects of electron correlations
which are seen in the ground state also play important
roles even at finite temperatures since the energy gain due
to the correlated motion of electrons is usually much
larger than the Curie (Néel) temperature T¢ (Ty).

A useful technique for investigating finite-temperature
magnetism in transition metals and alloys is the
functional-integral method, in which an interacting elec-
tron system is transformed into a one-electron system in a
time-dependent field {£;(7)}.!"1? This method allows for
the description of local-moment features as well as band
features.!>~!*> Numerical calculations'®~2! are limited
to the static approximation, where the time-dependent
field variables {&;(7)} are replaced by static ones
{(&:i=B"" f oﬁé}(r)df}. Here B is the inverse temperature,
1/kgT. This is valid in the high-temperature limit. At
T =0 the approximation reduces to Hartree-Fock theory.
Thus, the electron-correlation effects mentioned above are
not sufficiently taken into account. We have, therefore,
recently developed a theory to treat the correlations on the
basis of a variational principle.?? In this theory the free
energy reduces to a Gutzwiller-type variational ener-
gy>¥1% at T =0, and it agrees with the free energy in the
static approximation at high temperatures, as it should.

Some numerical calculations for Fe and Ni have been
described in the previous paper?? (which is referred to as I
in the following). A large reduction of T was found for
Fe in the model calculation. It was also found that the
amplitude of local moments is almost temperature in-
dependent below and above T¢c.
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The purpose of this paper is to present numerical re-
sults for a half-filled band in order to show the overall
features of the variational theory. Antiferromagnetism is
favored in a half-filled band. The effect of local electron
correlations on the two-sublattice antiferromagnetic
ground state has been investigated by Ogawa and Kanda?
for the single-band case and Oles** for the degenerate-
band case by means of a Gutzwiller-type variational ap-
proach. In this case it is found that the electron-
correlation effects are not very significant, since the
Hartree-Fock exchange splitting itself reduces the proba-
bility of double occupancy of electrons on a site and par-
tially includes the Hund’s-rule coupling. Takano and Oki-
ji?> have reported some interesting results for the metal-
insulator transition, taking the degeneracy into account.

Antiferromagnetism has been investigated at finite tem-
peratures by several authors within the static approxima-
tion.!>!71826 We discuss in this paper the effect of local
electron correlations on various quantities as a function of
temperature and Coulomb interaction.

First, we briefly review in the following section the
variational theory within the single-site approximation
(SSA). The numerical results are presented in Sec. III.
The sublattice magnetization, staggered susceptibility,
phase diagram, amplitude of local moments, charge fluc-
tuations, internal energy, entropy, and the electronic con-
tribution to the thermal expansion are calculated as func-
tions of temperature T and the Coulomb interaction U.
The effects of local electron correlation on these quanti-
ties are found in the small- and intermediate-coupling re-
gime 0<U/W <1, where W is the d-band width. Physi-
cal reasons for these effects are also given. Finally, a
summary is presented in the last section.

II. REVIEW OF THE VARIATIONAL THEORY
Our treatment of electron correlation at finite tempera-
tures is based on the physical assumption that the energy
gain due to correlated motion of electrons is much larger
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than the Curie temperature (T¢) or the Néel temperature
(Ty). This condition is satisfied in the transition metals.
Then we may include adiabatically that part of the elec-
tron correlations which is not described within the static
approximation to the functional integral.

We adopt the single-band Hubbard model for brevity:

H—‘_—z eoni,—l- 2 t,-jaizaja—i-ZUn,-,n“ . (2.1)
i,o ij,o i

Here €° is the atomic level. The transfer integral between
sites i and j is denoted by ;. U is the Coulomb integral.
a,I, (a;o) is the creation (annihilation) operator on site i
with spin o, and n,-a=a,-’:,a,~,.

