
PHYSICAL REVIE%' 8 VOLUME 33, NUMBER 4 15 FEBRUARY 1986

Pseudopotential theoretical study of the alkali metals under arbitrary pressure:
Density, bulk modulus, and shear moduli

Daniel J. Rasky' and Frederick Milstein
University of California, Santa Barbara, California 93106

(Received 28 January 1985; revised manuscript received 9 September 1985)

Milstein and Hill previously derived formulas for computing the bulk and shear moduli, z, p, and

p, at arbitrary pressures, for cubic crystals in which interatomic interaction energies are modeled by
pairwise functions, and they carried out the moduli computations using the complete family of
Morse functions. The present study extends their work to a pseudopotential description of atomic
binding. Specifically: (I) General formulas are derived for determining these moduli under hydro-
static loading within the framework of a pseudopotential model. (2) A two-parameter pseudopoten-
tial model is used to describe atomic binding of the alkali metals, and the two parameters are deter-
mined from experimental data (the model employs the Heine-Abarenkov potential with the Taylor
dielectric function). (3) For each alkali metal (Li, Na„K, Rb, and Cs), the model is used to compute
the pressure-versus-volume behavior and, at zero pressure, the binding energy, the density, and the
elastic moduli and their pressure derivatives; the theoretical behavior is found to be in excellent
agreement with experiment. (4) Calculations are made of x, p, and p' of the bcc alkali metals over
wide ranges of hydrostatic compression and expansion. (5) The pseudopotential results are com-

pared with those of arbitrary —central-force models (wherein a —
3 p=p'+2P) and with the specific

Morse-function results. The pressures, bulk moduli, and zero-pressure shear moduli (as determined
for the Morse and pseudopotential models) are in excellent agreement, but important differences ap-
pear in the shear moduli under high compressions. The computations in the present paper are for
the bcc metals; a subsequent paper will extend this work to include both the bcc and fcc structures,
at compressions and expansions where elastic stability or lattice cohesion is, in practice, lost.

I. INTRODUCTION

This is the first of two papers in which a pseudopoten-
tial model for atomic binding is used to study the theoreti-
cal behavior of the alkali metals under hydrostatic pres-
sure. In this paper, we compute pressure derivatives of
the elastic moduli at zero pressure as well as well as the
pressure dependencies of the binding energies, the
volumes, the bulk moduli, ~, and the shear moduli p, and
p'. ' " We use a two-parameter pseudopotential that em-
ploys the Heine-Abarenkov local model potential' and the
Taylor approximation for electron correlation and ex-
change. The numerical values of the two model parame-
ters are determined for each metal (I.i, Na, K, Rb, Cs) by
(i) matching the theoretical and experimental lattice pa-
rameters and (ii) obtaining a best least-squares fit between
the theoretical and experimental values of the three zero-
pressure elastic moduh (atmospheric and zero pressure are
taken as synonomous here).

Important considerations in our decision to carry out
this study and in our selection of the pseudopotential
model as a basis for computation are as follows.

(1) In recent years, advances have been made in the
methodology for studying the theoretical elastic response
of cubic crystals to hydrostatic pressure, including the use
of (i) more physically meaningful definitions of the elastic
moduli and (ii) rigorous conditions for the assessment of
elastic stability under current loading conditions. ' Ear-
lier computations' of the variations with pressure of a,
p, , and p', basixl upon Morse functions, have provided

useful insights into crystal elasticity and stability; they
also raised a number of questions, e.g., "which of the re-
sults were essentially model dependent and which were
dependent mainly upon crystal geometry or symmetry?"
Another question is "how would the results (for the crys-
tals with the central force interatomic interactions) com-
pare with those of crystals with more realistic descriptions
of atomic binding?"' Although a variety of semiempirical
models " are available, we selected the pseudopotential
model for our elastic moduli, ' and stability ' studies
for reasons indicated below.

(2) Various pseudopotential models are known to pro-
vide good descriptions of bonding in the alkali metals;
specific studies have included evaluations of binding ener-
gies, elastic constants, and phonon dispersion curves, '

the Gruneisen parameters and related properties, ' '
higher-order elastic constants, ' ' and comparisons of dif-
ferent crystal structures (the references listed are
representative rather than exhaustive). Studies involving
deformation of the alkali metals include computations of
the energy barrier for a bcc-fcc transition in Na (Ref. 23)
and the variation of the volume and Green's elastic modu-
li with pressure in the range of 0—10 kbar (Ref. 24); the
latter study neglected band-structure contributions to the
binding energy (which are included in the present compu-
tations). Among various pseudopotential models, use of
the Heine-Abarenkov and the Ashcroft potentials has
been popular; Sen and Sarker' carried out a "unified ap-
proach" pseudopotential study and concluded that the
Heine-Abarenkov potential gave better results than the
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Ashcroft for the alkalis. In particular, they showed that
the two parameter Heine-Abarenkov model potential used
with Taylor's dielectric function (i.e., the model for atom-
ic binding used in the present work) gave very good re-
sults for calculated properties of the unstressed alkali met-
als.

(3) For the bcc alkali metals, experimental data are
available for the elastic moduli and their pressure deriva-
tives at atmospheric pressure and for the pressure versus
volume relations (generated by both static and shock tech-
niques) over wide pressure ranges. Thus, a variety of
comparisons can be made between theory and experiment.
In addition, the heavier bcc metals undergo phase
transformations at high pressures and the lighter bcc met-
als transform at low temperature. This enables correla-
tions to be made between our theoretical phase stability
computations and the observed transformations [and, as is
discussed in a subsequent paper, the theoretical results can
(and do) provide insight into the nature and cause of the
transformations]. Finally (in view of difficulties associat-
ed with high pressure measurements) the computations
can (and indeed do) exhibit interesting behaviors not yet
observed experimentally.

II. THEORY

A. Elastic moduli

K(P) &0, p(P) &0, and p'(P) &0. (2)

The present work emphasizes the moduli x, p, and p',
although various other moduli have been employed in the
Hterature. In pioneering work, Horn and his associ-
ates studied crystal elasticity at finite strain from the
"viewpoint" of the Green moduli; this latter viewpoint
had since been popularly adopted in the literature. More
generally, elastic moduli can be defined according to

2
1 ~ Ebind

Qo Bq~ Bqg

where Eb;„d is the binding energy per atom, Qo is the
reference volume per atom, and the q, are generalized

The three elastic moduli K, p, and p,
' for a cubic crystal

in a current state of hydrostatic loading are defined2 ac-
cording to

1711+o22+o33 3K{ell+e22+e33) ~

~11 o22 21 (ell e22) &

~ (&&2=29 &i2 ~

where the Cauchy stress is cr,&, the Eulerian strain rate is
e,j, and the overdot above the cr;J denotes derivatives of
components on cubic axes (or indeed on any rotating
frame, when the current stress cr,j—— Pt3,&) —Thus, .K is
the bulk modulus and p and 1M' are the shear moduli in the
relation between the cubic-axes components of the Cauchy
stress increment and the rotationless strain increment
(evaluated relative to the current configuration under
pressure P) Stability . of the crystal at any stage of hydro-
static loading is assessed according to ' '2

(e')'
A,

C~2=K —
3 p —P, (3a)

(e'}
C~ ——1u'+ —,P 1+

where A, is the all-round stretch; the stretch A, of any fiber
is defined as its current length divided by its initial or
reference length. Simple examples of the scale function
are —,

'
(A, —1},(A, —1},or ink, . The first of these generates

the relations between the Green moduli C (wherein the

q, are specifically the Green strain variables) and K, p, ,
and p, viz. ,

Cii ——(K+ —", 1u+P)/I, ,

C12 ——(K —', P P)/A, —, —

C~ (Iz'+P)/A——, .

