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The statistical estimate of the number of local minima in an energy function obtained by a finite random

sampling, due to Walker and Walstedt (W%), is clarified. In particular, it is found that an additional as-

sumption, of the Bayesian type, seems to be needed, and the consequences are discussed in some detail.
The relaxation of the explicit assumption of W%', that each minimum has equal a priori probability of being
sampled, is discussed briefly.

The similar case for the occurrence of (Z —2) independent
local minima is3

P2(M)=~Z(z —1) 1 ——1

Z
(2)

The study of local minima in classical energy functions is
important in a variety of fields, e.g. , structure and thermo-
dynamic behavior of solids, including glasses and spin
glasses. Most of the results in this field come from comput-
er studies of systems of finite numbers N of particles. For
example, recent work has studied local minima for nonmag-
netic particles interacting via Lennard-Jones and similar po-
tentials, " and for magnetic particles ~hose positions are
fixed, their magnetic moments (i.e., spins) interacting ac-
cording to a Heisenberg or similar model. '

The problem of determining the ground states (i.e., the
states with the absolute —or global —minimum energy) is
enormously difficult' for large N, as is the problem of
determining all the metastable states (local minima with en-
ergy above the ground-state energy), or all those lying close
to the ground state, even for moderate N. 6 The determina-
tion of the number of local minima (LM) for small N is
felt' ' to have been accomplished both in the nonmagnetic
and the magnetic models studied. The discussion support-
ing this in the nonmagnetic cases' seems to be purely in-
tuitive, while an explicit probabilistic or statistical argument
was given for the magnetic case. '

My concern here is with the latter probabilistic argument
(an argument which is not at all limited by the type of
model used for the energy). My purpose is to clarify the as-
sumptions needed for the argument, and to indicate possible
generalizations.

The argument' is as follows. A set of M "quenches" is
made, each quench starting from a randomly chosen state
(or point in the configuration space), each quench leading
to a definite local minimum. These quenches result in
E(~M) independent (i.e., distinct ) local minima. Ac-
cording to Walker and Walstedt, "' if we assume that all lo-
cal minima "have equal likelihood of being detected, " the
probability that there are Z independent local minima and
only Z —1 occurred in a random sample of M starting
configurations is

'M

P, (M) =Z 1 ——1

Z

These were applied to the case M = 70, K = 7: Z = 8 in

(1) and Z =9 in (2) gave very small probabilities P~(70)
and P2(70), leading to the conclusion Z = 7 is highly likely.
Also, another case M =50, K =41 was considered, for
which it was concluded without detailed explanation that
Z = 200 [see Ref. 3(b)].

I argue here that it is not possible on the basis of the stat-
ed assumptions to determine the (joint) probability that
there are Z local minima and Z —s occur on M trials. I also
will derive the right-hand sides of (1) and (2) (and the gen-
eralization to Z —s local minima) as results of different
probabilistic statements, and, finally, come up with essen-
tially the same conclusions as Walker and Walstedt. ""'b'

What can be calculated is the conditional probability
P(M, Z —s jz) that on M trials Z —s different local minima
will occur, if there are Z local minima altogether. [This is
not the right-hand side of (1) for s = 1 or of (2), for s = 2,
as will be seen. ] We are then interested in the "inverse"
question: What is the conditional probability P(zjM, E)
that there are Z local minima if on M trials EC local minima
occur? This is written down according to the Bayesian ap-
proach as follows. A general relation of probability theory
1s

P(ZjM, E) =P(M, EjZ)
W

(3)

where W( ) are unconditional probabilities. Hence the rel-
ative conditional probability of Z' to Z is

p(z'jM, E) p(M, E jz') w(z')
p(z jM, E) p(M, E jz) w(z) (4)

If we now interpret W(z) as an "a priori probability, " and,
further (as seems reasonable), assume it to be independent
of Z for O~Z ~Z„where Z, is much larger than any
value that might be expected for the problem at hand, we
see that the desired probability P(Z jM, E) is just propor-
tional to the calculable probability P (M,E jZ), for 0
wZwZ