The formulation is based on Feynman’s variational
principle for the exact free energy F expressed in the
functional-integral formalism,

FZF,+(E(T)—E/ET)),, (2.2)

BU N/2
BY 1, —BE(£T)
= f [1'[ dé; ‘e , (2.3)

) [Hdg,- ]e‘ﬂE'(---)
(=)= : , (2.4)

S

where £ stands for the exchange field £,,5,,...,&y, and
N is the number of sites. E(&,T) denotes an exact energy
functional. The charge-field variables and the finite-
frequency components of the exchange field have been
formally integrated out [see Eq. (2.3) in paper I]. F, is de-
fined by Eq. (2.3) with E(£,T) replaced by a trial energy
functional E,(£,T). The latter is assumed to be

E(§,8(E)+E (£,6(8),m(8))

(see Ref. 22.) Here E(§,5(£)) is the energy functional in
the static approximation,'”?® and E.(£,E(€),m(€)) is the
correlation energy of the ground state in the exchange
field (£;) as determined in the Gutzwiller scheme. {;(£)}
and {7;(§)} are variational parameters describing a
charge potential and correlated motion of electrons,
respectively. They are determined by the variational prin-
ciple [Eq. (2.2)].

We assume a two-sublattice antiferromagnetic state
with one “up” and one “down” site per unit cell. Then all
sites are equivalent and the energy functional in the SSA
is given by

e BF

Eg(§,6,m)=Ey(§,6(EN+E(E,5(6),m(E)) , (2.5)

Eu(6:66)= [ dof(o) L 1m
X ¥ Inf{[Ly(0,6)]7 '~ [L ()]}
+[F (0)]7Y}

—sU([&&1P-8Y, (2.6)

—27(O0H )o+1*(0HO ),
E(&,6(8),m(8)) T+ 7200, . 2.7
Here the site index has been omitted. f(w) is the Fermi
distribution function and [.£,(w)]~! is the effective
medium for spin o on the (+) sublattice, to be deter-
mined self-consistently later [see Eq. (2.19)]. The locator
L, (w,£) is defined by

[L(0,8)] '=0—[e—pu+5ULE) —5UEa] . (2.8)

F,(®) in Eq. (2.6) is the coherent Green function on the
(+ ) sublattice. It is given by?"28

(£ _J0)]~ ! '

F =
)= ]

po(E)
X
f ([L (@] '[ZL _(0)] 1} —¢

de (2.9)

if gy=—¢y;q for all k in the Brillouin zone, Q being
2m(1,0,0)/a in the case of a cubic lattice, where a is the
lattice parameter of a unit cell with cubic symmetry.
pole) in Eq. (2.9) is the density of states (DOS) of the
noninteracting system.

The operator O in Eq. (2.7) is

(ny—{n)o)n,—{n,)o),

and H=H—(H )y} The average (- ), is taken
with respect to the one-electron Hamiltonian H%£) in the
static approximation. This is given by

HY)=3 [®—p+7UL(E)—7UE0]n;,

i,o
+
+ 3 ijdigljo -
i,j,o
The expressions for {(02),, (OH ), and (OHO), are
given in Appendix B in paper 1. The variational parame-

ter n(£) is obtained analytically in the present case as fol-
lows:

(2.10)

—(OHO Yo+ ({OHO )3+4(0OH )}(0?),)'"*
(&)= —~ )
2(OH>0<02)0

(2.11)

The charge potential {(£) has to be obtained numerically
from the variational equation 0Eg(&,5,7)/36=0. In the
following calculations, however, we have approximated it
by that of the static approximation,

EE)=n%g), (2.12)

where n%£) is the local charge on a site resulting from
the one-electron Hamiltonian H(£).