(3b}

The second yields the relationships between the stretch
moduli C (introduced into lattice mechanics by Macmil-
lan and Kelly ') and K, p, and p', viz. ,

C11 =(K+ 3 P)A, ,

C12 ——(K——,P, —P)A, , (3c)

PC~= p+ A, .
2

For the purpose of deriving computational formulas (and
performing computations of moduli using atomic models),
the nontensorial set of q„consisting of the edges of the
deformed crystal cell and their included angles, is a par-
ticularly convenient choice; for this case '

C11 =(K+ 3 PQ

C12 ——{K——,'P, —P}A, ,

C~ {p'+PQ, ——
(3d)

At zero pressure, Eqs. (3) of course all yield the
"familiar" results p' =C44, p = —,

'
(C11—C12 ),

K =7{Ci 1 +2C12 ), and the stability criteria [conditions
(2)] become equivalent to (what is commonly referred to
as) the Born "stability criteria" (i.e., C11+2C12 & 0,
Cii —C12 &0, and C~ &0}. Although various investiga-
tors have invoked the Born criteria in the assessment of
elastic stability of crystals under load, Milstein and
Hill ' have termed these criteria as "notional" and have
shown them to be inadequate for the assessment of stabili-

coordinates used to specify strain. Hill and Milstein ' de-
rived general relationships between sets of moduli C~ and
K„1M, and p'. If the coordinates q, are taken as the in-
dependent components of some general tensor measure of
strain and e(A, ) is a monotonic "scale function" with
e(1)=0, e'(1)=1 [normalizations that ensure coincidence
with the classical infinitesimal strain when the deforma-
tion is first order (see Refs. 29 and 30}]for cubic symme-
try,

(e') g A,e"
e

C]) =K+ 3p+ P ~
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ty of cubic crystals under hydrostatic pressure. In partic-
ular, the Born criteria are thoroughly relative (i.e., depen-
dent upon choice of strain variable q, in the definition of
the C ) and the application of these criteria yields large
quantitative and qualitative divergences from the stability
ranges determined by the rigorous criteria [given by the
conditions (2)].

Wallace32 employed "stress-strain coefficients" 8
which are closely related to the moduli of present interest,
and gave relations [Ref. 32, p. 37, Eq. (3.38)] which are
essentially equivalent to Eq. (3b). Wallace also presents
calculations of 8~ and their first derivatives with respect
to pressure (at zero pressure; i.e., A, = 1) for a pseudopoten-
tial model of aluminum. The emphasis in the present pa-
per is the domain of nonzero pressure, where the compu-
tational formulas are more complex and the physical phe-
nomena (particularly regarding elastic stability and phase
transitions) are more varied.

In Refs. 1 and 2, Milstein and Hill derived expressions
for calculating (as functions of all-round stretch A, ) the
pressure P(A, ), the bulk modulus «(A, ), and the shear
moduli p(A, ) and p'()(, ) for cubic Bravais crystals in which
the atomic bonds are modeled by pairwise interaction en-

ergies P depending only on current separation between the
atoms, viz. ,

P(A, )= — +5 P'(r ),

«(A, )= 2A, +5 P"(r ) —+5 P'(r }
9QgA,

p(A, ) = g[(5,—5,52)P"(r )]—P(A, ),
Qp

(4)

«(A)= g[(5t+25i52)p"(r )]+P(A) .

p, '(A, ) = g[5i52((}"(r')]—P(A, ),
Qp

where the summations are over pairwise interactions,
P'(r ) and P"(r ) are, respectively„ the first and second
derivatives of P with respect to r (the square of the mag-
nitude of the lattice vector r connecting two lattice sites in
the crystal), and the 5; are the components of r in the un-
stressed or reference state. The bulk modulus can also be
expressed as

in the literature; the essential elastic behavior was charac-
terized in terms of the roles of {i) a "potential range indi-
cator, " P (ii) the crystal structure, and (iii) the all-round
stretch A, . In Refs. 3 and 12, Milstein and Hill used their
bulk and shear moduli computations to determine the
stable ranges (and potential bifurcations at the range lim-
its) of the entire Morse-model family of fcc, bcc, and sc
monatomic crystals under constant hydrostatic compres-
sion and tension. While the Morse-function description of
crystals often yields realistic results (quantitatively), par-
ticularly for fcc crystals, and the bulk and shear
moduli computations have provided numerous insights
into the nature of crystal elasticity and stability under
pressure, ' ' this description also suffers from several
limitations. The most serious are that the model for
atomic binding is empirical and lacks a fundamental basis
in qiuintum theory, the crystal model exhibits "Cauchy
symmetry" [i.e., the moduli obey Eq. (6)], whereas most
real crystals do not, and, in general, the shear moduli of
bcc crystals are poorly represented [e.g., at zero pressure,
the ratio of shear moduli y, /p' does not exceed about 0.2
for Morse-function bcc crystals' whereas experimental
values for bcc metals are in the range of about 0.1 (for the
alkali metals) to 2.0 (for chromium)].

In view of these considerations, it is desirable to extend
the Milstein and Hill computations of the pressure-
dependent behavior of the moduli «, p, and p' (and associ-
ated domains of stability) by employing more realistic,
quantum-based models. Thus, in the present study, we
use the pseudopotential model {described in the following
section} to represent the binding energy Eb;„d in computa-
tions of the pressure P and the elastic moduli «, p, and p'
as functions of all-round stretch A, . The formulas used in
these computations are derived in the Appendix. This pa-
per deals exclusively with the bcc structures (since these
are the structures for which experimental data on elastic
properties are available}; a subsequent paper extends the
computations to include the fcc crystals, since these are
also important in understanding phase stability.

B. Pseudopotential model

In pseudopotential theory, a simple sp-bonded metal
has a binding energy per atom represented by

~bind ~fe +~es +Ebs

Thus, in the central potential model,

K—
3 p=p +2P, (6) . i/3

The three terms are the free-electron energy, the electro-
static energy, and the band-structure energy, respectively.
The free-electron energy can be written as

' 2/3

as given by Milstein and Hill [Ref. 2, Eq. (2.6)]; this can
be considered as a generalization of the Cauchy condition
Ciz ——C~ for central forces, in the sense that, at P=O,
K——', p =p' is equivalent to C~2 ——C~.

