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Fractional statistics and the quantum Hall effect of two-dimensional fermion and boson systems
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Using fractional statistics, we discuss the quantum Hall effect (QHE) of two-dimensional fermion and bo-

son systems. If the basic charge carriers in a system are fermions ~ith charge e, a necessary condition to
have the QHE at a filling factor v p/q with oH (p/q)e //i is that mutual primes p and q must satisfy

ether"- ( —1)v, hence the QHE is allowed only when q is odd. If the basic charge carriers are bosons with

charge e, such as bound pairs of electrons, a necessary condition to have the QHE at v-p/q with

o H- (p/q) e //t is that p and q must satisfy eel -1, so the possible candidates are v - (2nt)/(2n2+ 1) and

(2ni+ I)/(2n2) where nt and n2 are integers

The odd-denominator rule is one of the important and in-

teresting discoveries in the quantum Hall effect (QHE) of
two-dimensional (2D) electron systems: a quantized Hall

step is only found at filling factors v =p/q with an odd q.

The integral QHE (IQHE) has q-l, and the fractional
QHE (FQHE) has q 3 5 7

This rule has aroused considerable general interest. '
Why, so far, is there no quantum Hall step found at v -p/q
with an even q~ Under what conditions can a 20 electron
system exhibit the QHE at even denominator fractions'?

Using fractional statistics, '6 we study this issue in the
present paper. Our discussion will be limited to systems of
one layer. %hen we refer to a fermion (or boson) system,
we mean that the system has only one type of basic charge
carriers which are fermions (or bosons). Under this defini-
tion, for example, a system consisting of electrons will be
classified as a boson system if all electrons form into bound
pairs as the basic charge carriers in the QHE. There is no
difficulty in extending our discussion to systems having
multiple layers and several types of basic charge carriers,
but we will not consider this here.

Laughlin claims that the odd-denominator rule comes
from the fact that there is no wave function available at
v= 1/(2m) for a fermion system where m is an integer. 's
This is interesting, but we need to study this further.
Laughlin's wave function is an approximation for the
ground states at v= 1/(2m+1). Although, for example,
the ground state at v = T and ~ is not close to Laughlin's

wave function, we can still find some other approximation.
Generally, in a many-body problem, one can always find
some wave function to come near to a true ground state.
Why does one approximation, such as Laughlin's, produce
the QHE but the other one for v = 7 and ~ does not ~ In

addition, for some systems, such as 2D electron gas in a
periodic potential, Laughlin's wave function is not applica-
ble, so his argument is not relevant for cases like these. A11

the above mean that the nature of this rule must be much
more profound.

This paper concludes that thc nature of the selection rule
for the QHE lies in fractional statistics. The connection
between these statistics and the FQHE was initially suggest-
ed by Halperin. ' %c will show that if a fcrmion or a boson
system has a quantized Hall step at v=p/q (p and q are
mutual primes) with aH = (p/q)e'//i where e is the charge
of the fermion or boson (possibly different from the elec-
tron charge), identical quasiparticles of a fractional charge

(p/q)e can be produced. Then we present a general argu-

ment to demonstrate that quasiparticles obey fractional
statistics with a phase factor e'"~~~. From the result in Ref.
11, a necessary condition for fermion systems to exhibit the

2
QHE at v p/q is that p and q satisfy etar = ( —1)i', thus
establishing proof that the QHE for fermion systems is al-

lowed only when q is odd. By the same argument, this

necessary condition for 2D boson systems is that p and q
must satisfy e~ = 1, so the possible candidates are
v-(2ni)/(2nz+I) and (2nt+I)/(2nz) where ni and nz

are integers. There may be the IQHE, such as v-2,
4, . . . , and the FQHE with an even or an odd denomina-

tor, such as v=~, T, ~, . . . , and v=T, T, T, . . . .1 3

This conclusion is consistent with recent numerical calcula-
tions. ""As a result, if in a 2D electron system electrons
form into bound pairs, the QHE may occur at even denomi-
nator fractions. Because the Lande g factor for electrons in

GaAs is relatively small, ' the possibility to have such pairs
has been discussed. "

For simplicity, we consider a 2D electron system in the
x-y plane in which single electrons are the basic charge car-
riers. To extend this discussion to other fermion systems is
straightforward. %e apply a strong magnetic field B in the z
direction, There are N, electrons total and N, = 8
(area)/Qc($e= h/e, a unit flux) Landau orbits in the lowest
Landau level. The filling factor is v= N, /N, = p/q where p
and q are mutual primes. If there is a Hall step at v-p/q
(see Fig. 1), as v slightly deviates from p/q, o.H is still given

by

oH(p q/ahv) = (p/q)e'/h

FIG. 1. Quantized Hall step at v- p/q.
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FIG. 2. A solenoid pierces the surface and produces a quasiparti-
cle. FIG. 3. Quasiparticle moves with the solenoid.

