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Recent experimental results of Yu have shown remarkable behavior of the sputtering yield as a
function of ion velocity. The usual assumption that the sputtered ions desorb as classical particles
with a constant velocity is clearly incorrect at low velocities. We have tried a simple model based on
a conjecture that the ion follows a quantum rather than a classical trajectory. The results, which are
based on quasiclassical and quasistationary final-state ion trajectories (WKB wave functions with a
complex potential), are in excellent agreement with the experiment. However, the imaginary part of
the complex force necessary to achieve this agreement is at least an order of magnitude larger than
typical interatomic forces. The conclusion therefore is that these quantum effects on the ion trajec-
tory are not the cause of the nonlinearity of Yu’s data.

Yu'! has shown experimentally that there exists a corre-
lation between the ionization probability of ions sputtered
from metal surfaces, the outward normal velocity v, , and
the ionization potential I or affinity level A of the desorb-
ing atom. The probability a* (~)(E) that the sputtered
particle comes out as a positive or negative icn was calcu-
lated by Ngrskov and Lundquist? and shown to be propor-
tional to exp[ — (I —¢)/€y] or exp[ — (¢ —A)/¢€p)], respec-
tively, eg=¢€o(v,) being a function of v,. These results
suggest that during the process of sputtering there is an
ion-surface interaction operative rather than an ion-atom
binary interaction.

Direct verification of the v, dependence of €, has been
given by Yu! for sputtered O~ from chemisorbed oxygen
layers of vanadium (V) and niobium (Nb) surfaces. In
Yu’s work the exponential dependence of a™ on the work
function ¢ is utilized to determine the parameter €, for
various combinations of emission velocity and emission
angle 0 measured with respect to the surface normal. The
ion-yield data for various angles were used to calculate €,
as function of v,. The results for vanadium are shown in
Fig. 1. At high velocity it is seen that ¢, is linear with v,
for various angles of sputtering but both these graphs be-
gin to deviate from linearity at v, near 1X10° cm/sec.
The most striking feature of the graphs is the upward cur-
vature of the data points for velocities less than 1 10°
cm/sec which also seems to have some 6 dependence.

The low-energy upturn of €, cannot be attributed to ex-
perimental errors and is not predicted by any theoretical
model of v, dependence. Yu suggests that v, may vary
along the secondary-ion trajectories as the ions have to
overcome both the image and surface binding potentials.
This may well explain some of the deviations from lineari-
ty at low velocity. However, a purely classical model of
these effects due to Lang,* while successful in giving a de-
viation from linearity in the right direction, fails to give
the proper upward curvature in the data (as shown in Fig.
1). We have tried a simple quantum model for the ion
trajectory which does indeed predict such an upward cur-
vature of the €, vs v, data. However, in order to do so re-
quires the use of a dissipative force that is many times
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larger than one might expect on intuitive as well as on
computational grounds.

In treating the velocity dependence of €, we will as-
sume the same model as a number of workers (Lang,’
Blandin, Nourtier, and Hone,* and Ngrskov and Lund-
quist? and at a later stage introduce our correction to the
ionization probability. The metal, according to previous
work, is thought of as a noninteracting Fermi gas of work
function ¢, where the motion of a single atom in the vi-
cinity of the metal is treated classically. The atom is sup-
posed to have an affinity level |a) with energy &,(?)
which lies in the conduction band of the metal. The atom
interacts with the metal via the “hopping” matrix element
V(z)=(a |V |k). V(z) is the tunneling interaction po-
tential which is a function of time through the classical
trajectory z(z) of the ion. In particular, for an exponen-
tial model with constant velocity,

Vo (2) =V expl —yz /2)=V3, exp(—v,yt/2) z>0,
(1)
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FIG. 1. Lang’s theoretical values of €, compared to Yu’s ex-
perimental values for O~ from V. Lang’s theory is based on a
purely classical and initial-state modification of the z =v,¢ tra-
jectory. (Taken from Ref. 3.)
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where z is measured perpendicular to the surface and y !

is the range of the potential.

The ionization of the atom takes place because there is
a charge transfer between the Fermi sea and the
broadened level | @) with a resonance width A. The one-
electron resonance width is given by

A=, | Var(t) | 28(e, () —¢y) . )
k

For ¢,(t) Lang uses g,(t)=C exp(—av, t)— A. First-order
time-dependent perturbation theory for the electron tun-
neling yields the ionization probability (in the adiabatic
limit) in the form previously discussed, i.e.,

a~Y(E)=exp[ —(¢—A4) /€] , &)
where

eo=fy(¢—A +Eyv, /24, (4)
and

Eg=g5—g,(0) .

This result is consistent with the linear portion of the data
in Fig. 1.

A more detailed treatment of the classical ion trajectory
using a Morse potential leads to the Lang improvement
also shown in Fig. 1. However, the upturn is not repro-
duced. In what follows we try a model that does explain
the upturn but at the expense of nonphysical forces. We
suppose that at low velocities the assumption of classical
ion motion is the most damaging. Thus we assume the
marked deviation of €, from linearity and especially the
upturn is principally due to deviations from classical
behavior. In order to test this conjecture we replace v, in
Eq. (4) with (v,,,), a quantum expectation value of the
velocity to be discussed in what follows. Our results re-
quire certain empirical parameters involving dissipative
forces to achieve a best fit to the data of Yu. These forces
turn out to be anomalously large. We therefore conclude
that the conjecture must be rejected unless one can pro-
vide a realistic calculation that shows such forces are pos-
sible.

