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Ground-state properties of polytypes of silicon carbide
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The ground-state properties of cubic silicon carbide are calculated as a stepping stone towards a descrip-
tion of the polytypes of silicon carbide. The pseudopotential-density-functional method is used to calculate
the self-consistent valence charge density as well as the equilibrium lattice constant and bulk modulus.
Comparison with experimental data and earlier less rigorous calculations sho~s good agreement. A strategy
is indicated to obtain a description of all polytypes.

I. INTRODUCTION

Polytypism is the occurrence of different modifications of
one compound, consisting of identical layers of structure
whose stacking sequence differs. ' The origin of polytyp-
ism is until now unexplained, although several theories ex-
ist, e.g. , those based on screw dislocations3 or thermo-
dynamic considerations.

Polytypism in the silicon carbides (SiC)-where it is stud-
ied most widely-is interesting for a number of other
reasons. The polytypes of SiC are semiconductors with a
varying band gap. They are natural superlattices and there-
fore pose problems similar to those found in calculations on
artifically grown superstructures (e.g. , large unit cells). The
cubic modification (3C SiC) is the only IV-IV compound
with zinc-blende structure and therefore is an intermediate
between III-V semiconductors (GaAs, GaP, etc.) and crys-
tals with the diamond structure (C, Si, Ge, a-Sn). They
contain a first-row element in the sense of Phillips (car-
bon), usually leading to deviations from normal covalent
behavior.

Although certain properties surely cannot be attained in
this way (especially those depending strongly on tempera-
ture or details of the fabrication process), it is interesting to
study the ground-state properties within the pseudo-
potential-density-functional scheme6 that has proved to be
very successful already in calculating such properties for,
e.g. , Si and C.' ~ The polytype that is easiest to handle in
this scheme is the above-mentioned cubic modification 3C
(in the nomenclature of Ramsdell'2) also named sphalerite
or P-SiC. In Sec. II the method is outlined, together with a

discussion of the procedure that is folio~ed to reduce the
computational work. Section III contains results of the cal-
culations for 3C. At the end two concepts are presented
that may be helpful in obtaining properties of other poly-
types without resorting to the ful1-scale calculations of the
scheme mentioned above.

II. METHOD

To obtain the self-consistent valence charge density p we
employ the pseudopotential-density-functional method us-
ing the norm-conserving pseudopotentials from Ref. 10 and
plane-wave expansions. Two special k points are used to in-
tegrate p over the first Brillouin zone and the %igner-

interpolation formula is used to describe correlation effects.
Further details and references are found in our earlier pa-
per, " From this self-consistently determined p the total en-
ergy of the crystal can conveniently be calculated in
momentum space.

One-electron wave functions are expanded in plane waves
(PW's) with kinetic energy less than Epw, a cutoff parame-
ter to be varied to test convergence. It is considered the
best strategy to keep Epw fixed when varying lattice parame-
ters or crystal structure. However, especially in the case of
few special points this leads to non-negligible jumps in the
total energy because discrete changes in the size of the basis
set occur when the lattice parameters are varied. These
jumps become negligible when the number of special points
or the number of plane waves in the basis set (or,
equivalently, Etw) is chosen sufficiently large. Since from a
computing time point of view it is advantageous to choose
both numbers as small as possible, we adopt the following
strategy to reduce the effect of the jumps. (i) We use only
two special points (for fcc lattices; an equivalent number
has to be chosen for other types of lattices). (ii) We choose
Epw so large that jumps in the total energy are about as
large as they are for silicon in the diamond structure with
two special points and Epw-ll. 2 Ry. (For this value of
Epw a very good agreement with experiment was found for
ground-state properties of Si in Ref. 8, However, the larger
number of ten special points was used in that calculation. )
(iii) Values of the lattice parameters for which the total en-
ergy is calculated are chosen not too close to each other nor
to values for which discrete changes in the basis set occur.
(For given Epw and special points these values are known
exactly. )

%e have checked whether results obtained by this pro-
cedure are accurate enough by calculating for silicon (dia-
mond structure, two special points; Epw = 11.2 Ry) the total
energy at six lattice constants a [a between 5.0 and 5.6 A
and satisfying (iii)). The results are fitted to the Mur-
naghan equation of state for solids (see Ref. 8). This
results in an equi1ibrium lattice constant a„of 5.447 A and
a bulk modulus Bq of 1.01 Mbar, values that are in excel-
lent agreement with both earlier calculations ' and experi-
mental values [a,q- 5.43 A, 80= 0.99 Mbar (see Ref. 14)].