For example, experiments have shown that at v T, for Sv

as big as 0.07, oH is still given by the quantized value

Te'/h. "
%e use a tiny solenoid to pierce the surface. If the

solenoid has magnetic flux —$0 (antiparallel to B), a local-
ized quasielectron of charge —(p/q) e is formed around the
solenoid. A localized quasihole of charge (p/q)e can be
produced with a solenoid of flux pa. t7's The proof is sim-
ple. Let us assume that initially the solenoid has flux
$(0) -0, and at time T, d ( T) —$0. We consider a small
circle of radius r around the solenoid (see Fig. 2). The
solenoid produces a vector potential

e - llAt/8t —= &8/(2n r—) (3)

Therefore, there is a Hall current along the radial direction,

jt = o.HPi/(2m r)

where r is a unit vector along the radial direction. Then the
total charge which flows into the inside of the circle is
—e(p/q) because

Q- — dt2mrgt=~~(T)- e(p/q) . — (5)4 p

If, the solenoid has flux $a, the charge is aHqha-e(p/q).
I

At -g(t)8/(2n r)

where 0 is the unit vector along the circumference. An
electric field is produced,

A2- d oz & [r —ro( t) ]/ [2~ [r —ro( t) ]'] (6)

where ro(t) is the position of the solenoid at time tBe-.
cause A2 varies with time, it produces an electric field. The
induced Hall current is given by

j2 —O'Hz x t)A2/ti

Let us consider a small closed loop (Fig. 3). At time tt, the
solenoid is outside the loop, but at time t2 the solenoid
reaches a point inside the loop. The total charge following
the solenoid into the loop is just —(p/q) e, because

The quasiparticle is obviously localized. %e should point
out that physical solenoids are not necessary in our argu-
ment. Instead of using solenoids, we can change the densi-
ty of 8 in a small region to produce quasiparticles. Since
solenoids present a good picture for our discussion, we keep
using solenoids throughout this paper.

%e want to emphasize that the quantized Hall step is a
crucial condition to produce identical quasiparticles. Be-
cause adding some solenoids to the system slightly changes
N, and v, only when there is a quantized Hall step, O.H is
unchanged by Eq. (1), and identical quasielectrons can be
produced if we use several solenoids of flux —$o to pierce
the system. A solenoid of flux —q$o produces q quasielec-
trons. On the other hand, this solenoid produces p elec-
trons. Therefore, we identify a cluster of q quasielectrons
as p electrons.

Now we move a solenoid of flux —$a. As seen in Fig. 3,
this moving solenoid produces a vector potential

Q = dt()j2(ix dl) - —o tt () (zx (r —ra(t2)/[r ra(t2) ] —zx [r——ro(tt) ]/[r —ro(tt)] ]dl = —a~0 .
Ci 4 2%4 (8)

This proves that when we adiabatically move a solenoid, the
quasiparticle is moving with it.

Quasiparticles obey fractional statistics. Let us move a
quasielectron of charge Q- —(p/q) e along a counterclock-
wise loop to make a circle. The size of the quasiparticle is
negligible in comparison with the radius of the loop. At
first, we assume that there is no solenoid inside the loop.
After one circle, the quasiparticle picks up a phase factor,

I

The difference between Eqs. (10) and (9) is a factor

exp(ig) - exp(i2mp/q)

Since the second solenoid produces an identical quasielec-
tron in the inside of the loop, the phase factor in Eq. (11) is
a phase produced after one quasielectron circles around
another one by 2m. As one quasielectron is rotating about

exp(tQ4/tt)

where 4 is the total magnetic flux inside the loop. %e then
place another solenoid of flux —

qbo inside the loop and
move the original quasielectron along the same loop to
make a circle again (see Fig. 4). Because the total magnetic
flux is now reduced by one unit, the new phase factor is
given by

exp [ iQ (4 —Po)/ir ] (10) FIG. 4. One quasiparticle circles around another one.
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the second one, the angle q in the phase factor e'~ is linear-

ly increasing. By the Bohm-Aharonov effect, g-2m@/q is

uniquely determined when one circle is completed. There-
fore, q must be p~/q as half a circle is completed. As a
result, if we make an interchange of two identical quasielec-
trons along a counterclockwise loop, the phase yielded is
also

exp (

ipse/q)