Milstein and Hill used Eqs. (4) to compute the pressure
and the bulk and shear moduli of the entire Morse-model
family of fcc, bcc, and sc monatomic crystals under arbi-
trary volumetric deformation. ' Apparently these were
the first theoretical computations of the shear moduli of
cubic crystals, over vade ranges of hydrostatic loading
(based on any reasonable atomic model}, to have appeared

z
Ef, ——Z a 0 +5.742—0

' 1/3

—1.477 0

—0.031 ln 0
—0.130

where z is the valence (taken as unity for the alkali met-
als) and 0 is the atomic volume. (The units of energy and
length are, respectively, Rydbergs and Bohr radii;
%=2m, =e /2=1, where e is the charge on an electron
and m, is the electron mass. ) The first term in Eq. (8) is
the core correction of the pseudopotential, where a is a
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constant dependent upon the choice of pseudopotential.
The kinetic energy and exchange interactions of a free-
electron gas are represented by the second and third
terms, respectively, and the final two terms are correc-
tions for electron correlation, as given by the Nozieres-
Pines formulation.

For a Bravais lattice, the electrostatic and band-
structure energies are represented as

The Heine-Abarenkov model potential Fourier trans-
formed is given by'

r

Smz sin(qR )
V(q) = — (1+M )cos(qR ) —u

Qq qR
(15)

where R and u are model matching parameters. The
parameter R represents the ionic radius and 2zu/R
represents the depth of the potential well within the ionic
radius. The constant a in Er, for this pseudopotential is
given by

a= R (2u+3) .Nl (16)

(9)

The first summation is over real lattice vectors r and the
second summation is over reciprocal-lattice vectors q.
(The primes on the sums imply that the origins are omit-
ted. ) Equation (9) has the mathematical property that the
numerical value of E +Eb, is independent of the value
of the parameter ri (Ref. 5, p. 365). However, the rate of
convergence of each of the summations does depend on ri;
thus it is desirable to choose ri so that the computational
time needed to evaluate E +E& is kept relatively low.
In the present computations, this was accomplished by
choosing a value of ri that caused the summations of each

2/4term [e ~ / " and F„(q)] in the reciprocal-lattice summa-
tion to converge at approximately the same value of q
(specifically, ri was approximately 0.05). The quantity
F„(q) is the normalized wave-number characteristic,
which can be written as

Q q Vz( )
Il(q)

8nz' &(q)
(10)

where V(q) is the Fourier transform of the selected model
potential and e(q) is the electron-gas dielectric function.
[F„(q) is related to the more usual energy wave-number
characteristic F(q) by F„(q)= (q Q/4nz )F(—q). ] For
the electron-gas dielectric function

e(q) =1+ II(q),8m

2

where

with

X(q)

1 — f (q)X(q)
Sm

2

(12}

X(q) = 1+ ln
kf 1 —gf 1+elf

2gf 1 —gf
(13)

The variable qf ——q/2kf, and the Fermi wave number
kf=(3m /Qz)'~ 3The quantity f(q} in Eq. (12) is in-
cluded to account for electron correlation and exchange;
following Taylor, 6 f(q) is taken as

f (q) =r}f 1+ 0.1534
(14)

mkf

Following usual practice (Ref. 5, p. 302), Eq. (15) was
multiplied by the damping factor exp( —0 03gf) in the
computations to dampen nonphysical oscillations in the
pseudopotential. (The addition of the damping factor im-

proves the convergence of the reciprocal space sum con-
siderably, but affects the elastic constants by at most a
few percent. )

The numerical values of R and u can be determined

by obtaining "best fits" of theoretically computed proper-
ties to the corresponding experimental properties. For the
present study, it was considered important that the densi-

ty and elastic properties of the theoretical models of each
metal be in good agreetnent with the corresponding exper-
imental values. Thus, the model parameters R and u

were determined by matching the experimental lattice
constant and obtaining a best least-squares fit to the three
zero-pressure elastic moduli (i.e., R~ and u were "adjust-
ed" so that the theoretically computed pressure is zero
when Q is equal to the experimental value of Qo and that
the best least-squares fit is obtained between the experi-
mental and the theoretically computed elastic moduli a, p,
and p' at P=O). (Computational details are provided in
the Appendix. ) Table I lists the values of u and R
determined in this manner, as well as the experimental
and theoretical values of the zero-pressure lattice parame-
ters ao and elastic moduli for the five alkali metals. It is
noted that the two-parameter-model formulation yields
exceBent agreement between the experimental and theoret-
ical values of the four quantities ao, a, p, and p' (at P=O).
Additional comparisons between theoretical and experi-
mental results are presented in Sec. III.

III. THEORETICAL RESULTS

In this section, we present the results of using the pseu-
dopotential model, described in the preceding section
(with the computational formulas derived in the Appen-
dix), to compute the binding energies, pressures, and elas-
tic moduli ~, p, and p' of the alkali metals over wide
ranges of compression and exp~sion. Computed values
of the binding energies and pressure derivatives of the
moduli of the bcc metals at zero pressure are listed and
compared with experimental values in Table II. Although
the experimental values for the derivatives of the elastic
moduli are based upon "room-temperature" data, while
the computations are for 0 K, the respective theoretical
and experimental values in Table II are remarkably close.
(It is to be emphasized that none of the quantities listed in
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TABLE I. Pseudopotential model parameters u and E. and computed (theor) and experimental
(expt) values of the zero-pressure lattice parameter ao and zero-pressure elastic moduli a, p, and p' for
the alkali metals; the experimental values are extrapolated to 0 K (Ref. 40). The considered crystal
structure is bcc.

(Bohr radii) (kbars)
P

(kbars)

Li {theor}
Li (expt)
Na (theor)
Na (expt)
K (theor)
K (expt)
Rb {theor)
Rb (expt)
Cs (theor)
Cs (expt)

—0.48409

—0.62905

—0.627 95

—0.73846

1.51162

2.175 77

3.108 60

3.38700

3.95406

6.5621
6.5621
7.9403
7.9403
9.8624
9.8624

10.5388
10.5388
11.4205
11.4205

135.2
141.0
75.2
76.7
37.2
37.7
30.2
31.7
22.4
23.2

11.7
12.0
7.38
7.0
3.95
4.0
3.34
2.5
2.47
2.1

119.5
117.0
64.2
63.0
29.4
29.0
23.4
22.0
16.6
16.1

Table II were used in determining the empirical model pa-
rameters; thus, although the empirical parameters were
determined from "harmonic behavior, " the model pro-
vides a good description of anharmonic behavior. ) In
fact, given the difficulties associated with determining
higher-order elastic moduli experimentally, it is our con-
tention that the experimentally based values of the deriva-
tives of the moduli are not to be considered superior to the
computed values.

Additional evidence for the validity of the model is pro-
vided by Figs. 1(a) and 1(b) which show experimental and
theoretical pressure-volume relations for the five alkali
metals in their bcc configurations; the experimental re-
sults include static compression and shock-wave cornpres-
sion measurements. (The plots are of pressure versus
all-round stretch A, ; to obtain the pressure-volume rela-
tions, the atomic volume Q is readily computed from the
stretch, i.e., Q=X Qo. ) The agreement in Figs. 1(a) and

TABLE II. Theoretical (theor) and experimental (expt) binding energies and derivatives of the elastic moduli (at zero pressure) for
the bcc alkali metals. The theoretical values are those computed in the present study using the pseudopotential model parameters list-

in Table I, and the experimental values are based upon data found in the respective references; all experimental values were deter-

mined at or near room temperature.