The probability P(M, Ejz) obviously may be expressed
as follows. This probabihty, that M random trials (thrown
balls) will result in E distinct local minima (balls landing in
E different boxes of equal size), is the number of ways of
picking E boxes out of Z boxes times the number ~(M,E)
of ways that M balls can be put into E boxes such that
every box is occupied, i.e., contains at least one ba11, divid-
ed by the total number of ways Z~ of putting M balls into Z
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boxes. That is,

( K lZ)
'Z W(M, K)

ZM
(5)

the meaning of (1) to be the conditional probability that if
there are Z boxes, then Z —1 will occur on throwing M
balls. However, the latter is given by (5):

P(zlMK)= f"'
$f (Z';M K)

(6)

~here

f(Z;M, K) =
K Z

Equation (5) was derived in a slightly different form, us-

ing a somewhat more complicated argument, by Feller. '

Pleasantly, (7) is independent of the mathematically more
complicated function' ~(M, K), which is needed in (5),
and which is discussed below. Equations (6) and (7) give

P(ZlM, K) =0 for Z & K

According to the above assumption then, the desired
probability

P(M Z ll-Z) =Z ( Z )
ZM

the special case M=4, Z=3 gives P(4, 2l3)=42/3 [see
below for W (4, 2) = 14], whereas Eq. (1) gives
Pt(4) =46/34.

It is interesting to apply (6) and (7) to the other case con-
sidered previously, namely, M=50, K=41. I found the
most probable Z, Zp=120; the median value of Z is 138
and the mean value is 149.1. Also, the probabilities that
Z & 85 and Z & 250 are each about 5%. These results sup-
port in a rough sense the earlier conclusion' Z = 200.

Because of the controversial history of the Bayesian ap-
proach, '" it is important to assess the reasonableness of
the result of the approach. In general, one can find Zp, the
most probable Z, quite simply by considering

and, asymptotically for large Z,

Z-(M-~)
f(Z;MK) =

K!

f (Z —1;MK) I —K/Z 1 —Kx
f (Z;M, K) (1 —I/Z)~ (1 —x)~

(9) Since for M & K & 1,

(12)

Hence for M —K & 1, the normalization sum (on Z ) con-
verges. This insures that predictions of this theory will be
essentially independent of the cutoff Z, for large enough
values; thus we will take Z,

Using (6) and (7), we have for the ratio of the probabili-
ties of finding K+ 1 and K boxes occupied on throwing M
balls

P(K+ 1 lM K) K I
K

P(K lM, K) K+1 (10)

Similarly,

P (K+ 2IM, K)
P(K lM, K)

(K+2)(K+ I) K
2 K+2

'M

Putting K = Z —1 in (10) and Z —2 in (11) yields (1) and
(2), respectively, and applying this to the case M=70,
K=7, we obtain Sx(T)'0=—7X10 ' and (9X~)(7)'
= 8x10 ', in agreement with Walker and %alstedt. "'

Thus we have derived the right-hand sides of Eqs. (1)
and (2), each as a ratio of conditional probabilities of Z for
two different values —this is quite different from the proba-
bility meaning attached previously. ' To accomplish this we
needed an important additional assumption, over and above
that stated, ' namely, the Bayesian-type assumption needed
to deal with Eq. (4). Finally, we unsuccessfully tried to
derive (1) and (2) by simpler interpretations, namely (i) the
authors' words and (ii) replacement of those words by a
reasonable conditional probability. That (i) is impossible is
seen from (3) and (5): The 4oint) probability of having Z
boxes and Z —1 occupied ones occurring on throwing M
balls is P(M. Z —1 lZ) W(Z), whereas the right-hand side
of (1) is

F(x) =1—Kx —(1—x)~ (13)

is easily seen to have only one zero xp in 0 & x ~ 1, it fol-
lows that as a function of Z, f (Z;M, K) has only one max-
imum, and it occurs at xp, Zp being the nearest integer to
this. It is easy to see that

xp ' K as M (14)