The free energy per atom is expressed as

Fo={(H)—TS . (2.13)

The energy (H ) and entropy S are given by
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(H)=pn+ [ do fl@)o{p(f)) -3 UEE) — (£ +2/BU}+(Ec(&n(©))

S=— [ do(p(wt)) {[1—f(@)]In[1—f(0)]+fl@)nf(@)}+In [ d&

Here p(w§) is the local DOS on a site for the one-electron
Hamiltonian (2.10). The average ( *-- ) on the right-
hand side (rhs) in Egs. (2.14) and (2.15) is defined by

[e o g
[ e Peag

The first three terms of the rhs in Eq. (2.14) correspond
to the energy in the static approximation with a renormal-
ized thermal average (2.16). The last term denotes the
correlation energy. The first term in the entropy (2.15) is
the entropy of independent fermions with a temperature-
dependent DOS (p(wE&)). The second term describes the
magnetic entropy. The last term in Eq. (2.15) is related to
the Gaussian prefactor V' SU /4w in the static approxima-
tion. The sublattice magnetization (m ), the thermal
averages of the square of the local charge, and the local
moment are calculated from

(- )=

(2.16)

2 02 0
<m>:<§)_<%2—<)"0—";7(§—)> , (2.17)
G R T N 47(0?),
(n) }_1+2 1-(¢ >+BU t<-—————l+n2<02)0>.

(2.18)

Here we have assumed a symmetric half-filled band
plwE), so that n%(£)=1. m%£) is the local magnetization
resulting from the one-electron Hamiltonian (2.10).

The effective medium .#; ' which describes the long-
range order is determined by a simplified coherent-

potential-approximation (CPA) equation,'”2
1 (&) -1
g—z_ 1+V((§2>)1/2 {[Lu(wg)]
“$;l+F;1}_l:Fa ’

(2.19)
(&) g -
<§2>’=f"§ §2}X" o) fage e a0

The parameters {[-£ ()]~ ',{(&),(£?)} must be obtained
by solving Egs. (2.19) and (2.20) self-consistently.

It should be noted that the parameters
(L546,m,(E),(&%)} obtained by the present Eqgs. (2.11),
(2.12), (2.19), and (2.20) do not, in general, guarantee sta-
tionarity for the free energy in the single-site approxima-
tion [Eq. (2.13)]. This does not give rise to serious diffi-
culties in the half-filled case. However, a clear violation
of thermodynamic relations and an inconsistent phase sta-
bility are seen to occur when the electron number deviates
far from 1. In this case we have to determine the parame-
ters {.£5,6,m,(£),(&%)} directly from the variational

(2.14)

172 (E.)
—B(E;—(E,
e PFe= ) _ L (2.15)

BU
4

I

principle, so that the stationary condition is satisfied,
which would greatly complicate the self-consistent equa-
tions.

III. NUMERICAL RESULTS

The numerical calculations are performed on a semiel-
liptical model DOS,

_|@/mWYW/4—e))' 2 |e| SW /2

(g)
pole 0, |e|>W/2

(3.1
where W is the bandwidth. The Fermi distribution func-
tion is neglected as in the previous calculations.

The ground-state properties in the present theory are
summarized in Fig. 1. The ground state is antiferromag-
netic for an arbitrarily small Coulomb interaction, since
perfect nesting at the Fermi level causes a large kinetic-
energy gain. The local electron correlations reduce the
Hartree-Fock magnetization by 5—20 % in the intermedi-
ate regime O <U/W <1. For large values of U a large
Hartree-Fock exchange splitting strongly decreases the
probability of double occupancy of electrons on a site, so
that the correlation-energy gain — ( E, ) becomes smaller.

The contribution of quantum fluctuations to the ampli-
tude of local moments is taken into account in the present
calculation.”? Thus the amplitude of local moments,
(m?)'/2, takes the correct value 1/v2 at U=0, while it
vanishes for U =0 in the previous calculation.!” The am-
plitude gradually increases with increasing U, approach-
ing the correct atomic limit (1xz). On the other hand,
the charge fluctuations decrease with increasing U, and
vanish at U/W =« as they should. The local electron
correlations enhance the amplitude of local moments and
suppress the charge fluctuation ([((8n)%)]'/?) by several

o LZ L L | L |

0 1 2 3 4 2U/W

FIG. 1. Ground-state sublattice magnetization (m ), the
root-mean-square value of local moments ({m?))!/2 and the
charge fluctuation [((8n)?)]!/? as a function of the Coulomb
interaction U divided by the half-bandwidth W /2. Dotted-
dashed curves ({(m )up) show the ground-state sublattice mag-
netization in the Hartree-Fock approximation.
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FIG. 2. Magnetic phase diagram for the half-filled band,

showing the paramagnetic metal (PM), the paramagnetic insula-

tor (PI), and the antiferromagnetic state (AF). Solid (dotted)

lines show the phase boundary in the variational approach (the
static approximation).