(12)

exp[(ipse/q) q~] exp(ipqm)

On the other hand, from Fermi statistics, an interchange of
two identical clusters containing p electrons each gives a

2
phase factor ( —1)~ because there are p x p -p' inter-
changes of pairs of electrons. A cluster of q quasielectrons
is equivalent to a cluster of p electrons, so we must have

e/Pge ( 1)P (14)

Equation (14) is a necessary condition for a fermion system
to have the QHE at v- p/q with aa - (p/q)e2/h. Now if q
were even, the left side of Eq. (14) would become 1, then p
would have to be even to make the right side equal to 1.
This immediately contradicts with the fact that p and q are
mutual primes. Therefore, the assumption of a Hall step at
v -p/q with an even q is not compatible with Eq. (14). We
must conclude that for a fermion system no quantized Hall
step can be formed when q is even. If q is odd, Eq. (14)
does not produce any contradiction. Statistics allow the
QHE at odd q. This is the odd-denominator rule observed
in the experiments of electron systems.

It is easy to see that the above argument can be applied to
2D interacting bosons in a strong magnetic field. A system
consisting of singlet bound pairs of electrons is an examp1e
of boson systems. If these bound pairs do not break into
single electrons in the QHE, they are basic charge carriers,
so we must treat them as elematary particles in the QHE.
When there is a quantized Hall step at v -p/q with

This means that quasielectrons obey fractional statistics. 7

By the same argument, quasiholes also obey fractional
statistics with the same phase factor. When v- I/(2m+1),
the above result is the same as that obtained by Arovas,
Schrieffer, and VA'1czek who studied the statistics of
Laughlin's quasiparticles. '~

%e can show that the odd-denominator rule is the conse-
quence of statistics for fermion systems. Let us first as-
sume that at v- p/q there is a Hall step o ~- (p/q)~'/it, so
we can produce identical quasiparticles. %e consider a
counterclockwise interchange of two identical clusters, each
having q quasielectrons joined together (see Fig. 5). The
size of these clusters is negligible in comparison with their
separation. The ordering of quasiparticles inside the cluster
is fixed during this interchange. Because every quasielec-
tron in one cluster interchanges q quasielectrons in another
cluster, there are q & q- q2 pair permutations altogether.
The phase factor produced in this interchange is

lo

FIG. 5. Counterclociovise interchange of two identical clusters
having q quasiparticles each.

a~- (p/q)e2/h, we can also use solenoids to produce iden-
tical quasiparticles and antiquasiparticles which obey frac-
tional statistics with the same phase factor in Eq. (12).
Here e is the charge of the boson particle which may be dif-
ferent from the electron charge. Because now a cluster of q
quasiparticles is equivalent to a cluster of p bosons and an
interchange of two identical clusters of bosons does not pro-
duce any phase factor, the necessary condition becomes that

p and q satisfy

exp(ipqm) 1 (15)
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From it, v with both odd p and q, is excluded from the
QHE. There are two possibilites to hold Eti. (15): (1) even

p and odd q; (2) odd p and even q. Mutual primes p and q
cannot both be even. The possible candidates are v- (2n~)/(2n2+ I) and (2nt+ I)/(2n2) where n~ and n2 are
integers. Yoshioka's numerical calculation of 20 boson sys-
tems at v & 1 shows big downward cusps in the ground-state
energy at v-~, ~, and ~.' This is consistent with our
prediction from fractional statistics. Therefore, a 2D elec-
tron system may have the QHE at even denominator frac-
tions if, for example, electrons form into bound pairs.

As a result of the repulsive Coulomb interaction, one
Landau orbit only accommodates one boson when v C 1. If
v & 1, more than one boson occupies one orbit in the lowest
Landau level. For example, v 2 does not mean that boson
particles fully occupy two Landau levels. Haldane has ex-
tended his hierarchy scheme to boson systems. ' He takes
p - I/(2m) from Laughlin's wave function as the basic
ones, then builds up the hierarchy. He finds that v=p/q
with both odd p and q is excluded from the QHE, a result
consistent with ours. But there is also an important differ-
ence; his hierarchy for bosons only allows v ( 1. In our
scheme, v & 1 is not excluded; for example, v=2 and ~ are
possible candidates. To resolve this difference, we have car-
ried out a numerical calculation of small boson systems. "
The result supports our conclusion that there are downward

cusps in the ground state energy at v=2 and v=~, so
p & 1 cannot be excluded from the QHE of boson systems.
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