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Anisotropy in binary metallic spin-glass alloys. II. Rare earths
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%'e derive the anisotropic pair interaction for binary spin-glass systems where the magnetic
scattering at the spin-orbit scattering site comes from the Coulomb exchange interaction. Its form is
identical to that found in binary systems in which the spin scattering comes from the s-d mixing in-

teraction.

I. INTRODUCTION

II. CALCULATION OF THE INTERACTION

At an impurity site the conduction electrons are
described by the Friedel or virtual bound state (VBS) wave
function,

gi, (sl)= e'"'+ e ' sin[s)2(k}]

X g F2 (k)p, (r) X (la)

We have been studying the origins of anisotropy in me-
tallic spin glasses. In the preceding paper' (hereafter
denoted as I}we derived the pair interaction that gives rise
to anisotropy in noble metals (Ag, Au, and Cu) with
transition-metal impurities. For these alloys it is the s-d
mixing interaction which gives rise to the scattering of
the conduction electrons by the local moments. For
transition-metal impurities such as manganese in copper,
the s-d mixing is sufficiently strong compared to intra-
atomic energies that it is not correct to represent the ef-
fects of mixing by I S.s, a spin scattering of the conduc-
tion electrons. Therefore in I, we derived the anisotropic
pair interaction between impurities by using the method
of phase shifts. Here, we will consider alloys in which
the spin scattering of conduction electrons by the local
moments can be represented by I S s. This interaction
can be used when the Coulomb exchange interaction is the
origin of the scattering or when the s-d mixing is suffi-
ciently weak compared to intra-atomic terms that the
Schrieffer-Wolff transformation is valid.

By using this form of the spin scattering we find that
the form of the anisotropic pair interaction between im-
purities in rare-earth binary spin glasses is the same as
that found in I. This is reassuring in that the derivation
we present here maintains rotational invariance. In I this
was not possible as we had to choose an axis of quantiza-
tion for the spin-dependent phase-shift analysis. In Sec. II
we derive our pair interaction and in Appendix A we
show how the expression for the fifth-order correction to
the energy of a gas of electrons is obtained. In Appendix
B we show how terms of leading order in the interaction
are selected.

X F~(k) Y'(r)]X (lb)

where the scalar product is given by

F'(0,(() F'(8', ((} )= g(-I) F.'(e,y)F'. (~', ((}') .

In Eq. (1), (()q (r) is a core d orbital, rh, is the half width of
the VBS resonance, h 2+' is an outgoing spherical Hankel
function, and the phase shift is given by

T

sl(k) =F12(k)=arctan E.~ —Ek

where E,~ is the center of the VBS resonance.
The electron gas is subject to a four component pertur-

bation given by

r
I stirs, = — [S~ s5(r —Rz )+S~ s5(r —R~)]N

—I Sz"s+A,(r)l s . (4)

An interaction with an odd number of impurity spins is
zero because of time-reversal invariance; the lowest-order
anisotropic interaction incorporating spin scattering at
three sites requires at least two spin scatterings at one of
the sites. Therefore, to obtain the effect of spin scattering
from a ternary impurity, one must calculate the fifth-
order perturbation energy E„' ',&[f(si)] by using Eq. (4)
with the term in Sz"s taken to second order. Then the
perturbation energy calculated to second order in the ter-
nary moment is E~s [p(sl)]+E„'zr,&[/(g)] where

Eqttt, [p(sl)] is given by Eqs. (51a) and (51b) of I. Note
that we do not literally use a constant I in the evaluation
of the matrix elements of the spin scattering at site T, Eq.
(7) below, because an expression such as (k;

~

I'~ kJ. }
yields zero unless k; =kz. Rather, we mean to denote by
I a coupling at site T given by an expansion of the form
gtI't(k, k')F(k) F(k'), so I must be interpreted as
I 2(kF, kF ).