percent in the intermediate regime.

The interpolation character of the present theory can be
seen in the phase diagram in Fig. 2. The Néel tempera-
ture increases with increasing U, and has a maximum at
2U/W=1.6. In the intermediate regime 0<2U/W <2
the Néel temperature is reduced because of the local elec-
tron correlations. There is no reduction of Ty in the re-
gime 2U /W >>1 since the present theory reduces to the
static approximation in the weak and strong Coulomb in-
teraction regimes. The present theory reduces to the
molecular-field approximation for the spin-3 Heisenberg
model in the regime 2U /W >>1.

The phase boundary between the paramagnetic metal
(PM) and the paramagnetic insulator (PI) is defined by the
line along which a gap appears in the CPA density of
states. The local electron correlations effectively reduce
the Coulomb interaction in the exchange potential
— 3 UEo. Thus the phase boundary is shifted slightly to-
wards the insulator regime. It should be noted that the
metal-insulator phase boundary defined here is a conven-
tional one to indicate a transition regime from a metal to
an insulator; we do not obtain such a gap at finite tem-
peratures when we use instead of Eq. (2.19) the full CPA
equation,'®?*% allowing for a continuous exchange-field
distribution. A high-temperature expansion also shows a
gradual transition from a metal to an insulator in the
paramagnetic regime.’!

Figures 3(a) and 3(b) show the energy functional for
various values of U in the paramagnetic state. The corre-
lation energy functional E.(§) has a minimum at £=0,
which deepens with increasing U. For large U a local
minimum appears in the total energy functional at £=0.
The depth of the minimum in E.(§) is —U/4 in the
atomic limit. However, the width of the well becomes
zero in this limit, so that there is no electron-correlation
correction to any physical quantities. Thus, correlation
corrections appear only in the intermediate regime. In the
antiferromagnetic state the minimum of E, shifts so as to
reduce the local magnetization.

The magnetization-versus-temperature curves are
shown in Fig. 4 for various values of U. The reduction of

@ EglE)

(b)
M(§)

........................................... ORI
\ZU/ W=0.75

2U/W=075
2Uu/W=1.0
2U/W=1.25
2U/W =15

-0.02
(Ry)

FIG. 3. (a) Energy functional Eg(§) in the single-site ap-
proximation for various Coulomb interactions U/W=1.0, 1.25,
1.375, and 1.5. (b) Local correlation parameters 1(£) and corre-
lation energy functionals for various Coulomb interactions.

the Néel temperature is largest near 2U /W =1, where it
is about 30%. The local electron correlation reduces the
magnetization, but it enhances the atomic character by
suppression of charge fluctuations. This is seen in the re-
duced magnetization curves in Fig. 5. They are closer to
the Brillouin form for S=7 than are those in the static
approximation. Evidence for such a correlation effect
seems to be seen in the sublattice magnetization curve of
Cr, which follows the Brillouin form for spin-+ in spite
of the small value (0.6up) of the sublattice magnetization
at T=0.%

The amplitude of local moments is strongly enhanced
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0 0.05 0.10 015

0
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FIG. 4. The temperature dependence of {(m ) and ({m?))!/?
in the present approximation (solid and dashed curves) and in
the static approximation (dotted curves) (Ref. 17).

by the inclusion of the quantum fluctuations as well as the
local electron correlations (see Sec. II in paper I). The
temperature dependence of the amplitude is very small as
compared with that in the static approximation.!” These
discrepancies are particularly large for small 2U/W at
low temperatures, as shown in Fig. 4.