Li (theor)
Li (expt)
Li (expt)
Na {theor)
Na (expt)
Na {expt)
Na {expt)
K (theor)
K (expt)
K (expt)
K (expt}
Rb (theor)
Rb (expt)
Rb {expt)
Rb (expt)
Cs (theor)
Cs (expt)

Ebind

(Ry)

—0.574
—0.517'

—0.466
—0.460'

—0.389
—0.388'

—0.368
—0.370'

—0.344
—0.345'

3.58
3 33'
3.62b

3.71
3.83d

3.68
397
3.76

363
3.75b

3.77
3.65~

3.93b

3.72

dp/dP

0.268
0.100'

0.264
0.258'

0.268
0.251'

0.268
0.229

0.271

dp'/dP

1.74
1 35'

1.53
1.45

1.25
1.62'

d x/dP
(kbars ')

—0.022

—0.045
—0.019'
—0.37'

—0.10
—0.039'
—0.052'

—0.13
—0.009'
—0.026'

—0.19

d p/dP~
(kbars ')

—0.0081

—0.018

—0.023

—0.033

d a/dP
(kbars ')

—0.029

—0.054

—0.11

—0.13

—0.17

'C. Kittel, Introduction to Sohd State Physics, 5th ed. (VA'ley, New York, 1976).
bR. Groover, J. Phys. Chem. Solids 32, 2539 (1971).
'A. L. Jain, Phys. Rev. 123, 1234 (1961).
dR. H. Martinson, Phys. Rev. 178, 902 {1969).
'S. N. Vaidya, I. C. Getting, and G. C. Kennedy, J. Phys. Chem. Solids 32, 2545 (1971).
P. A. Smith and C. S. Smith, J. Phys. Chem. Solids M, 279 (1965).
ID. Sen and S. K. Sarkar, Phys. Rev. 8 22, 1856 (1979).
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FIG. 1. Comparison of theoretical and experimental
pressure-volume relations: (a) lithium, sodium, and potassium;
(b) rubidium and cesium.

FIG. 2. Pressures versus stretch for the bcc alkali metals: (a}
compression; (b) compression and expansion in the neighbor-
hood of the zero-pressure states.

1(b) between theory and experiment is excellent, particu-
larly for the "static compression" data, which, for all of
the metals, are very close to the theoretical results. This
agreement therefore provides further justification for use
of the pseudopotential model in computing the elastic
moduli of the alkali metals over wide pressure ranges. In
particular, it is a basic assumption in pseudopotential
theory for simple sp-bonded metals that the core states are
localized and small. . This small core approximation im-

plies that the cores interact only by Coulombic repulsion,
and that the core states are relatively unaffected by intera-
tomic phenomena (e.g., by the crystal structure or varia-
tions in interatomic spacing caused by changes in the
loading environment). The effective isolation of the core
states leads to the static core approximation used here,
that is, u and R~ are taken to be constant. In view of the
agreement between experiment and theory found in Tables
I and II and Figs. 1(a) and 1(b) this assumption appears to
be justified at very high compressions, as well as at zero

pressure. [It might be noted that the experimental data
shown in Figs. 1(a) and 1(b) are for room temperature,
whereas the theoretical results correspond to 0 K. How-
ever, static measurements for lithium, sodium, and potas-
sium, made over a pressure range of about 0—20 kbars at
liquid-helium temperatures, show the change in the ex-
perimental data (in passing from room temperature to 0
K) to be considerably less than the difference between the
static and shock data shown in Figs. 1(a) and 1(b)].

Investigators of pressure-dependent phenomena often
use various empirical or sexniempirical formulas to
represent their results analytically. Although eve have not
attempted to fit our results to such formulas, we present
some results in tabular form (see Table III) for the benefit
of investigators who might be interested in such endeavors
and to provide greater numerical accuracy than can be ob-
tained from graphs; we also present the results graphically
for ease of comparison ainong the various moduli and
metals. The graphs (Figs. 2—5) follow the format that
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TABLE III. Dependence of binding energy Eb;„d, pressure I', and elastic moduli ~, p, and p' upon stretch A, for the bcc alkali met-
als, as computed in the present work from the pseudopotential formulation described in Sec. II.

Metal

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

0.411029
0.468 509
0.504 654
0.526 612
0.539058
0.545084
0.546 754
0.545 463
0.542 165

0.330409
0.387719
0.424066
0.446 193
0.458 703
0.464 723
0.466379
0.465 117
0.461 923

P
(kbars)

1 010.75
559.298
304.573
159.155
75.5375
27.4277
0.00000

—15.2536
—23.2948

565.265
316.592
173.230
90.4544
42.7284
15.3980
0.00000

—8.39104
—12.6653

K

(kbars)

2 777.96
I 668.96
I 011.53

616.535
375.985
227.655
135.228
77.1821
40.5684

1510.52
931.851
573.717
351.921
214.296
128.650
75.1994
41.7923
20.9394

p
(kbars)

90.9813
68.6026
50.7657
36.8883
26.1768
17.9593
11.6976
6.961 89
3.409 38

4I.8246
35.5475
27.7051
20.7598
15.1585
10.7743
7.377 79
4.760 17
2.752 84

p
(kbars)

537.294
445.594
354.5SO

275.534
210.937
159.654
119.543
88.4079
64.3344

182.973
178.126
157.573
131.590
105.979
83.2692
64.1916
48.6367
36.1710

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

0.264206
0.315999
0.349555
0,370293
0.382 125
0.387 843
0.389417
0.388 222
0.385 217

263.504
151.188
84.2322
44.5045
21.1552
7.63704
0.00000

—4.134 88
—6.198 77

671.356
428.944
272.301
170.911
105.611
63.8164
37.2285
20.4258
9.987 14

10.2548
13.3S58
12.4042
10.1112
7.71583
5.637 75
3.95427
2.628 34
1.597 21

49.2477
55.5129
55.9580
51.5015
44.4947
36.7799
29.4218
22.9076
17.3827

Cs

0.70
0.75
0.80
0.85
0,90
0.95
1.00
1.05
1.10

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

0.245 036
0.295 590
0.328 544
0.349001
0.360705
0.366 369
0.367 928
0.366 746
0.363 777

0,232251
0.277 914
0.307 951
0.326 774
0.337 636
0.342 929
0.344 393
0.343 278
0.340470

210.106
121.368
67.9751
36.0435
17.1676
6.201 58
0.00000

—3.351 48
—5.013 64

148.596
86.54 30
48.8407
26.18 98
12.57 20
4.S6948
0.00000

—2.488 16
—3.728 65

528.139
340.650
218.147
137.855
85.571 6
51.8192
30.2170
16.S14 1

7.91440

369.039
238.855
154.546
98.8951
62.1378
38.0279
22.3653
12.3012
5.91761

5.446 26
9.473 35
9.56499
8.108 59
6.328 15
4.696 58
3.340 53
2.25742
1.40742

2.052 35
5.468 30
6.286 85
5.695 00
4.600 33
3.465 35
2.468 14
1.650 73
1.002 22

29.3875
36.7547
39.7704
38.3033
34.1106
28.8019
23.4030
18.4431
14.1345

26.0724
26.6352
27.37I8
26.3011
23.6653
20.2119
16.5696
13.1252
10.0664

each (a) figure presents the results for all five alkali metals
over a large range of compressive stretch while each (b)
figure "enlarges" the results in the neighborhood of the
zero-pressure (A, = l) state [the ordinate scales of the
respective (a) and (b) figures differ by about an order of
magnitude]. The (b) figures also include a range of hydro-
static expansion (A, ~ l). As noted by Milstein and Hill,

"states of pure hydrostatic tension can be approach locally
near cracks and other stress raisers. Since controlled ex-
perimentation with this type of loading is fraught with
difficulties, a special significance is attached to the
theoretical moduli. "

A variety of interesting behaviors are observed in Table
III and Figs. 2—5. At A, = l, of copse, the pressures are
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FIG. 5. Shear moduli p' versus stretch for the bcc alkali met-

als: (a) region of compression; {b) spanning regions of compres-

sion and expansion near the zero-pressure states.

metal except Li, the onset of elastic instabihty is found to
be coincident with s(A, ) =0, as is also discussed in detail in
a subsequent paper.