Our starting point is the fifth-order term of the
Rayleigh-Schrodinger perturbation theory whose deriva-
tion is indicated in Appendix A:

and at distant sites A and 8 far from the impurity the
wave function is

0

fz~(s) ) =[e'"'—4tre "' sin[sls(k) ]h s+ '(kr)
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where

XReV(kp, k». . . , k4), (5a)

V(k(), ki, . . . , k4)=
~o 0'& ~4

nk, nk V (5b)

If one examines the discrete eigenfunction prototype of this formula, one observes what appears to be 14 distinctly dif-
ferent scattering processes. In Eq. (5) which is valid for continuous eigenfunctions, there is only one scattering process
during which an electron in the initial state

I k()(r() ) methodically hops from one intermediate state to another before re-

turning to
I ko(r()) Sinc. e the two formulas are equivalent —see Appendix A—we believe that the appearance of scatter-

ing terms with structures other than that of Eq. (5b) appearing in the traditional method of derivation, for example, the
term

V V Vkp&p k)tT) k)cr), kpop kpcTp kpo'p

in third order are not independent processes.
3 priori, there are 5./2. =60 matrix elements contributing to V(kp, k i, . . . , k4) which are quintilinear in the individual

terms of Vz~Tzz. Only 30 of these contribute in leading order in 1/R, one of which is Mzz i zz defined by

~~nrem =
0Oy CF t y ~ ~ ~ y CT4

p I
(r/X)S, s5(r —R„)Iki~, ) &ki~i I

rS, s Ik,~, )

X &k2(r2 I
~(r)1's

I
ki(ri& &ki(r3

I
rSr sI k4(74&&k'4(r4

I
(r/N)Si) s5(r —Rs}

I
kpop& .

This includes the spin summations in Eq. (5). We evaluate the matrix elements of I Sz"s by using the VBS wave func-
tion Eq. (la) and find

&k;
I
I Ikj) exp[ i[ri(k;—) r(ik)1]—Iisn[ r(ik)]si n[ r(ik)j]F (k;) 7 (kj),M) Ep

where ~(EF) is the density of states for one spin direction evaluated at the Fermi level.
The remaining factors of Eq. (6) as well as the procedures for evaluating its contribution to the energy, Eq. (5), have

been given elsewhere. ' We obtain for the sum total of all 30 leading order contributions

(q) I I
1 135@XI Sr P.)(Ra.Ra)
2 32 giE~k~ R g RsR ps

kF
kp f dk ksin [g(k)]cos [ri(k)]sin[k(Rq+R +Ri)„ )+i)2g(k)]

kF
+2kF f dk k sin [ i(kr)] os[ci(kr)] s[cko(R„+Rz+Rzz)+2 i(kr)]

kF—f dk k sin [ri(k}]sin[k(Rg+R +Rag )+s2q(k)]

X(R~ XRz) [S~ XSi)+2Sz (S~ XSi)).ST], (8)
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where Pi(x) =x. Equation (8) explicitly shows the existence of the second type of Dzyaloshinsky-Moriya interaction,
A A. A

1(Rz X Rq) Sr (Sq X Ss).Sr, demonstrated earlier in a Hartree-Fock calculation but now obtained in a rotationally in-
variant context.

The integrals of Eq. (8) may be obtained analytically by using the methods in I (Ref. 1) but the result is not particular-
ly illuminating. Instead we give both preasymptotic and asymptotic forms of the fifth-order term and present a plausi-
bility argument to demonstrate that the asymptotic form is a good approximation in the regime of interest in spin-glass
physics, the range from 1 to 15 lattice constants.

The preasymptotic form may be obtained by means of the identity

k dk= (9)
fi sin r1

which derives from Eq. (3) and the relationship E(k)=iri k /2m, and the assumption that the dominant contributions
come from a narrow band of wave vectors at E, which is close to EF. Then the three integrals add to

ma k~4

kF f dil sin gsin[k(R&+Rs+Rzs)+4']= — b sin [F12(k~)]sin[k~(R&+Rs+Rqs)+3r12(k~)]0 F

(10)

and the fifth-order term in Eq. (8} takes the form

AI" Sr Pi(Rg. Rs }
E„' sr&2[1((r1)]=— i 2 3 sin~[r1z(kz)]

12 32 6 EFkF RaRsRas

Xsi n[ kF( Rg +Rs+Rgg) +3'(zkp)](Rg XRs) [Sg XSs+2Sr(Sg XSs) Sr] .