The correlation correction to the amplitude of local mo-
ments changes little in a temperature range of Ty. It van-
ishes above a temperature T* > W?/8U for the following
reason: The correlation contribution due to double occu-
pancy of electrons on the same site disappears above a
temperature T* where the average exchange splitting is
comparable to the d-band width, ie., U((£*))\2~W.
On the other hand, the characteristic temperature is of the
form T*~ U(£?)/4 when T* is sufficiently high because
the energy functional is approximately quadratic for large
|€| [see Eq. (2.6)]. Eliminating ({£?))!/? from the two
relations, we obtain 2T*/W~W/4U. 1t is 1.0 for
2U/W=0.5; this is much larger than 2Ty /W.

The staggered susceptibility follows the Curie-Weiss
law, as shown in Fig. 6. The Curie constants are hardly
modified by the local correlation, because T* is much
larger than Ty.

The temperature dependence of the internal energy is
shown in Fig. 7. The magnetic energy, defined by

M

Mo

]O 2U/W=15

2U/W=1.0
05 - 2u/W=05

0 !
0 05 10 T

FIG. 5. Reduced sublattice-magnetization curves in the vari-
ational approach (solid curves) and in the static approximation
(dotted curves). Open circles show the S = 5 Brillouin curve.

0.1

0 L I
0 0.05 0.10 0.15

2T/W
FIG. 6. Inverse staggered susceptibilities for various values

of the Coulomb interaction. The solid (dotted) curves show the

results in the variational approach (the static approximation).

AEm=<H)T=TN_<H>T=O )

increases initially with increasing U and has a maximum.
The corresponding specific heat becomes large and shows
local-moment behavior for large U. In the present calcu-
lation the Fermi distribution function is replaced by a step
function, and the CPA equations are also simplified by re-
placing the probability functional

P(§)_=_e_BEG(§)/ fdge_ﬂEG(g)

by a two & functions. If these are fully treated, we find a
large electronic contribution from the Fermi distribution
function to the specific heat in the paramagnetic state [see
the second term on the rhs in Eq. (2.14)]. The latter usu-
ally compensates for the negative specific heat above Ty
found in the present calculation.?

In the static approximation the energies in the
paramagnetic state are generally overestimated more than
those in the ferromagnetic state. Therefore, local electron
correlations reduce the magnetic energy in the
intermediate-coupling regime. This is the main reason for
the reduction of Ty.

The magnetic entropy is shown in Fig. 8 as a function

<HD
(Ry)
2U/W=05
-0.09 |-
L 20/W=10
-0.10 - 2U/W=15
1 1 1 I

0 0.05 010 015 020 2T/W

FIG. 7. Temperature dependence of the internal energy in the
variational approach (solid curves) and in the static approxima-
tion (dotted curves). Energies in the static approximation are
shifted down so that they agree with those in the variational ap-
proach at T =0.
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FIG. 8. Temperature dependence of entropies for various
Coulomb interactions. The results in the static approximation
(dotted curves) are shifted so that the values at T =0 agree with
those in the variational approach (solid curves).

of U. The characteristic magnetic entropy AS,,, which is
defined by S(Txy)—S(T =0), increases with increasing U.
For U/W >>1 it reduces to the atomic entropy In2.

The present theory leads to a residual ground-state en-
tropy in the intermediate regime, as in the static approxi-
mation. It is given by

v ] . (3.2)

S(T=0)=+In|—Y
T 282 E g (£*) /082

This point may have to be dealt with in the future. The
local electron correlations reduce AS,, in the intermediate
regime in comparison with the static approximation, since
the correlated motion of electrons suppresses degrees of
freedom.

