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Plasma resonance in the high-frequency conductivity of a superlattice
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Employing the random-phase-approximation density-density correlation function, we calculate the real

and imaginary parts of the high-frequency electron conductivity due to remote and background impurity

scatterings in a type-I superlattice, which is composed of an infinite number of periodically arranged quan-

tum wells of finite width. The relaxation time and the effective-mass correction, calculated as functions of
frequency, show strong resonance around the plasma frequency of the system.

Recently, intensified interest in electronic transport in a
multilayer system has been focused not only on its dc linear
and high-field mobility, ' but also on its high-frequency
conductivity. In a closely packed multilayer system the car-
riers within each layer form a quasi-two-dimensional (2D)
interacting electron gas and they are also coupled with those
in different layers via the long-range Coulomb interaction.
Furthermore, these carriers are scattered, not only by the
impurities within and in the immediate vicinity of the same
layer but also by the charged impurities located around the
other layers. It is well known that the Coulomb interaction
between carriers in a two-dimensional system has a pro-
found effect on their transport properties. For superlattices,
such an effect is even more significant because of the cou-
pling between interlayer carriers and the scattering by the
impurities in different layers. We find that this interlayer
Coulomb-interaction manifests itself saliently in plasma
resonant behavior of the linear high-frequency conductivity,
reflecting the distinction of a superlattice from a single
quasi-2D layer and from a 3D bulk gas. Tzoar and Zhang4
recently investigated the high-frequency conductivity of a
superlattice composed of infinitely thin layers of 2D electron
gas due to remote impurity scattering in some detail. Un-
fortunately, in their discussion and calculation, the impor-
tant contribution of the electron collective modes seems to
be ignored, so that they predicted a relatively structureless
behavior of the relaxation time as a function of frequency.
In this Communication we report a study of the linear
high-frequency conductivity of type-I superlattices due to
both remote and background impurity scatterings at tem-
perature T =0 K. The full contribution of the electron col-
lective modes is taken into account within the random-
phase approximation, and the effects of finite we11 width
and the other superlattice geometrical parameters are exam-
ined.

The superlattice discussed consists of an infinite number
of periodically arranged quantum ~elis of width a, and d is
the spatial period or the distance between the two centers of
adjacent layers. An Al„Gai „As-GaAs-Al„Gai „As mul-
tilayer structure, in which the mobile electrons are in GaAs
we11 regions, can be approximately described by such a
model. We assume that (1) the potential wells are deep
enough that the tunneling can be neglected and the elec-
trons are confined to just one well, and (2) the width of the
well is narrow and the electron area density is not too high
so that only the lowest subband is occupied. The wave
function of the electron in the I th well is @;~(r,z)

= e'"'g (z —Id), with energy aa =gzkz/2m and i; (z)
(2/a)'~zcos(mz/a) for —a/2 ( z ( a/2, and $(z) =0

elsewhere. Here m is the electron band effective mass,
r= (x,y) and k= (k„,k~) are 2D vectors in coordinate and
momentum space, respectively, k = ~k~.

When a uniform ac electric field of frequency ~ is applied
parallel to the layer plane, the steady-state linear conductivi-
ty a(~) for each layer of the system can be expressed by
means of the memory function5 M(co) as

N, e~(~) =I
m c +M(r )'

where e is the electron charge and N, is the carrier density
per layer. The expression for M(cu) can be derived as the
linear limit of a frequency-dependent generalization of the
nonlinear balance-equation theory of transport. ' In the
case of an infinite homogeneous medium this reduces to the
well-known results of Ron and Tzoar. ' The derivation at
hand involves the analysis of the density-density correlation
function of the quantum-well superlattice and an average
over impurity sites. We consider two different kinds of im-
purities: remote impurities and background impurities, The
former are located in thin planar layers at a distance s from
the center of each quantum well with sheet density N„and
the latter are distributed uniformly within the well region
with area density Nb per layer. We assume that there is no
interference effect between different kinds of scatterers, so
that the contributions to the frictional force due to the re-
mote and background impurity scatterings are additive and
the average over these two kinds of impurities can be done
separately. In either case, we essentially deal with the quan-
tity

dna nP

a, P
(2)