It should be emphasized that each of the present pres-
sure and moduli computations was carried out (using the
pseudopotential model described in the preceding section
and the expressions in the Appendix) for the lattice in a
current state of compression or expansion, rather than
from series expansions based on higher-order moduli com-
puted for the reference (A, = 1) state. In this connection, it
is noted that all of the "modulus versus A,

" plots exhibit
significant departures from linearity. Thus, the results
shown graphically in Figs. 2—5 could not have been close-
ly approximated by use of series expansions based on the
higher-order elastic moduli C;Jk evaluated in the reference
state; in fact, given the various shear moduli maxima, ex-
pansions including even the fourth-order moduli in the
reference state,

C(gkt =(() &b' s/~4~9~()(h()@4.=(

would provide grossly inadequate descriptions of the )M(A, }
and p'(A, ) functions in Figs. 4(a) and 5(a).

A classical problem in crystal elasticity is: "to what ex-
tent can elastic properties be represented accurately by
central-force models of interatomic interactions)" This is
also a problem of practical importance since central-force
models are the simplest to deal with mathematically and
computationally. Quantitative considerations of this
problem are usually restricted to either the general elastic
properties in the unstressed state of the crystal or to just
the pressure-volume relationships. For example, it is well
known that, in general, a central-force model can
represent accurately only two of the three elastic moduli
of an unstressed cubic crystal since the model yields

C&2 ——C44, whereas the moduli of most real cubic crystals
exhibit departures from this relation; the degree of depar-
ture provides information about the relative importance of
noncentral forces in the particular crystal. With the aid
of Eq. (6) and our pseudopotential computations, we can
extend such considerations to general elastic properties of
the bcc alkali metals over a wide range of hydrostatic de-
formation. According to Eq. (6}, only three of the four
quantities )t, p, p', and P vary independently in any
central-force model, and thus the general elastic properties
of a cubic crystal under pressure can be accurately
modeled by purely central forces between atoms only if
the ratio (p'+2/3p, )/(~ 2P) for t—he crystal is close to
unity. Deviations of this ratio from unity must be owing
to noncentral-force contributions to the binding energy,
which, in the present pseudopotential computations, arise
from the volume-dependent electron-gas and electrostatic
contributions. Within the range of compressive deforma-
tion represented in Figs. 1(a) and 1(b) and Figs. 2(a), 3(a),
4(a), and 5(a), this ratio tends to be closest to unity in the
vicinity of the unstressed state (A, = 1). For Li, throughout
this range, the ratio (p, '+2/3p)/(a. 2P) remains —relative-
ly close to unity (i.e., within about 0.8—1.0), as is seen in
Fig. 6(a); Na starts (near its maximum) at about 0.92 at
)(, =1, initially remains relatively flat, and then drops to
below 0.6 at A, =0.7; K, Rb, and Cs all start above 0.8 at
A, = 1 and decrease monotonically to below 0.4 at A, =0.7.
Thus, in general, the deviation between the pseudopoten-
tial elasticity computations and any purely central-force
computations becomes greater at very large pressures,
with the effect more pronounced for the heavier alkali
metals. When viewed over a wider range [Fig. 6(b)], the
function (p, '+2/3p)/(a 2P) is seen to u—ndergo various
oscillations, which, in part, can be associated with the os-
cillations in the functions p, (A, ) and p (A.), mentioned ear-
lier.

A central-force model was used. by Milstein and Hill
in the first atomistically based computations of shear
moduli of crystals under hydrostatic loading. In particu-
lar, they considered all atoms in the crystal to interact via
a Morse function,

~( ) D (
—2a(r —ro) —a(r —po)

where D, a, and ro are empirical parameters that can be
determined from experimental data. Although three pa-
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a lower limit to the numerical value of P, for which the
behavior of the crystal, in a sense, approaches that of a
continuum. ) The intermediate values of P (i.e.,
1nP=aro =3 to 8} provide the most realistic models of ac-
tual crystals.

For the alkali metals, the Morse model with values of
inP in the neighborhood of 3 provides an excellent
description of the a(A, ) and P(A, ) behavior; this is seen in
Fig. 7, which compares the pseudopotential and Morse-
model computations of the pressures and bulk moduli
("normalized" by the respective zero-pressure bulk modu-

li). [In an earlier study (see Table III of Ref. 39), Milstein
determined specific Morse-parameter values for potassium
(D=0.11375X 10 ' erg, aao ——2.6061, and ro/ao
= 1.21963, with ao ——5.344 A), based upon the experimen-
tal values of the unstressed lattice parameter ao and the
elastic constants C» and Ci2,' thus for K, based on these
values, lnP=3. 18, in excellent agreement with the values
of inP that provide accurate descriptions of the pressure
and bulk modulus versus stretch. Note that the three ad-
justable parameters in the Morse function can be adjusted
independently so that the crystal has the correct (i.e., ex-
perimental) values of unstressed lattice parameter, bulk
modulus, and shear modulus p or Ju, ', the functions
a(A, )/a(1) or p(A, )/p'(A, ) then depend only upon the value
of the one parameter InP. ] Figure 7 also points out the
interesting result that the "normalized" pressure curves
are almost the same for all of the alkali metals (as are the
bulk modulus curves}, suggesting "almost" universal func-
tions for P(A, )/~(1) and ~(A, )/a(l) among the alkalis; how-
ever, for the normalized shear moduli, no such "almost"
universal curves [i.e., p(A, )/~(1) or p'(A, )/~(1)] exist as is

0.6 0.8 ].0 l.2
STRETCH X

FIG. 6. Comparison of the elastic behavior of the bcc alkali
metals (as described by the pseudopotential model) with that of
any cubic crystal model consisting only of pairwise central-force
interactions between atoms. For the "pairwise" model, the ratio
represented on the ordinate scale would be unity throughout. (a)
In compression, (b) over a large range of deformation, including
compression and expansion.

