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Scaling dielectric data On Rbl „(NH4)„H2PO4 structural glasses
and their deuterated isomorphs
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Temperature- (T) and frequency- {v) dependent dielectric losses on Rbi „(NH4)„H&PO4 single crystals

(RADP), and their deuterated isomorphs (D-RADP), can be collapsed to single curves with a scaling vari-

able E(T, v). This applies for T sufficiently high that equilibrium is established within the sample-

thermalization time. If E(T, v) follows the Vogel-Fulcher law, the scaling will depend only on the freezing

temperature To and on the attempt frequency vo. For RADP, values in excellent agreement with a study

covering a very broad frequency range are thus obtained, while significantly different values apply to D-

RADP.

Mixed crystals of Rbt „(NH4), H2PO4 (RADP) at room
temperature have the acid-proton disorder characteristic of
the KH2PO4 (KDP) family. For intermediate concentrations
x, on lowering the temperature T the disorder freezes into a
glass, "which is in many ways a structural analog of spin
glasses. For x=0.35, the electric susceptibility X(co, T) has
been measured with various techniques covering over 16 or-
ders of magnitude in frequency ~.' It is well described by
an integral of a Debye relaxator over a distribution g (r, T)
of relaxation times v which is broad in lnr, just as for spin
glasses, 4

about 17 orders of magnitude in v. ' New dielectric results
are also presented for the first time for a fully deuterated
sample showing that also in that case the same scaling pro-
cedure is rather successful, but with a scaling function f (E)
and a Vogel-Fulcher To that are significantly modified. Fi-
nally, it is emphasized that dielectric data alone, because of
the restricted frequency range, are not able to determine the
functional form of E(T, v), and other forms are given that
also collapse the D-RADP data quite well.

Let us first rescale the a,"(cu, T) data of Ref. 5. From Eq.
(1), the imaginary part of the dielectric constant is

x(cu, T) =xp(T)„' d(inn),"g(r, T)
I CUT

a"(~, T) = xp(T) J~ g (r, T)
0 1+Ca) T

(3)

with the normalization f g(r, T)d(lnr) =1. In a recent
5

0
Letter, I showed that the dielectric loss data could be col-
lapsed to a single curve, using instead of v a related energy
variable E(T, v). The latter was defined by

v = vp exp[ —E/(T Tp)]— (2)

a transformation suggested by the Vogel-Fulcher law. Here
v= I/2m 7, and vp is an attempt frequency measurable by
Raman scattering. " This law was found to apply to RADP
over a remarkable range of relaxation frequencies. '
Although several proposals have been made to justify it
theoretically, its use in the present case has been empirical
so far. Using (2), the energy distribution f(E) derived
from g (~, T) is experimentally found to be independent of
T,' and it is thus the scaling function.

In performing that scaling in Ref. 5, seven fitting parame-
ters were used and it was implicitly assumed that data col-
lapsing could be performed over the full range of T. It is,
however, likely that, even if f(E) remained constant in T
down to To, the resulting relaxation-time distribution would
not reach its equilibrium value g (r, T) as soon as the long-
est time in g become of the order of the sample-equilibrium
time or "laboratory time" rI. That field-cooled (and thus
also zero-field-cooled) states are not necessarily the equili-
brium states is indeed known for spin glasses. 9 This long-
time metastability occurs at a temperature Tt below which
equilibrium scaling is not expected to apply. In this Corn-
munication, it is sho~n that if the scaling is limited to tem-
peratures above TI, it can be performed with only two adju-
stable parameters, To and vo, giving values in agreement
with those derived from the investigations extending over

For g (r, T) broad in ln7, the important contribution to the
integral comes only from the region car = 1.' This is easily
seen with the change of variable x =In(per), which gives a
factor (sechx)/2 in the integrand. This is a relatively nar-
row peak of area n/2 located at x=0. Approximating the
sech by a 5 function, one obtains

a (cu, T) =——xp(T)g —.T
2 QJ

(4)