The temperature dependence of the bonding energy

Ey(T)= <2 i*,,aja>
'jl

is shown in Fig. 9 for various values of U. The bonding is
directly connected with the electron contribution «,(7T) to

the thermal-expansion coefficient via the relation***
D _OE,
. (T)= , (3.3)
¢ 3BV T
2AE,
W
olo [ 2U/W=15
WIW=0
oosk /.
""""" 2U/W=0.5
0]
1 1 1 1
0 0.05 0.10 015 2T/W
FIG. 9. Temperature dependence of bonding energy

AE,=E,(T)—E,;(0) in the variational approach (solid curves)
and in the static approximation (dotted curves).

where B is the bulk modulus, V is a volume per atom, and
D is an electronic Griineisen constant, which can be cal-
culated from Andersen’s potential parameters.’*¢~%
[The notation has been changed. D is the same as 22 in
the appendix of Ref. 33 and (D/7) in Refs. 34 and 37.]
The volume change due to the electrons between T =0
and T =Ty is therefore given by

D[E,(Ty)—E,(0)]/3BV .

Here E,(Ty)—E,(0) takes the values 0.0003, —0.0010,
and 0.0149 Ry for 2U/W=0.5, 1.0, and 1.5, respectively,
in the present theory, while it is 0.0004, 0.0009, and
0.0166 Ry, respectively, in the static approximation.
Namely, the local electron correlations act so as to cause a
volume contraction with increasing temperature in anti-
ferromagnetic metals. This is seen from the following
physical consideration.

Let us consider the case of nearest-neighbor hopping,
and assume that the exchange splittings are temperature
independent, in order to see the essential features of the
effect of electron correlations. The volume contraction is
proportional to the electron-hopping rate {a;,a;,), as
seen in Eq. (3.3). In the antiferromagnetic ground state
the electron correlations suppress the hopping rate be-
cause electron hopping to a neighboring empty level
creates a doubly occupied state of large energy. There-
fore, the electron correlations tend to expand the volume.
However, in the paramagnetic state the local moments are
aligned at random. Then the number of neighboring emp-
ty levels with the same spin as the central electron de-
creases, and the effect of the volume expansion due to
correlation decreases. Therefore, the local-electron-
correlation effect decreases the volume with increasing
temperature. This is just the opposite of the case of the
ferromagnetic metals, where the electron-correlation ef-
fects increase the volume with increasing temperature.*

IV. SUMMARY

We have performed numerical calculations for the
finite-temperature magnetism of a half-filled Hubbard
model in order to demonstrate the interpolation character
of the variational theory proposed in paper I, and to in-
vestigate local-electron-correlation effects on various
quantities in the intermediate-coupling regime.

The theory gives a better description of the overall
features of finite-temperature magnetism from weak
magnetism to strong magnetism. The local correlation ef-
fects neglected by the static approximation are not as
large in the case of the half-filled band as they are in fer-
romagnets, but do appear in the weak and intermediate re-
gime (0<U/W <1). In this regime the magnetization as
well as the Néel temperature is reduced by up to 30%, be-
cause the static approximation had overestimated the
magnetic energy. On the other hand, the local electron
correlations suppress charge fluctuations, so that atomic
features are enhanced. This is seen in the increased am-
plitude of local moments and the reduced magnetization.
The staggered susceptibility follows a Curie-Weiss law.
Calculated effective Bohr-magneton numbers are hardly
affected by including the local electron correlations since
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this is a high-temperature quantity for which the static
approximation works well.

The correlated electron motion lowers the energy in the
paramagnetic state more than in the antiferromagnetic
state. Therefore the energy is less strongly temperature
dependent than that of the static approximation in the in-
termediate regime. This implies that the specific-heat
peaks at Ty are somewhat reduced. The temperature
dependence of the entropy is also reduced at temperatures
T << T* because the correlated motion of electrons at fin-
ite temperatures reduces the effective number of degrees
of freedom in the intermediate regime.

The local-electron-correlation effect on the thermal ex-
pansion in antiferromagnetic metals is very different from
that in ferromagnetic metals. In the latter, the volume in-
creases with increasing temperature, while in the former it
decreases. In particular, the electron correlations can
change the sign of the spontaneous volume magnetostric-
tion in the intermediate regime (2U /W ~1.0).