1

20

rameters are needed to specify the Morse function, they
showed analytically that, for a given crystal structure,
the quantities P(A, )/~(1), ~(A, )/~(l), p(A, )/x(1), and
p'(A, )/~(1) depend on only one such parameter, P=e
That is, for a given crystal structure and a given value of
P, there is a unique function P(A. )/a(l) versus )I,, likewise
for a{A,)/z(l) versus A, , and so on. [The same is true for
the quantities P(A, )/P(Q), «(A, )/x(Q), p(A, )/y(Q), apd
p'(A. )/p'(Ao), where Q is any particular value of A, at
which the pressure and the three moduli are nonzero. ]
They interpreted the Morse parameter P as a measure of
the "effective range" of the potential P, since larger values
of P correspond to shorter range, steeper functions, and
smaller values correspond to longer range and shal1o~er
functions. {As P becomes large, the behavior of the crys-
tals approaches that of a collection of "hard spheres, "
with nearest-neighbor inta~tions only. Also, there exists

)0

0
&I

0.7'
l

0.8
STRETCH, X

1

0.9
8

I.O

FIG. 7. Comparison of the Morse function (Ref. 1) and
pseudopotential-model computations of the variations of the
pressures and bulk moduli of the alkali metals in compression.



33 PSEUDOPOTENTIAL THEORETICAL STUDY OF THE ALKALI METALS. . .

0.3

Rb

/

o.z ~ X4 Na

/Cs
~l

l ~

O. l

0
0.7

———PSEUDGPOTEN 7 taL
MORSE FUNCTION

I

0.8
STRETCH X

0.9 l.0

FIG. 8. Morse function (Ref. 2) and pseudopotential-model
computations of the shear-moduh ratios in compression.

evident from Figs. 4(a) and 5(a).
Figure 8 shows that the Morse model, with lnP=3, also

gives good representation to the shear moduli of the bcc
alkalis near A. = 1, and predicts that the ratio p/p, initially
increases with pressure, in qualitative agrrmnent with the
pseudopotential computations. However, despite this
agreement and the Morse model's excellent representation
of the pressure and bulk modulus in Fig. 7, divergences
between the representations of the shear moduli in the
Morse and pseudopotential models are inevitable [in view
of Fig. 6(a)], particularly at higher pressures. These diver-
gences are indeed evident in Fig. 8: while the ratio p, /p'
for the Morse-function crystals increases slowly and
monotonically with increasing pressure, for the pseudopo-
tential crystals it increases more rapidly with pressure ini-
tially, but then passes through a maximum and drops
below the Morse-function values. Figure 8 shows that, in
the range of compression 0.7&A, &1, among the bcc al-
kalis, the shear moduli of Li are best approximated by the
Morse model, in agreement with Fig. 6(a), which shows
the general elastic behavior of Li to come closest to that
of a crystal with purely central forces between atoms (ir-
respective of the particular model for the central forces).

The maxima observed in Fig. 8 are due to the "oscilla-
tions" in p, (A, ) and JM'(A, ), as discussed earlier. In the
Morse-model computations, the functions p(A, ) for the
complete family of bcc crystals had the same qualitatiue
behavior as in the pseudopotential computations; i.e.,
there exists a positive local maximum, a zero, and a nega-
tive minimum. Thus the general behavior of }M(A, ) appears
to be a "structural phenomena" (i.e., not dependent upon
the specific details of the pseudopotential or upon the
presence of noncentral-force contributions to the binding
energy), although the quantitative details are certainly
model dependent. For example, in the Morse-function
bcc crystals, the local maximum in p(A, ) was always in ex-

pansion (A, ~ 1), whereas in the present computations, it is

always in compression; there are also important differ-
ences in the locations of the zeros of p, (A, ), leading to
differences in the predicted stable ranges; this is discussed
at greater length in a subsequent paper. [See Ref, 2, p.
227, for a discussion of the roles of specific interatomic
interactions in shaping the p(A, ) curves for bcc crystals. ]

IV. SUMMARY AND CONCLUSIONS

This paper includes the following results.
Formulas were derived for computing the pressure, the

bulk modulus ~, and the shear moduli p and p,
' for hy-

drostatically loaded cubic crystals in which the atomic
binding is described by a pseudopotential model. (Previ-
ously, Milstein and Hill' presented formulas for comput-
ing these moduli, but for atomic binding consisting of
pairwise interaction energies P depending only on current
separation between the atoms; their formulas had not ap-
peared in the subsequent literature. } The derivations of
the present formulas, which are considerably more com-
plex than those of Milstein and Hill, made use of their re-
lations between the bulk and shear moduli, ~, p, , and p, ',
and the M-moduli CJ under hydrostatic loading. i'

A two-parameter pseudopotential model was selected
for the alkali metals, and the numerical values of the two
parameters were determined for each metal (Li, Na, K,
Rb, Cs) by (i) matching the theoretical and experimental
lattice parameters and (ii) obtaining a best least-squares fit
between the theoretical and experimental values of the
three zero-pressure elastic moduli (atmospheric and zero
pressure are taken as synonomous here). The model em-

ploys the Heine-Abarenkov local model potentials and the
Taylor approximation for electron correlation and ex-
change.

The binding energies and the first and second deriva-
tives (with respect to pressure) of the elastic moduli ~, p,
and p' were calculated at zero pressure (as, of course, were
the lattice parameters and three elastic moduli}; the com-
puted values are in very good agreement with the respec-
tive experimental values (which were available for all but
the second derivatives of the shear moduli). In contrast
with results based on semiempirical models (e.g., Morse,
Lennard-Jones, Rydberg9) or empirical models (e.g.,
Johnson' and Baskes and Melius") often used in crystal
behavior studies, the accurate calculation of at least nine
distinct material properties using only two empirical pa-
rameters is remarkable. In addition, we obtain excellent
agreement between theoretical and experimental pressure-
volume relations.

The pseudopotential model was used to determine the
elastic moduli ~, p, , and p' (as well as the pressure and
binding energy) for each of the alkali metals in its bcc
structure over wide ranges of hydrostatic deformation,
and patterns in the observed behavior were characterized
in terms of the elements' positions in the periodic table.
For example, over wide ranges of pressures, at a given
value of stretch, Li is the "stiffist" and Cs is the "softest, "
irrespective of which modulus (~, p„or p'} is used to
characterize "stiffness" or "softness".

Comparisons were made between the general elastic
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behavior of the bcc alkali metals under pressure, as
described by the pseudopotential model, and that
described by any model in which atomic binding occurs
solely by pairwise central forces between atoms. For the
latter, the well-known Cauchy condition (Ci2 ——C44, for
the elastic constants for unstressed cubic crystals} can be
generalized to a —

3 p=p'+2P, for cubic crystals under

hydrostatic load, as shown by Milstein and Hill. This re-
lation conveniently allowed us to identify the regions of
deformation over which the elastic behavior could, in

principle, be matched by a central potential model.
Specific comparisons were also made among the Morse-
function and pseudopotential model computations. When
compared with the pseudopotential computations, the
Morse function gives good representations to the pressures
and bulk moduli over wide ranges of pressures, and to the
shear moduli near A, = 1, but important divergences occur
in the shear moduli at large pressures (i.e., where instabili-
ties occur).