For 3C (ii) implies that we have to choose Epw as large as
29.7 Ry leading to about 380 P%'s in the basis set if a is
near the experimental lattice constant of 4.36 A. ' In that
case jumps are never larger than 2 mRy/atom.
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III. RESULTS

In Fig. 1 we compare the valence charge density p for 3C
obtained from a calculation with the empirica1 pseudopoten-
tial method" (EPM) with one calculated self-consistently
with norm-conserving pseudopotentials (SCNCP). In the
EPM calculation the wave function was expanded in about
90 PW's, in the SCNCP calculation in about 380. Compar-
ison of Figs. 1(a) and 1(b) shows that the empirical pseudo-
potential used for Si is too weak compared to the one used
for C. This is less an effect of the locality of the atomic car-
bon pseudopotential —as was the case for the discrepancy
between EPM- and SCNCP-charge densities in diamond"
—than of the fact that both potentials were not submitted to
criteria ensuring transferability. For the band structure this
appeared not to be such a drawback;" for p and therefore
for ground-state properties it surely is. From Fig. 1(b) we
see that p displays features typical of ionic bonding (super-
posed spherical charge distributions centered on the atoms)
as well as of covalent bonding (charge compressed in bonds
between the atoms) illustrating that 3C is partially ionic.
For some semiconductors the position of the bond-charge
maximum is a good measure of the degree of ionicity. ' For
3C, ho~ever, this is not true; the bond-charge maximum is
positioned 0.79 a.u, from the carbon atomic position and
this would make SiC more ionic than GaAs, which it defi-
nitely is not (the ionicity according to Ref. 5 is 0.18 for SiC
and 0.31 for GaAs). Therefore SiC is an example of the
empirical rule' that compounding a first-row element (sup-
plemented by Na, Mg, and Al) with other elements leads to
deviations from normal covalent behavior. An earlier calcu-
lation based on a combination of the Gordon-Kim theory
and the Weber bond-charge model'6 resulted in a position of
the bond charge 1.26 a.u. from the carbon atom.

In Table I the results of total energy (E„„~)calculations
for 3C are summarized. E„„~was evaluated for eight values
of the lattice constant with Epw = 29.7 Ry (see Sec. II); each
time the self-consistency process was stopped when E„„~
was stable to within 10 Ry/cell. The results were fitted to
the equation of state for solids by Murnaghan which con-
tains a,„, Bo, the pressure derivative of the bulk modulus
80, and the minimum total energy E„, ;„as parameters. "
The rms error of this fit was 10 ' Ry/cell and the results
are compared in Table I with similar calculations using
Epw 20.6 Ry and with experimental values.

The experimental value of E„,, ;„ is obtained as follows.
An estimated value for the energy of the crystal E„„„,~

ex-
pressed in experimentally accessible quantities is given by a
slight generalization of formula (12) in Ref. 18:

4 4

E„„„„=— X Q, (C)+ X $;(Si)+E„„(3C)
,i ~1 i=1

where the qh; are ionization potentials of the atom" and E„h
(3C) is the cohesive energy of 3C, [E„„(3C)= 0.931
Ry/cell] following from the cohesive energies for Si and C
and the heat of formation of 3C." To get the equivalent to
the total energy as given by our calculations we have to sub-
tract the energy E„;b due to zero-temperature vibrations of
the atoms. This last energy, which is small but not negligi-

ble, may be estimated to be E«b= ~ksOD (per atom' ),
where k~ is Boltzmann's constant and OD the Debye tem-
perature. Since OD= 1430 K for 3C at T =0 K (Ref. 14)
we have E„;b=0.020 Ry/cell.