ACKNOWLEDGMENTS
The authors would like to thank Professor P. Fulde for

a critical reading of the manuscript and for valuable dis-
cussions.

13. H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953).

2M. C. Gutzwiller, Phys. Rev. 134, A293 (1964); 137, A1726
(1965).

3J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); 277,
237 (1964); 281, 401 (1964).

4J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

5N. F. Mott, Proc. Phys. Soc. London, Sect. A 62, 416 (1949).

6W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).

7J. Friedel and C. M. Sayers, J. Phys. (Paris) 38, 697 (1977).

8A. M. Oles, Phys. Rev. B 23, 271 (1981).

9G. Stollhoff and P. Thalmeier, Z. Phys. B 43, 13 (1981).

10A. M. Oles$ and G. Stollhoff, Phys. Rev. B 29, 314 (1984).

HR. L. Stratonovich, Dokl. Akad. Nauk SSSR 115, 1097 (1957)
[Sov. Phys.—Dokl. 2, 416 (1958)].

123, Hubbard, Phys. Rev. Lett. 3, 77 (1959).

13M. Cyrot, Phys. Rev. Lett. 25, 871 (1970); J. Phys. (Paris) 33,
125 (1972).

14H. Hasegawa, Solid State Commun. 31, 597 (1979).

I15T. Moriya and Y. Takahashi, J. Phys. Soc. Jpn. 45, 397 (1978).

16J, Hubbard, Phys. Rev. B 19, 2626 (1979); 20, 4584 (1979); 23,
5970 (1981).

I7H. Hasegawa, J. Phys. Soc. Jpn. 46, 1504 (1979); 49, 178
(1980).

I8T. Moriya and H. Hasegawa, J. Phys. Soc. Jpn. 48, 1490
(1980).

19K. Usami and T. Moriya, J. Magn. Magn. Mater. 20, 171

(1980).

20y, Kakehashi, J. Phys. Soc. Jpn. 50, 1505 (1981); 50, 3620
(1981).

213, H. Samson, Phys. Rev. B 28, 6387 (1983).

22y, Kakehashi and P. Fulde, Phys. Rev. B 32, 1595 (1985).

23T. Ogawa and K. Kanda, Z. Phys. B 30, 355 (1978).

24A. M. Oles, Phys. Rev. B 28, 327 (1983).

25H. Takano and A. OKkiji, J. Phys. Soc. Jpn. 50, 2891 (1981).

26Y. Takahashi and K. Usami, J. Phys. Soc. Jpn. 51, 2450
(1982).

27E.-N. Foo and H. Amar, Phys. Rev. Lett. 25, 1748 (1970).

28M. Plischke and D. Mattis, Phys. Rev. B 7, 2430 (1973).

29M. Sako and M. Shimizu, J. Phys. Soc. Jpn. 40, 974 (1976).

30y. Kakehashi, J. Phys. Soc. Jpn. 50, 2251 (1981).

3L, N. Bulaevskii and D. I. Khomskii, Fiz. Tver. Tela (Len-
ingrad), 14, 3594 (1972) [Sov. Phys.—Solid State, 14, 3015
(1973)]; Phys. Lett. 41A, 257 (1972).

328. A. Werner and A. Arrott, Phys. Rev. 155, 528 (1967).

33Y. Kakehashi, J. Phys. Soc. Jpn. 50, 1925 (1981).

34Y. Kakehashi, J. Phys. Soc. Jpn. 50, 2236 (1981).

35D. G. Pettifor, J. Phys. F 8, 219 (1978).

36U. K. Poulsen, J. Kollar, and O. K. Andersen, J. Phys. F 6,
L1241 (1976).

37Y. Kakehashi, J. Phys. Soc. Jpn. 50, 792 (1981), Table L

38Y. Kakehashi and J. H. Samson (unpublished).