In a subsequent paper, (a) the bcc computations are ex-

tended to magnitudes of compression and dilatation where
lattice stability or cohesion is lost; (b) the pressures and
elastic moduli are computed for the alkali metals in the
fcc crystal structure over the full range of compression
and expansion; (c) the domains of elastic stability are
determined for each metal in both the bcc and fcc config-
urations; (d) special attention is focused upon the points of
instability, and for each element in each crystal structure,
identifications are made of the specific modes of deforma-
tion by which the (previously} stable cubic crystal
transforms to the noncubic structure at the onset of each
instability; (e) differences in Gibbs free energy between the
fcc and bcc structures are computed over wide ranges of
pressure; (f) the Gibbs free-energy and elastic stability
computations are used to make predictions of phase sta-
bility and correlations with experimental results.

APPENDIX: COMPUTATIONAL
TECHNIQUES AND FORMULAS

a = —,(Cii +2Ci2+2P),
1p= z«» —Ci2 —P»

I =C
(A2)

Equations (A2} are equivalent to Eqs. (44) in Ref. 4, and
the moduli C,J are equivalent to the M moduli, as defined
therein; introduction of the coefficient a;aj/Q in Eq.
(Al} ehminates the factor A, that appears in Eqs. (44) in
Ref. 4. [Note that the C&J defined by Eq. (Al) are identi-
cal to the Green moduli of Eq. (3b} at zero pressure, but
differ under nonzero pressure, as is readily seen by com-
paring Eqs. (A2) and (3b)]. The stress components that
act on the faces of the crystal cell can be written as

+i BEbi d

Q Ba;
(A3)

where the a; and a; are as defined above. Equation (A3)
applies to an orthorhombic (as well as cubic) crystal cell;
for i =1,2,3, the cr; are normal stresses acting parallel to
the ith cell edge and for i =4,5,6 the o; are shear stresses.
(The shear stresses are zero, but their derivatives, taken
with respect to their "shearing angle, " e.g., Bcr4/Ba4,
are not. ) For hydrostatic loading, a i

——a2 ——a 3 and
cri ——ni ——a'3 —— P. The p—rocedure that we employed was
to compute the elastic moduli Cii, Ciq, and C44 and the
pressure using Eqs. (Al} and (A3) and then to substitute
these quantities into Eqs. (A2) to obtain ~, p, and p, '. In
order to carry out the computations, we derived analytical
expressions for the pressure and C,J as functions of lattice
par~~eters a ~, a2, and a3', because we intend to carry out
future computations for cases of nonhydrostatic loading,
the derivations and final expressions are applicable to
orthorhombic crystal structures (which, of course, reduce
to cubic when ai ——ai ——aq). Since the analytical expres-
sions (which are derived in the following paragraphs) tend
to be long and complicated, we considered it important
also to do "numerical checks" using standard relations for
numerical derivatives, viz.

Homogeneous strains of a crystal lattice can be speci-
fied by any six parameters, q, (r =1, . . . , 6), which de-
fine the geometry of a deformed cell. Elastic moduli C„
can then be defined as

bind

Ba;

Ebjgd(ai ++a ) Ebjnd(aj +ai )

2ba;
(A4}

C„=1 /Q, (B'E„„,/Bq, Bq, );
the C„are dependent upon both the level of strain and
the choice of geometric parameters q, . Hill and Milstein
derived expressions relating the pressure I' and moduli x,
p, and p' to the moduli C for different sets of parame-
ters q, [see also Ref. 3, Eqs. (6.12), (6.13), and (6.14),
which give these relations for the "Green, " "stretch, " and
"M" moduli, respectively]. For computational purposes,
it is convenient to define a set of moduli as

and analogous expressions for B Eb;„d/Ba; Baj. With
high-precision computation, ha; was made small enough
to obtain numerical accuracy to within six to ten signifi-
cant figures. Although this method of numerical dif-
ferentiation is straightforward it has the disadvantage of
very long computation times when a number of moduli
are to be evaluated, and thus most of our computations
were performed using the analytic expressions derived
below.

The components of the pseudopotential binding energy
of a crystal can be arranged as

2
O'i O'J ~ EbInd

Q BaBa,.
* (Al} Eb;„d——E„(Q)+QE, (r, Q)+ QEq(q, Q) . (A5)

where a], a2, and a3 are the cell edges and a4, a5„and a6
are their included angles; a; =a; if i = 1,2,3 and a; =1 if
i=4,5,6 With this de. finition, for a cubic crystal under
arbitrary pressure,

The first term depends only on atomic volume; the
summations represent real and reciprocal space summa-
tions taken ovex atom positions r and reciprocal lattice
vectors q, respectively. Both summations depend on crys-
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=E„(n)+QE„(r,n) . (A6)

tal structure (i.e., the geometric arrangement of the atoms
and the level of strain) and also on atomic volume Q.

The real-space part of the binding energy Eb;„z can be
defined as

BE/ a an'
aa; BQz aa;, ar z aa;

substituting Eq. (A6) into (A7) yields

BEb.d a&. an' a~, an' a&. ar'
+ +

an aa;, BQ aa; Br

(A7}

This part of the binding energy is a function of the atomic
volume Q and the lengths of the atom position vectors r.
The derivatives of Ef„„dwith respect to the a; are

(AS)

Similarly, for the second derivative of the real-space part
of the binding energy we have

a'E,'...
aa;aaj

BQz BQz BE„B anz

(BQ ) aaj aa; BQz aaj aa;
J

BQ BQ a ~ arz arz

(an' )' aa; aa, (ar')' aa, aa; an'ar'

aE, a 'anz aE, a ar'
+ an' aa, aa,

+ ar' aa, aa,.

an ar ar' BQ'

aaj aa; aal aa;
+

(A9)

as (ai X az)0= (A10)

leads to
2 2 2

2
a ~a2a20 = [1+2cosa4 cosas cosa6

n

Considerable simplification was obtained by writing the
derivatives in terms of Q and r, since these quantities
are conveniently related to the a; as follows. Writing

r =;Ja;aj cos a;J (A16)

where a& J is the angle between a; and aJ (for example, for
1 =j, a&J ——0, and for i=1 and j=2, a;J=a6). The
derivatives of Q and r with respect to the a; are found
from Eqs. (Al 1) and (A16):

BQ 2Q ar
aa; a;

'
aa;

—cos a4 —cos as —cos a6],2 2 2 (Al 1)
a an'

aai aai
2nz a arz

aa, aa,
=21i,

where n is the number of atoms per crystal cell. For a
Bravais crystal the r may be represented in terms of a
combination of the crystal Bravais vectors b; as

a an'
aaz aa~

4n' a ar'
aiaz

'
aaz aa&

=0, (A17)

r= pl ibi+ nizbz+ pisbs, (A12)

b =&.ii+& 2~2+&;33 (A13)

where the 8,J are constants determined by the crystal
structure and the crystal cell being considered. (For a
conventional fcc cell, for example, one could write bi ——ai,
bz=0. 5ai+0.5az, and b& ——O.Sai+0.5as. ) Substituting
Eq. (A13) into Eq. (A12}gives

where the ni; are integers. Each of the Bravais vectors
may in turn be represented by a combination of the vec-
tors a; as

an a anz
=0,

aa4
'

aa4 Ba4
I

= —20

a; BEb;„d
CT 0 Ba;

i =1,2, 3 (A18}

ar a ar=—21zlsaza s,
a4 aa4 aa4

Consider the real-space contribution o,' to the normal
stress cr;,

r =I )a)+ l2a2+ 13a3,

where

1;= g rnid Bp
.