Here r is the x-y position of the uth impurity in the mth
sheet (remote impurity) or mth quantum well (background
impurity). The average is over all possible configurations of
the impurity distribution in the mth and nth sheets (or
quantum wells). The difference between the two cases is
that for background impurity scattering we need also to
average the impurity distribution in the z direction within
the width of the we11. This is easily done since the quantity
treated is a smooth nonoscillatory function of z. If the im-
purity distribution is random within each sheet (well) and
there is no correlation between different sheets (wells), the
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quantity in Eq. (2) is a two-dimensional extension of the
averaging discussed by Kohn and Luttinger in the 3D case.9

Therefore, to the lowest order of NI (&I= &„&& is the im-

purity sheet density), A =NIS, independent of the layer

indices m and n. The possibility of correlation between the
impurity distribution in different layers, ho~ever, can be in-
cluded in the following way. The superlattice system struc-
ture enables us to assume that the quantity in Eq. (2) is a
function of m —n after configuration averaging:

lze' "~)=iv si, (gm —n) .
a, P

~/d jq

g (m) = „dq,g (q, )e ' (4)

and the corresponding inverse series is

g(q. ) = Xg(m)e (5)

The formula for the memory function M(0I) due to impuri-
ty scattering can be obtained in these terms as

The function g (m) (m = 0, + 1, . . . ) can be expressed as a
Fourier coefficient:

I

e2 d t. /

M(~) = J dq, $, N(q, q, ) [II(q„q, o) —II(q„q, cu)]g(q, ),
j

(6)

with K being the dielectric constant of GaAs. II(q„q, oI) is
the electron density-density correlation function of the su-
perlattice, ' which can be expressed in the random-phase ap-
proximation in the form

wave function within the layer (u = qa ):

H( ) 31—exp( —u) + u

u2+4m2 u2+ 4+2
1 —exp( —u)
(u'+4m')'

II(q, cu)

1 —V(, , )11(q, )
' (7)

I

„( 2 4 2)+ 2
1

1 —exp( —u)
p M

(10)

in which the effective Coulomb interaction is (neglecting
the image-charge contribution)

v(q. q, ) = [H(q) +$(q.q, ) l.
250Kq

1(q) = 4~2[1 —exp( —u) ]/[u(u + 4m ) ]

In Eq. (7) II(q, ~) is the two-dimensional density-density
correlation function for a single sheet of electrons in the ab-
sence of the Coulomb interaction:

where S(q, q, ) comes from the interlayer carrier interaction:
f (eI, +,) —f (~I,)

II q, a) =2
A ol + eg+II eII + I 8

(12)

cos(q, d ) —exp( - qd)
S(q,q, ) = exp(qa ) [1(q) ]2 . (9)

cosh qd —cos q, d

H(q) and 1(q) are form factors depending on the electron

in which f(e)- (exp[(e —ef)jksT]+I) is the Fermi-
Dirac function and ef is the chemical potential for electrons
in a single quantum well. In Eq. (6) N(q, q, ) is an effective
impurity density:

, sinh[q (d —s) ] + exp(iq, d )sinh(qs)r' , ,
)

exp qa)[l(q)]'
cosh qd) —cos(q, d

2 cos(q, d) —exp( —qd) exp(qa)+ b b Iq+Kq
cosh(qd) —cos(q, d ) qa

(13)

with (u —qa)

2 2

~( ) 81r 1+ a
(4n'+ u') u 4n'

1-exp( —u) (14)

M(ao) = e2
X ", A (q, 0) [11(0,q, 0)

Nl%&QJ 2EpK

—11 (0, q, co ) ] . (15)

Z, and Zb are equivalent charge numbers of the remote and
background impurities.