Also if one increases M holding xp fixed, one can see
from (12) and (13) [with F(xo) = 0 giving K = K (M) ] that
the probability P[ZlM, K(M)] becomes more sharply
peaked. Equation (14) plus this property is quite reason-
able. Also, the property (8) is not only reasonable, it is an
absolute necessity. Another very nice property is the un-
normalizability of f(Z;M, K) for K=M [Eq (9)]: This
says that if on M thro~s, M boxes are occupied, then one
cannot estimate an upper limit on Z —clearly, this is as it
must be. The lack of convergence for E =M —1 is not so
obviously required, but is not unreasonable. Thus the
result of the Bayesian approach here has indeed turned out
to be quite reasonable.

An important assumption that needs to be relaxed is that
all the minima are a priori equally probable. Surely for the
energy functions considered' the "catchment regions" or
basins are most probably not of equal size. In the balls and
boxes transcription, this means the box openings are not of
equal area. Intuitively, it seems that any deviation from
equal probabilities ~ould cause an estimate of Z made on
the assumption of equal probabilities to be too small, or, at
least, never too large. I will not try to prove this here, but
will be content with a few remarks.

One can easily write down appropriate generalizations of
(5). For example, suppose of the Z boxes, Z, and Zq of
them were each assigned a priori probabilities p, and pb,
respectively; here

P (M, Z —1 lz)
P(M, Z —I IZ —I) +Zb Z Zan + ZbPb (15)

which is not of the correct form (the second factor depend-
ing on M as well as Z). The trial (ii) is to try to reinterpret

Then the conditional probability that M balls will occupy E
different boxes is, evidently,
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M Za Zb M Mb
P(M, K~z. , zb, p. ,pb)= X X M K' K ~(M. ,K.)~(Mb.Kb)p. 'p,

w, ,m sc, ,sc

(16)

Here the sums over the non-negative integers M„Mb, K„
and Eb are restricted by M, +Mb-M and E, +Eb-K.
Now it is necessary to deal with the function M(M, K); this

is given by Feller' as
' M

M(MK)-K X ( —)'
I 1 ——

f~O EC

Note that from (5) we have an equivalent relation
P

X KP ~(MK)-P" .
K~O'

(17)

A few examples, using the Kronecker 5 function, follow:

~(M,K) 0 for K (M, W(M, O) Sbro, (19)
I

l

and for M «K,

~(M, 2)=2 —2, W(M, 3) =3 —3(2~—2)

(20)

For large K it is clearly clumsy to calculate these M(M, K).
Feller' gives an approximate expression which he states is

good for large E; unfortunately this is not quite true: His
criterion also requires M » K (strictly, his condition' re-

quires K ~ and M/K ~).
For a simple example I considered the case Z, =Zb
Z/2 (Z even), M = 4, K = 2. Writing pb = vp„ I found

[using (15)]

P 4. 2[—,—,p„vp, f(Z;v) =Z Z 2

Z(1+ v)

T4 r

7(1+v )+4v+6v'+4v' Z2 7 (I+ 4)Z
4 2'" ' (21)

[This checks with (5) for b -1.] Writing the second bracket
in (21) as BZ' CZ, —one sees that the value Z that max-
imizes f (Z;b ) is

3 C
2 8

and this is the only stationary point (for finite Z). For v- I
this is T, implying the most probable value (of the allowed

values Z - 2, 4, 6, . . . ) is Zo- 2. Furthermore, the
minimum of Z over v is this v 1 value, so Z and there-
fore Zo cannot decrease when v changes from 1. For
v ~ or 0 [note f(Z;v ')- f(Z;v)], C/8 2, so

l

Z 3. It turns out that as v increases past v=4.68, Zo
switches from 2 to 4 and remains there as v continues to in-

crease (the latter is a very reasonable behavior). Notice
that this increase in the most probable value Zo when v

changes from 1 is in accord with the intuitive thought men-
tioned above.
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sian approach.
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