In the following, it will be assumed that the rounding ef-
fects of the integration in (3) can be neglected and that (4)
is exact From g. (r, T)d(in~) = f(E)dE, and using the
Vogel-Fulcher ansatz (2), one obtains g(r, T) = (T —Tp)
&& f (E). Replacing this relation in (4), the scaling equation
becomes

a (cU, T) = —( T —Tp) xp( T)f( ( T —Tp)ln( vp/v) )
2

(5)

where v =co/2n In this case, . the scaling only depends on
To, and the very-low-frequency electric susceptibility

xp(T).
For RADP (x =0.35), the real part of the dielectric con-

stant c,'(~, T) reaches a maximum near 30 K (Fig. 1 of Ref.
1). That maximum becomes progressively broader, the
lower the frequency [Fig. 1(a) of Ref. 5]. Hence, one ex-
pects xp(T) to be practically constant in the narrow tem-
perature region of interest for scaling the e,"(co,T) data of
Fig. 1(b) in Ref. 5. This is supported by the practically con-
stant value obtained for the field-cooled electrooptic coeffi-
cient r63 between 30 and 15 K.' To obtain go, one must
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subtract from the maximum of 4,'(cu, T) ( = 146) a constant
corresponding to the background lattice contribution which

gives no losses. From the Curie-gneiss fit to the high-
temperature data, ' this constant is approximately 8. The
scaling is then made with Xp=138. For x=0.35, one al-

ready has excellent values for T =—8.74 K and lnvp=—28.9,
where vp is in Hz. With the range of E in f (E) extending
up to —300 K, using (2) one calculates Ti = 16 K for 71 ——I
h. Hence, only the high-temperature part of the data is
scaled, down to the points at T =15.6 K. This is done with
a nonlinear least-squares routine with variables lnvp and Tp.
Using (5), f(E) is calculated from data at one particular
frequency where it is well determined, here 1064 Hz. %'ith

f (E), one obtains the deviations between the values mea-
sured at other frequencies and those calculated using (5).
The mean-square deviations are minimized, for a total of 95
points (17 temperatures at five frequency values) in this
case. One finds lnvp=29. 5+1.0 and Tp=8.58+1.0 K in
perfect agreement with Ref. 3. The uncertainties corre-
spond to the 90% confidence interval.

The scaled p,"(ru, T) data, with f calculated from (5) and
E=(T—Tp)ln(vplv), where Tp and vp are the best-fit
values, are shown in Fig. 1. One sees that the scaling is
generally excellent down to the set of points at 15.6 K,
which have too high losses at low frequencies. Departures
from scaling occur earlier, the lower the frequency, and in-
crease on further cooling as illustrated for the sets of points
at 14.7 and 13.7 K, also shown in Fig. 1, but not included in
the fit. This can be understood if belo~ TI the distribution
of relaxations does not reach its equilibrium value imposed
by f(E). It will be the case if the development of long re-
laxation times requires a transient of similar duration. Such
behavior can be expected for several spin-glass models, for
example, for the one proposed by Hertz. In that case, on
lowering the temperature, freezing progresses from localized
modes of short relaxation times to more extended modes of
longer relaxation times, requiring the "melting" of the
former. Thus a metastable "pileup" at intermediate times
around 7j should occur. This explains qualitatively the
derivations observed below 15.6 K, and the fact that those
are stronger the lower the frequency.

Finally, one should note that provided the Xp were prop-
erly selected, the f(E) curve (Fig. 1) should automatically
be normalized to 1. The area under the curve formed by

the experimental points extrapolated by the dashed-dotted
line is too large (= 1.26). This suggests that there should
exist a low-energy cutoff in f (E), centered around 60 K in
this case, as illustrated by the dahsed line, which is just an
example of what f (E) might look like.

Dielectric measurements were performed on a - and c-cut
platelets of D-RADP with x =0.62. The data for an a-cut
platelet of 23.16 mm area and 0.575 mm thickness are re-
ported here in detail. Results on c cuts are qualitatively ex-
tremely similar. Ho~ever, on the antiferroelectric side, the
dielectric constant ~, is larger than ~, at all temperatures.
Furthermore, large sample areas are easier to obtain and
disturbing piezoelectric resonances occur at higher frequen-
cies ih a cuts than in c cuts, so that a higher precision and a
larger frequency range can be achieved with an a cut. The
deuterated samples used in this study were gro~n from D20
solutions by means of a temperature-difference procedure
ensuring constant supersaturation and bath composition. '

A large crystal from the same batch was used for coherent
neutron-scattering investigations, " confirming that the deu-
teration of both ammoniums and acid bonds is better than
99%, as already indicated by an NMR proton titration. "
Figure 2 illustrates the dispersion in ~,

' over the full T
range. The nondispersive limit of the data in the range 70
to 110 K is well approximated by &,

' = a —bT', a very slowly
varying function used to estimate Xp as shown in the figure.
The scaling is not sensitive to the precise choice of Xp,
which alternatively can be taken as constant below 70 K.
The detail of the dispersion region is shown in Fig. 3. Simi-
lar curves are obtained below 300 Hz, but with insufficient
precision, and above 3 MHz, where they are seriously per-
turbed by resonances.