From Table I we see that for Ep=29. 7 Ry, E„, ;„ is
still not fully converged. We remark that our value is closer
to the experimental estimate for E„, ;„ than the result that

FIG. 1. Total valence charge density for 3C SiC at the experimental lattice constant in the (110) plane. Black dots indicate atomic posi-
tions (carbon atom at the higher-density position) and thick lines connect nearest neighbors. Units are electrons per unit cell volume with a
contour step of two. (a) Calculated by the empirical pseudopotential method. (b) Calculated by the self-consistent pseudopotential method
using norm-conserving pseudopotentials. Some contours near the carbon atom have been omitted for clarity.
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TABLE I. Equilibrium lattice constant a,q, bulk modulus Bo, pressure derivative of bulk modulus Bo, and

minimum total energy E«tm, „ for 3C SiC' (definition of Epw in the text).

Epw=20. 6 Ry Epw = 29.7 Ry Experiment

a,q (A)
Bo (Mbar)
Bo
Etot min

aReference 14.

4.411
3.08
2.1

-19.140

4.365
2.00
7.3

—19.309

4.360

—19.410

may be deduced from Ref. 16, which is —19.258 Ry/cell.
(The dissociation energy D, in Ref. 16 is equivalent to
minus our E„„«,~. ) Concerning the convergence with

respect to an increase of Epw of the other quantities in

Table I we recall that Epw is chosen so large (29.7 Ry) that
the uncertainty in energy differences is the same as for sil-
icon with Epw 11.2 Ry (see Sec. II). Since energy differ-
ences are all that are needed to determine a,q Bo and Bo,
we expect that these quantities have converged to the same
degree as in Ref. 8: better than 1% for a,q and about 5%
for Bo and Bo. The results for Ep~ 20.6 Ry only illustrate
that aeq converges faster than Bo, which in turn converges
faster than Bo.

Another type of uncertainty in the results of Table I is
due to the fitting. From fits to different forms of the equa-
tion of state and to subsets of our results for E„„~we esti-
mate this uncertainty to be 7.10 Ry/cell for E«, ;„„better
than 0.3% for a„, about 10% for Bo, ~hereas Bo can vary

by a factor of 2.
Our calculated a,q is in excellent agreement with experi-

ment, while Bo and Bo are beyond direct comparison be-
cause of lack of experimental results. The latter quantities
are difficult to measure because the relatively large crystals
that are needed are hard to fabricate. There are two facts in

support of our value of Bo'. (i) it is intermediate between
bulk moduli of Si and C (0.99 and 4.42 Mbar, respectively)
and (ii) it agrees with a theoretical calculation by Tolpygo'0
of the elastic constants cubi and ci2. These are related to Bo
by the equality Bo= (et~+2ct2)/3 (cubic crystals" ). Using
this equality, Ref. 20 gives Bo= 2.11 Mbar. An unexplained
fact is the value of Bo in the literature' for a hexagonal
modification of SiC (which one exactly is not stated). This
value of 0.97 Mbar differs by more than a factor of 2 from
our Bo, which is some~hat surprising for two crystals con-
stituted of the same atoms and with like structures.

%e end by indicating how these results for 3C may be
used to come to a description of ground-state properties of
all polytypes. As polytypes differ only in the way of stack-
ing identically structured layers, it is tempting to assume
that knowledge of the electron density in one layer of one

polytype (e.g. , 3C) is enough to construct the electron den-
sity in a1I layers of all polytypes. If, furthermore, the func-
tional dependence of total energy on density were known,
we then would have access to the total energy of all poly-
types. Our assumption is not contradicted by a calculation
of the self-consistent valence charge density p in the poly-
type with the wurtzite structure (2H SiC, four atoms in the
unit cell). In Fig. 2 this p is compared with one calculated

FIG. 2. Total valence charge density for 3C and 2H in equivalent planes. Units are electrons per unit cell volume of 3C with a contour

step of two. (Marks as in Fig. 1). The central layer is the layer between dashed lines (see text). (a) 3C and (b) 2H.
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for 3C in the same plane [the c axis of 2H is equivalent to
the (111) direction in 3C] for the same value of Etw
(=15.2 Ry). The agreement in the central layer seems
rather good, awhile densities in the top and bottom layer
displayed in Fig. 2 may be mapped upon each other by rota-
tion over sr around the bond axes (keeping the central layer
fixed).