We use a quasiclassical and quasistationary model for
the ion motion. In the classical limit there is a small re-
gion of z which provides the main contribution to the in-
tegrand appearing in the expectation value (v,,). That is,
since the quasiclassical wave function is peaked near the
classical turning point the expectation value of the veloci-
ty operator will be evaluated somewhere near this peak,
ie,

]

#iF; cos(2¢,)

#iF sin(24,)

fdz'p*vlol’lb - vlop¢
fdz‘/"lﬁ R

The precise point where it is evaluated must for the
present be determined empirically.’

An equally important quantum modification to v,
arises from the fact that the potential must be taken to be
complex due to the decay process itself. Thus, as pointed
out Brenig,’ because the atom is decaying via the electron
tunneling process, then the quantum velocity will also be
effected by the wave packet changing its shape. We can
conveniently treat this effect in the quasistationary ap-
proximation in which E is replaced by E —iI" and V(z) is
replaced by V(z)—iW(z). We can then use a realistic
value for ¥ and allow W to be a semiempirical parameter.
Specifically, we take the real part of the z component of
the force, Fgr = — V'(z), evaluated at z,, to have a value in
agreement with that used by Lang® and then use
F;=—W'(zy) to be the adjustable parameter.

For the wave function we use

( vlop)z (5)

Ywkp(2)=[1/p (2)"?]exp %f:p(z’)dz' R (6)

with the local momentum given by
p(2)={2M[E —V(2)—iT +iW(2)]}!/2. (7

In addition, because the potential is complex, the usual
derivation of the velocity operator is also modified. That
is, we now must have

4 Wz —(2)) /4. (8)
dz

#
V, = |—
Lop 1 iM
Using this result in Eq. (5) we have

< Viop ) =(ﬁ/iM)[(d/d2)1/lw](B/¢'w](B] ‘ zy
+Wizo)zo—(2)) /. 9)

Further, the second term in (v Lop? Will be small since
again the integrand is peaked near z, and hence (z)=z,.
Therefore,

(Vigp) = (10)

#i | d

M |2z Ywks/Ywks -
When Eq. (10) is used in place of the classical velocity
only the real part enters into €,. Thus we need

Re{v,op) = (zg)
evlp> [v(zo) | cos¢v+2M2'vl(20)|3

where v, (z)={2[E —V(z)—iT +iW(z)]/M}'/? is the lo-
cal classical velocity and ¢, is the phase angle of the com-
plex velocity. Clearly (v,,,) is a function of
v, =(2E /M)'? which corresponds to the velocity of the
ion at the detector and therefore the value measured and

2M2'Ul(20)|3

], (11)

T
referred to in the experiment by Yu.

It is evident from Eq. (11) that because of the
1/|vy(z)|* terms Re(v,,,) can exhibit the proper ex-
perimental behavior, i.e., the low-velocity dramatic in-
crease of €y vs v,. Our conjecture, which is that v, in Eq.
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FIG. 2. Theoretical quantum (quasiclassical) values of €
(solid lines) compared to Yu’s experiomental values (crosses) for
vanadium (O~). F;=5.16X10? eV/A.

(4) be replaced by the quasiclassical velocity given by Eg.
(11), therefore has the proper semiempirical behavior.

The parameters in Eq. (11) are determined as follows:
we choose a value of F; and ¢, so as to optimize visually
the agreement with experimental curves of Yu. We have
found that if we take V(zq)=0 and W(zy)=T, then we
obtain a very good fit to the data. These choices make
¢, =0 and Eq. (11) simplifies to

Re(v,0p) =0, (1+#F; /2M%}) . (12)

The best fit is not entirely sensitive to the parameters F;
and ¢, and therefore we discuss only this simpler expres-
sion. We note that Fg(z,) does not enter into Eq. (12) be-
cause of the previous choices. Other values of z, would
lead to a contribution from Fy via Eq. (11).

In Figs. 2 and 3 we display the experimental data ( +)
compared to our theoretical curves (solid lines). We note
that the agreement is excellent in all cases—probably well
within the error inherent in the experimentally reported
values of €;. The values of F;(zy) used to determine the
graphs in Figs. 2 and 3 are indicated in the figure cap-
tions.

We note that Fg using Lang’s potential® when evaluat-
ed at the cross-over point V(zy)=0 is approximately
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FIG. 3. Theoretical quantum (quasiclassical) values of €
(solid lines) compared to Yu’s expgrimental values (crosses) for
niobium (O~). F;=3.42x10?eV/A.

equal to 73 eV/A. This should be compared to the values
of F; in Figs. 2 and 3 which are quite a bit larger. It is
these values that seem to make our conjecture incorrect or
at best dubious. Indeed one might expect the imaginary
part of the force to be small compared to the real force.
We therefore conclude that although treating the ion
motion with a quantum optical potential might be useful
in some applications® it is probably not large enough to
give rise to such a radical effect as observed in the non-
linear dependence of €, on velocity observed by Yu.
Nonetheless there exists a challenging theoretical problem
embodied in the data and theory curves of the figures re-
ported herein. On the one hand, a purely classical model
involving only a single desorbing ion cannot explain the
data. On the other hand, a simple quantum model, while
giving the correct experimental behavior, requires an
anomalously large force to explain the data. It seems
worthwhile to search for other simple models that can ex-
plain this dramatic upturn in Yu’s experimental data.
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