For a completely uncorrelated distribution of the impuri-
ties g(m) = 1 and g (q, ) = 2m 5(q, d), whence Eq. (6)
reduces to

t

On the other hand, if we take g (q, ) = 1, independent of q„
the remote part of Eq. (6) is equivalent to the formula
given by Tzoar and Zhang. ' However, g(q, ) =1 means
g (m) =5 0, i.e., g(m —n) is zero unless m = n This may.
be reasonable if the impurities are freely mobile in the
plane. For conventional impurities (which are spatially lo-
calized), however, this corresponds to an impurity distribu-
tion in different sheets that is so strongly correlated that the
contribution to the averaged quantity associated with any
two different sheets always vanishes —a difficult condition
to fulfill experimentally.

Writing M(~) in terms of its real part and imaginary
part, M(ru) =MI(co)+iM2(cu), we can easily see that in
the zero-frequency limit Eq. (1) reduces to the linear ex-
pression for the isothermal dc conductivity:7
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1 Nl M, (0)-
2

dq, g(q, )X, N(q, q, ) II2(q„q, ai)

eu 0 ~

(16)

Therefore, [M2(0) ] ' is a direct measure of the isothermal
dc transport relaxation time ra or dc mobility p, o'. M2(0)
= I/ro = e/m po. At high frequency, the conductivity ex-
pression [Eq. (1)] is conventionally written as a Drude-type
formula:

N, e2
cr(a)) =i

m" ~+i/r '

in which m" = m [1+Mi(cv)/»i] and r ' = M2(ru)/
[I+Mi(co)/cu]. Generally, the effective-mass correction
hm/m ~ (m' —m )/m = Mi(»i)/r» is much less than 1, such
that the relaxation time is determined essentially only by the
imaginary part of the memory function: r '=—M2(r»).

By means of the well-known expression for II(q, ru) at
zero temperature, ' the real and the imaginary parts of the
memory function M(&o) can be calculated directly from Eq.
(6). In calculation, however, care must be taken not to
neglect the contribution of the electron collective modes.
These collective modes of the electrons are well-defined ex-
citations when the real part of the dielectric function
e(q„q, »i) -1—V(q, q, )II(q, »i) has a zero (plasma pole) in
a region where its imaginary part vanishes. For a 30 bulk
system the contribution of plasma poles to M2(ra) was dis-
cussed by Ron and Tzoar. They found a relatively weak
(15%) effect. In a superlattice, however, the effect is sig-
nificantly enhanced. The dispersion relation of the electron
plasmons in a superlattice at T -0 K has been discussed in
detail in the literature. "' The relevant information is em-
ployed in our computation of the high-frequency conductivi-
ty.

In the following we first discuss the case of an uncorrelat-
ed impurity distribution. We have calculated Mi(co) and
Mi(»i) from Eq. (15) at zero temperature for several dif-
ferent geometrical parameters of the GaAs-Al„Ga~ „As su-
perlattice due to remote and background impurity scatter-
ings. In Fig. 1 we plot the calculated normalized inverse re-
laxation time Mi(»i)/M2(0) and effective-mass correction
hm/m as functions of normalized frequency h»i/4eF (sF is
the Fermi energy at zero temperature) for a quantum-well
superlattice with a =100 A, d =200 A, and N, 2.3x10"
cm ~. In this figure hm/m is scaled in units of

F

e' 3.9x10 '
0024

10"m 2 10 m2/V s
2~a.~(0) ~(0)(I n ) Po

[
a strong plasma resonance.