This form is valid when the average interparticle distance R,„ in the interacting triads satisfy the condition
3

~
kF —k,

~
R,„&&1;i.e., when E, =E~ in real materials. It is also the correct mathematical solution in the nonphysi-

cal regime for which R,„ is less than a nearest-neighbor distance.
For sufficiently large R, defined by 3

~
kF —k,

~
R,„&&1,we obtain the asymptotic form

1 135~ «'ST Pi(Rq. Rs )
E~ar~~[&(&)]=+

2 32 g EFkF R~RsRgs(Rg +Rs+Rgs)

Xsin [r1i(kF)]cos[kp(R~+Rs+Rzs)+4r1i(k~)](R& XRs) [Sq XSs+28T(Sw XSs)'Sr] . (12)

Equation (13) follows from the behavior of the denomina-
tor of the oscillatory factor

4

sin [r1(k)]=
kg

(k —k,~) +kg
(15)

Thus, the range dependence varies from R to R as R
increases.

Now we demonstrate that Eq. (12) is valid over the
whole range of interest, 1&R/a &15 where a is the lat-
tice constant. We have previously shown for the case of
the binary transition-metal spin glass that if the average
interparticle spacing is larger than a critical distance de-
fined by

R, =(3 ikF —k„, i
)

where k, =(2mE~)'~ /fi, then the Dzyaloshinsky-
Moriya interaction may be approximated by its asymptot-
ic form. This observation resulted from the analysis of
the coefficients which were given by integrals of the form

dk ksjn [r1(k)]sjn[k (Rg +Rs +Res )+2'(k)] .

(14)

I

where ka=(2m')'~ /A'. The integrals appearing in our
present calculation, Eq. (8), differ from Eq. (14) only by
the appearance of additional factors of sin2r1 and
sing cosy, where

sin[r1(k)]cos[r1(k)] = (16)
(k —k,~)2+kg

Since the denominators of these additional factors are the
same, the definition of R, remains valid.

Consequently, it is easy to show that R, =a for both
silver and gold rare-earth alloys so that the regime of in-
terest to us, R/a &1, is also the asymptotic regime. In
noble-metal —rare-earth alloys, the 5d states of the rare-
earth ion are split by the crystal field and mix with the
conduction band. The lowest state is the triplet T2g (Ref.
6} so that the effective angular momentum of the 5d elec-
tron is 1=1. Then the phase shift imparted to the
conduction-electron wave function by the s-d mixing,
evaluated at the Fermi surface, is given by the Friedel
sum rule r1(kF) =[m/2(21+1)]Z& which equals m/6
since Zq = 1. The halfwidths 5 of the nonmagnetic VBS's
for both AgA' and Au9F may be taken as those values
which have been used to explain transport properties in
these materials.
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For Ag9P:

b =0.45 eV, E, =6.27 eV, EF 5——.49 eV .

For Au9F:

6=0.60 eV, E, =6.56 eV, EF——5.53 eV .

in decoupled, integral form to arbitrary order of a pertur-
bation. The principle difficulty in adapting the
Rayleigh-Schrodinger series to the situation where the in-
termediate states as well as the initial states form a con-
tinuum is the evaluation of multipole singularities. For
example, the third-order term,

Then the critical distances are for Ag&:

Rc ——4.4 A

and for Au9t:

(3) & 0 1
~k k 1 2 2 0~kk ~kk

ko
k1 ko k1 k2 ko k2

~k, k, ~kok,

Ek Ek0 1

Rc ——3.09 A
0 0

while the lattice constants are aA~ ——4.09 A, az„——4.08 A.
It follows that the fifth-order term may be approximated
by its asymptotic form so that the Dzyaloshinsky-Moriya
interaction is given by the sum of the asymptotic form of
Equi [g(rj)], Eq. (51b) of I, and Eq. (12}of this paper.

In conclusion, we have calculated the Dzyaloshinsky-
Moriya interaction in fifth-order perturbation theory, ap-
propriate for noble-metal —rare-emth spin glasses. In par-
ticular, we have demonstrated in a rotationally invariant
manner the existence of a second type of DM term. Pre-
viously, this term was found from a Hartree-Fock calcula-
tion and it was not entirely clear whether symmetry
breaking associated with the Hartree-Fock approximation
induced this new term.
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APPENDIX A: RAYLEIGH-SCHRODINGER
ALGORITHM

Here, we present an algorithm with which the
Rayleigh-Schrodinger perturbation series can be generated

I

contains a two-dimensional double pole of the form

00 00 (ki, k2}
P dk& dk2

(ki —k0)(k2 —k0)
'