(A14)

(A15) (A19)

substituting Eq. (AS) and the first two equations of (A17)
into (A18}yields, after simplification,

aE„aE, a,
'

1,
' aE,"=an+ & an+n &,' a,

'

(The convention used in this section for summations over
indices is that each index runs over the values 1, 2, and 3.}
Then

The real-space contributions C~~, C~2, and C44 to the
moduh Ci&, Ciz, and C44, respectively, are [from Eq.
(Al)]



2778 DANIEL J. RASKY AND FREDERICK MILSTEIN

2 2 2ul i)Ebid C„~1+2 ~End
C

1 ~Eb d
(A20)

substituting Eq. (A9) and the appropriate equations of (A17) into (A20) yields, after simplification

a2E„a2E„u 1 il aE, && a2E, u 1
i41 1 aE, a2E„

aE„a'E„OE, a'E. .. , , 1 a'E, u ln2, ili'2 1 aE, g'E,
r 0 r 0 , r2 r dr Br2

t'BE„BE„a2a3 12l3 1 M, d E„

(A21)

Equations (A19) and (A21) thus give the analytic form for
the real-space contributions to the normal stresses and
elastic constants; we now develop equations for the
reciprocal-space contributions o t and Cia, where

o; =o,'+ o,'J and Ctj
——C,

"+jCf& Th.e reciprocal-space part
of the binding energy is

EL„,= QE, (q, n),
q

+
q = g n [(b'1 )(bk bk) —(b "bk) ]

4e ~tjk 2
J J J

E,j,k

+E(J/, ng nJ [(bJ bk )(b; .bk )

—(bk'bk }(1"1J)]

w~ere

(A27)

and the exyressions defining cr& and Ctsj are the same as
Eqs. (A18) and (A20) except that the superscript q re-
places the superscript r Also. , the derivatives of Ef;„d
with respect to the a; are the same as Eqs. (A8) and (A9},
but with E„and its derivatives =0 and with r replaced by
q throughout. Once the derivatives of q2 with respect to
the a; have been determined, explicit equations for the crf
and the CP~ can be written. The relations between q and
the a; (which are more complicated than those between
the r and the a;) are developed as follows.

Reciprocal-lattice vectors q are defined by

0 if i =j or j =k or i =k,
1 if i&j and j&k and i&k . (A28)

From Eq. (A13),

1; bj ——+B;,Bj„a,a„cos(a, „);
t, u

substituting this into Eq. (A27) and simplifying yields

4n
q =

2 g [a,a„cos(a, „)a„a„cos(a„)K~„],(A29)
t, u, v, m

q ~1P1+ 2P2+ ~3P3

where the n; are integers and p; are given by

(A23)
nI+

stjk (~PBj~B&Bhu BjtBkuBjb Bkw }
i,j,k

=2~ =2~ =2~
pl —— 12Xb3, p2 —— 13Xbl, p3 — biX12,

ninj(pg pj) .2
(A25)

Consider the quantity

and the 1; are the crystal Bravais vectors defined by Eq.
(A13). Froin Eq. (A23),

+n; nj(BpBk~B~bB~ Bk1Bk„B,„B—J~ )

(A30)

It can be seen from Eq. (A30} that K~„=0 when
t =u =v =w. Also for an orthorhombic crystal cell
a, a„=0 when t&u, and a„.a =0 when v&w; this signi-
ficantly reduces the number of terms in Eq. (A29). In
particular, for an orthorhombic crystal cell,

2= 2 2 2 2[+ 1+ 2(+1122++2211}+~ l~ 3(+1133++3311}
Q

4pi.p2 —— (12Xb3) (b3X11),0 ++ 2+ 3 (+2233 ++3322 )]2 2 (A31)

which may be re&written as

pl p2 —— [(b2.b3)(b1.13)—(13.13)(bi.b2) ] .0 (A26)

If each of the p;.pz terms in Eq. (A25) is replaced by a
similar expression, me obtain

(A32)

where i,j,k =any order of 1, 2, 3, and

The derivatives of q with respect to the a; for values
of i of 1,2, or 3 are, from Eq. (A31),

8' aJak
(+jjkk++kkjj } ~Qa-
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Bq2 24m a2a3 B Bq(K +K ),
Q1 Ql O Q1 Q2 Q1

(A33)

For i =4, 5, or 6, the more general expression, Eq. (A29), must be used because, in taking these derivatives, the crystal
cell is "sheared away from" the orthorhombic structure. The results for i =4 are

Bq 4rr

Ba4 Q
a2a3[a 1(K1123+K1132+K2311+K3211}

+a 2(K2223+K2232+K2322+K3222)+ 3(K3323+K3332+K2333+ 3233)l (A34)

B Bq' SH 2 2
2 [a la 2(K1122+K2211)+a la 3(K1133+K3311)

a4 a4 Q
J

+ 2 3(K2233+K3322)+ 2 3(K2323+K2332+K3223+K3232) ) '2 2 2 2 (A35)

Finally, we substitute Eqs. (A32)—(A35) into the equations that are the reciprocal-space analogs of Eqs. (AS} and (A9)
which are then substituted into the reciprocal-space analogs of Eqs. (A18) and (A20}. This procedure yields

4H 2 2 (&&ikk+Klag&) BEsa&=— Q ~ Qk
q Bq

K„„+K„„)' 1 BE, B'E, SHa', a', (K„„+K„„)B'E,
2 q Bq Bq Q2 q BQBq

'

4lr a la 3 (K1133+K3311) B'E,
Q2 q BQBq

+K„„) 1 BE, B'E,
q Bq Bq2

q

—err a 2a 3 (K2233+K3322) B'E
Q2 q BQBq

162r a la2a3 (K2233+K3322)«ll334224
Q' 2

for the reciprocal-space part of the normal stresses, where i,j,k=any order of 1, 2, 3. For the reciprocal-space part of
the elastic constants,

121r'a 2a 3 (K2233+K3322) BEq

Q3 q Bq

16~4a42a43 (

n'

1 BEq 2 2
Cf4 3 g [a la2(K1122+K2211)+ la3(K1133+K3311)

Q3 q Bq
(A37)

+a 2a 3 (K2233 +K3322 )+a 2a 3 (K2323 +K2332 +K3223 +K3232 ) l
2 2 2 2

4n a2a3 1 1 BE BE
+ 3 g 2 + 2 [a 1(K1123+K1132+K2311+K3211)

q q q Bq

+a 2 (K2223 +K2232 +K2322 +K3222 )
2

+a 3(K3323+K3332+K2333+K3233)]2 2

The total normal stress cr;=o,'+crf (=—P for a cubic
crystal) is then computed from Eqs. (A19) and (A36) and
the elastic moduli C&&

——C&&+C$ are computed from Eqs.
(A21) and (A37). The real-space lattice sum is over values
of r determined from Eq. (A16) and the values of q in the
reciprocal-space sum are computed from Eq. (A31). The
lattice-summation technique is described in detail in Ref.
35.
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