The sharp rise of M2(co) at the bulk plasmon frequency
co~ = (e N, /so~md)' ' of the system is the characteristic of a
closely packed infinite-number-layer system, in which the
electrons in one layer are scattered by the charged irnpuri-
ties located at all different layers, giving rise to a (q, d)
divergence of /i/(q, 0) at small q. This jump just comes
from the long-wavelength (q -0 and q, -0) plasmon con-
tribution at eo ~~~ and is easily obtained from the behavior
of N(q, 0) and a(0, q, cu) at small qas

3/2

IM2(co~) =
12mb ao]c

m"'
3i2 (N„Z, +WbZi, ) . (19)

N, d 'i'
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In Fig. 2 we plot the calculated results of M2(»i)/M2(0) for
five GaAs-Al„Gai „As superlattice systems, all composed
of quantum wells of width a-50 A and carrier density
N, -2.3&10" cm, but with different layer separations:
d 60, 100, 200, 400, and 1600 A, respectively. The varia-
tion of the high-frequency conductivity with the layer
separation is clearly seen. As anticipated, for the d =1600
A system we have almost a quasi-two-dimensional (single
quantum well) behavior.

It is worth noting that the assumption that the impurity
distribution is random within each layer and has no correla-
tion from one layer to another is relevant to the sharp edge
in the plasma resonance of the conductivity in a superlattice.
This assumption generally seems reasonable. Nevertheless,

In calculation we assume the equality of the contributions of
remote and background impurity scatterings to dc resistivity
and the remote impurities are located at s =75 A from the
center of each well. The material parameters used are the
electron-band effective mass m =0.07m, (m, is the free-
electron mass) and the GaAs dielectric constant ~=12.9.
For comparison we also show M2(»i)/M2(0), calculated by
neglecting the plasma pole contribution, as discrete points in
Fig. 1. These should correspond to the curves given in Ref.
4, if the background impurity scattering is excluded. The
enhancements in M2(»i)/M2(0) and hm/m due to collec-
tive modes are very pronounced, resulting in the most strik-
ing feature in the frequency dependence of the conductivity:
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i
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1.0
I

1.5 2.0

FIG. 1. Calculated M2{0J)/M2(0) and 4 m/m t.in units of
e /2m@ can{0)] are shown as functions of toJ/4~F for a quantum-well
superlattice with a =100 A, 0 =200 A, and %, =2.3X10" cm
The scatterings are due to remote impurities and background impur-
ities (1:1 in contribution to dc resistivity). The former are located
at a distance s -75 A from the center of each quantum well. The
discrete points are M2{co)/M2(0) calculated by neglecting the
plasma-pole contribution.
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FKJ. 3. M2(o))/tM2(0) and hm/m, calculated from Eq. (6) with

g(q, ) —I+cos(q, d), are shown as functions of S~/4eF for the
same system as described in Fig. 1.

FIG. 2. Calculated Mt(cu)/M2(0) for five superlattice systems,
all composed of quantum wells of a =50 A and N, =2.3x1011

cm, but with different layer separation d: 1, 60 A; 2, 100 A; 3,
200 A, 4, 400 A; 5, 1600 A. The scatterings are due to remote and

background impurities (1:1 in contribution to dc resistivity). s =30
A for d = 60 A system and s = 40 A for the other systems.

to see how such a correlation affects the high frequency
conductivity of a superlattice we examine a model function
g (q, ) —1+cos(q, d) and calculate the real part and the im-

aginary part of the memory function from Eq. (6) for the
same system as described in Fig. j. The results are plotted
in Fig. 3. The plasmon contribution begins at lower fre-
quency (due to the modes of q, WO) and the peak at cu «rc~
is diminished.

For a finite-number-layer system, in which N (q, 0) is fi-
nite at small q and the q, &0 components also contribute to
the conductivity (even if the tmpurity distribution is un-

correlated), the rise of M2(ot) is expected to occur gradually
over a range of frequencies and the peak will, of course, be
rounded off.

In summary, we have calculated the real part and the
imaginary part of the high-frequency conductivity of a su-
perlattice composed of an infinite number of quantum wells.
Both the relaxation time and the effective-mass function
show strong resonance around the bulk plasmon frequency
of the system. Although finiteness of the layer number and
correlation of the impurity distribution between different
layers may smear the sharpness of the resonant edge, the

plasma resonance emerges as an essential and striking
feature of the high-frequency conductivity in these closely
packed multilayer systems.
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