In this case, T~ = 56 K, so that the data between 56 and
110 K were scaled using the Vogel-Fulcher ansatz (5) with
the procedure described above for the protonated sample.
Here, f (E) was calculated from the 3-MHz data, the corre-
sponding losses being mostly above TI ~ This gives
lnvp= 28.5 + 0.25 and Tp= 30.3 + 0.7 K and the f(E)
shown in Fig. 4(a). The data collapsing is not perfect near
the maximum of f, suggesting that the distribution of bar-
riers might still have some weak T dependence. It should
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FIG. 1. The scaling function f(E) for a protonated crystal using
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FIG. 2. The real part of ~~ for a fully deuterated crystal at fre-
quencies from 300 Hz to 3 MHz increasing in powers of ten from
left to right. The dashed line is the extrapolation of the high-
temperature data used to estimate Xp(T) as shown.
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FIG. 3. The real and imaginary parts of the dielectric constant for
the fully deuterated sample in the region of strong dispersion.

FIG. 4. Scaling functions for a deuterated crystal using t,a) the
Vogel-Fulcher law (2), and (b) the modified Arrhenius law.

be noted that in D-RADP, as opposed to RADP, the am-
monium dynamics might still play some role at the tempera-
tures where the scaling is performed.

With f(E) extending up to —1000 K, one verifies that

T» has indeed the value indicated for 7I=1 h. In the
present case, f (E) is properly normalized within the uncer-
tainty on xo. Comparing Figs. 1 and 4(a), one sees that the
distribution of barriers is shifted towards much higher ener-
gies in the deuterated case. Similarly, To is much higher.
That the dispersion region moves to higher temperatures
with deuteration was already observed for a 72'k deuterated
sample with x = 0.48.'3 Whether the same scaling can apply
for samples with incomplete deuteration remains an open
question.

It should be noted that the main result obtained here is

that the e" data can be scaled in terms of a function f(E).
As the Vogel-Fulcher ansatz does not rest on solid theoreti-
cal ground, Etls. (2) and (4) represent just one of many

possible functional forms. With dielectric data extending
only over four orders of magnitude in frequency, unfor-
tunately it is not possible to establish uniquely the function-
al form of E(T, v) as will be shown presently. One can,
for example, use the modified Arrhenius law' v = vo

& exp( —E/T'"), where E'i'" is a temperature. This gives

e"(a), T ) -—T*"xof ( T*"ln( vo/v) )
2

With the same number of data points used previously, the

satisfactory scaling of Fig. 4(b) is obtained, with

z v = 1.98 + 0.04 and lnvo = 26.0+ 0.25. As already noted for
the protonated case, ' the modified Arrhenius law has the
tendency to give low values for vo, low-energy barriers, and
an exponent zv which is only —2 while it should be —4
for the wall-nucleation theory. ' Note that systematic devia-
tions near the peak of f (E) remain. Alternatively, one can
use the law v= voexp[ —E/(T To)*"]. With one a—ddition-
al free parameter, the deviations are improved. One obtains
zv=1.45+0.09, lnv0=26. 7+0.3, and TO=17.1+2.6 K, but
the difficulties near the peak of f(E) also remain. This
confirms that only an investigation over a very large fre-
quency range can possibly give indications as to the most
appropriate functional form of the scaling variable E. This
is what was done for RADP, with the result that the
Vogel-Fulcher ansatz is the most successful one describing
broad T and v ranges in that case.

In closing, the distinction between our scaling approach
and a "parametrization" of the ~" data, as recently per-
formed for K(Br,CN), "must be emphasized. The latter as-
sumes Arrhenius dynamics and a given functional form for
the distribution of activation energies for which T-dependent
parameters are found. The former does not imply a particu-
lar form [as exemplified by the difference between Figs. 1

and 4(a)], but makes the physical assumption of a universal
behavior, provided temperatures and times are properly
scaled. T independent consta-nts describing E(T, v) are then
derived. Inasmuch as the scaling function is almost Gauss-
ian in Fig. 4(a), the parametrization of Ref. 15 can be ap-
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plied successfully to the data of Fig. 3. One then finds a
T-dependent Gaussian width ~hose inverse extrapolates
linearly to zero near To —30 K. The fact that To —0 K for
dielectric measurements on K(Br,CN} might be compatible
with quadrupolar freezing with To&0, as already pointed
out. ' Finally, the form under the exponential in (2) can al-
ternately be interpreted as (1/T) [ET/(T —To) j, implying
Arrhenius activation over a distribution of barriers which all

diverge as T To, very much in keeping with recent views
on mean-field spin glasses. '
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results of Fig. 3.
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