(Al)

one fails to delete the region in the (ki, k2) plane for
which ki ——k2 —k0. In other words, in a one-dimensional
integral of the form

Pf dk
(k —k0)

ko CO

one evaluates the two contributions aIld
k0 ko+c

where s is an infinitesimal, taking the limit e—+0. The
pole region on a line has two edges. For the two-
dimensional case, the pole region is a square bounded by
lines drawn through the four points (k0+e, k0+e). One
must evaluate four two-dimensional integrals and calcu-
late their contribution in the limit where all four corners
of the square converge to the point (k0,k0). Levy and
Fert found the correct solution

where f(k„ki} is analytic. By writing the integral as a
product of single pole contributions

P ) P dk2
m f(ki, k2)

0 „i „0 0
2
—0

E(3) 1

Sm'

k
T

002 k121 2 2P
0 1

1

Ek -Ek
0 2

5(Ek, Ek, )5(Ep, E-k,)-
X V(k0, k„k2), (A2)

where, in general,

V(ko, ki, ~km)=
CT()y CF 1y ~ ~ y CF+

f dQk f dQk V~ i.. . Vi,

and an integration over the initial state
~

k00'0} has been
included. The double pole contribution is represented by
the product of the two 5 functions.

The fourth-order Rayleigh-Schrodinger term has been
given by Niessens while the fifth- and sixth-order terms
have been given by Levy. To convert these expressions to
useful form would require the evaluation of triple and
quadrupole pole singularities involving the simultaneous
convergence of 8 three-dimensional integrals, 16 four-

dimensional integ rais, etc. This is a formidable
mathematical problem if undertaken with the original
method. However, one may approach the problem dif-
ferently by noting that the Rayleigh-Schrodinger series is
a special case of many-body theory.

One starts with the well-known expression for the
change in the grand potential arising from some arbitrary
perturbations, selects only those diagrams for which there
are neither exchange processes between electrons nor
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FIG. 1. Diagram for the evaluation of the change in the

grand potential due to triple scattering from a single impurity

site, Eq. {A3).

internal excitations such as phonons nor internal interac-
tions such as electron-electron scatterings, and then takes
the limit as the temperature goes to zero. This generates
the correction to the ground-state energy in general, and
for this special case, the integral form of the Rayleigh-
Schrodinger series. Thus, we have

Q —Qo ———g G (a,p,ip„)X(a,p,ip„),1 'da
p p, cr,ip„

(A3)

where a is the coupling constant, ip„ is the set of thermal
poles, 6 is the electron Green function, and X is the set of
relev"mt self-energy diagrams.

Since our principle task is to evaluate the multipole
singularities, it is sufficient to evaluate only those contri-
butions to b,Q which are linear in the impurity concentra-
tion; i.e., we consider the case of multiple scatterings from
a single impurity site. That the resultant expressions may
be used to calculate the cortvctions to the energy of the

I

FIG. 2. Contour of integration and the poles of the integrand
of J, Eq. (A7).

conduction-electron gas arising from single scatterings
from multiple sites has been shown by Ruderman and Kit-
tel. ' Consequently, to obtain the nth perturbation term,
we use in Eq. (A3) the zero-order Green function 6 and
the single nth-order self-energy diagram X'"' so that

hm lim (Q —Q )'"'=(E E){"'Ã—
~
=E'"'N;—,V~ ce T-+0

(A4)

where N; is the number of impurities.
To illustrate our method, we rederive Eq. (A2}. The

impurity potential is treated as an external field and there
are no energy transfers in the intermediate states. The
only relevant third-order diagram is shown in Fig. l.
Then

d3 I 3 II

(bQ)' '=n; —g f a f 3
G (p,ip„) f 3 f 3

Go(p', ip„)6 (p",ip„)I &&I ~~-Ia (2n )3 (2ir) (2ir)
(A5)

where n& is the impurity concentration, p= 1 lk&T, and the I zz are the scattering matrix elements. The dependence on
PIPJ

the coupling constant a is trivial in this example: G (a,p,ip„)=G (p, ip„},and X' '(a, p, ip„)=a X' '(p, ip„); i.e., the sin-

gle third-order contribution to b,Q is cubic in the scattering potential.
Therefore,

(gQ)(3) ~l g d p d p d p 1 1 1 1

3 ~ (2tr) (2~)' (2ir} p ~ ip„—ei, ip„—e3 ip„—ai
(A6)

We have used 6 (p, ip„)= 1 l(ip„—sz), where p„=(2n +1)nip, sz Ez —p, and su——ms over the internal spin variables
are implicit.