Another aspect of polytypes that may be helpful in deduc-
ing properties of the polytypes from elaborate calculations
(like the ones described above) for a few (simple) polytypes
only is that of interpo)ation. %'hen polytypes are described
in terms of the well-known hexagonality parameter h only,

the cubic (3C) and wurtzite (2H) modifications are ex-
tremes in the hexagonality scale with h = 0 and 1, respec-
tively. An analysis of the Ewald constants uE„,~s(h) —i.e.,
the structure-dependent constants related to the ion-ion-
interaction energy ' —for the respective polytypes2 has
shown that within an accuracy of 1 in 10 the Ewald con-
stants may be obtained for any polytype from knowledge of
eE„,~~ for 3C and 20 only.

At the moment work is in progress to investigate whether
these two concepts of "charge-density mapping" and "inter-
polation" are indeed powerful enough to obtain ground-
state properties of polytypes of silicon carbide.

'A. R. Verma and P. Krishna, Polymorphism and Polytyplsm ln Crys-

tals (Wiley, New York, 1966).
2W. F. Knippenberg, Philips Res. Rep. 18, 161 (1963).
~F. C. Frank, Philos. Mag. 42, 104 (1951).
4H. Jagodzinski, Neues Jahrb. Mineral. Monatsh. 3, 49 (1954).
5J. C. Phillips, Bonds and Bands in Semiconductors {Academic, New

York, 1973).
M. Schliiter, J, R. Chelikowsky, S. G. Louie, and M. L. Cohen,

Phys. Rev. B 12, 4200 (1975).
~M. T. Yin and M. L. Cohen, Phys. Rev. B 24, 6121 (1981).
8M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
J. R. Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984).

' G. B. Bachelet, H. S. Greenside, G. A. Baraff, and M. Schluter,
Phys. Rev. B 24, 4745 (1981).

"P. J. H. Denteneer and %. van Haeringen, J. Phys. C 18, 4127
(1985).

'2J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).
'~O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).
'4Landolt-Bornstein: Numerical Data and Functiona/ Relationships in

Science and Technology, edited by O. Madelung (Springer-Verlag,
Berlin, 1982), Group 3, Vol. 17, Part a; C, E. Moore, Ionization

Potentials and ionization Limits Derived from the Ana(ysis of Opticai

Spectra, U.S. National Bureau of Standards, Ref. Data Ser. 34,
(U.S. GPO, Washington, DC, 1970); Handbook of Chemistry and
Physics, 63rd ed. , edited by R. C. Weast (CRC, Boca Raton, FL,
19&2).

H. G. Junginger and W. van Haeringen, Phys. Status Solidi (b)
37, 709 (1970).
C. Muhlhausen and R. G. Gordon, Phys. Rev. B 24, 2161 (1981).

'7The results for Bo and Bo were obtained by fitting of the subset
of six points lying closest to a,q. Since Bo and Bo are related to
the second and third derivative of E„~~ as a function of volume,
respectively, in this way the effect of numerical uncertainties is
reduced.

' J. Ihm and M. L. Cohen, Phys. Rev. B 21, 1527 (1980).
~~M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Ox-

ford, London, 1954).
K. B. Tolpygo, Fiz. Tverd. Tela (Leningrad) 2, 2655 (1960) fSov.
Phys. Solid State 2, 2367 {1961)],

2 J. F. Nye, Physical Properties of Crystals (Oxford, London, 1957).
D. Lenstra, A. G. Roosenbrand, P. J. H. Denteneer, and W. van
Haeringen, Physica B (to be published).