The quantity in large parentheses in Eq. (A6) may be evaluated by defining the integral

J= . , dz nJ;(z)
1 1 1 1

2&l Z —8 Z —E, i Z —EP P P

where

1
nF(z) =

e +1

(A7)

and the contour of integration is shown in Fig. 2. There is a branch cut along the real axis and the only poles within C
are those of n~(z), the thermal poles on the imaginary axis, for which the sum of the residues of the integrand of J is the
negative of the quantity in parentheses in Eq. (A6). By direct evaluation of J along the contour, we obtain"

(AS)

where we have set (p,p',p")—= (p pie,p2). Substitution of Eq. (AS) into Eq. (A6) together with the cyclical permutability
of the I product leiMis directly to Eq. (A2) since e~ s~ =E~ E~, and nF(a~—) =nz(E~—EF), the usual Ferm. i—function.
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g(4) l J dkoko I dkiki . J dk3k3P
0 1
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1

&k -&a
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Ek —Ek3

—&"o(Ek, Ek—, )5(Ek, Ek—, )

X ReV(ko, ki, k2, k3) . (A9)

Note that there is no triple pole ((3 ) contribution.
Equation (A9) may be used to calculate the effect on the coupling between two spins of two orders of spin-orbit

scattering at a third site. For R & R, it is

135m A, I »n'['i)2«F)]cos[kF(R~+RB+R~B)+3rl2(kF)]
ABA. 32 g2E k4 R&RBR&B(R&+RB+R&B)

X[Pi(Rg RB)(Rg XRB) (Sg XSB)+2P2(Rg RB) Sg SB], (A10)

which shows both anisotropic and isotropic components. The functions P~ and P2 are the usual Legendre polynomials
of order 1 and 2.

The fifth-order te.xa is given by Eq. (5). That one picks up the real part of V(ko, k~, . . . , k4) in Eq. (A9) and Eq. (5)
is an algebraic consequence of the derivation and is not an imposed condition.

We reiterate that Eqs. (A2), (A9), and (5) are only valid for a continuous set of eigenfunctions.

APPENDIX 8: LEADING ORDER CONTRIBUTIONS

We show how the order of scattering in the fifth-order matrix elements determines whether their contribution to the
preasymptotic form of the interaction will go as 1/R or 1/R". Consider the partial matrix element

kt
I
gr Ra) lk2)&k2 I5(t RB) Ik3)

and assume for simplicity that the states
I k; ) are plane waves. Then

(81)

—i(k& —k2) R& —i(k2 —k3) R& —k& R& rk2 (R& —R) ik3 RgM-e e =e e e (82)

The integration over the angles of k2 gives a factor sin(k2R&B)/k2R&B, while the integrations over Qk and Qk give
1 3

sin(k lRA )sin(k3RB )/kik3R~RB s«hat M-(R&RBR~B ) '. On the other hand, for the matrix element

we obtain the expression

5(r—R~ )
I
k2 & &k2 I

A(r)I
I k3 & & "3

I
(3(r—RB)

I
k4) (83)

2 A[@2(1 )X y2(j )]i 3 4 B

which, after integrating over Q~, and Qk, gives

;k R sin(k2R& ) 2 2, sin(k3RB ) ik .RM-e [1"(Rg) X 1' (RB)]' e''
k2Eg k38g

(84)

(85)

and we find after integrating over Qk, and Qk, that M-(RqRB) '. We conclude that if the scatterings Sq.s and SB.s
have a common state between them; e.g.,

~" IS„sI1,~, )&1,~, IS, sI -. or &1,~, Is„.sI ISB.sI1,~, ), (86)

then to leading order in 1/R, the matrix element is proportional to 1/8'; othe~ise, it g~ as 1/8'. This is indepen-
dent of the behavior of the coefficient which introduces an additional factor of 1/R for large interparticle dist»ces.

us, to leading order in &/p, we may concern ourselves only with those matrix elements for which the Sq.s and S~.s
factors are cyclically consecutive; e.g., MrT&B&, M&2 rTB, etc. , of which there are 30 i»11.
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