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%e derive the anisotropic pair interaction for binary spin-glass systems for the case where the ter-

nary site which scatters electrons by means of the spin-orbit interaction is a magnetic site character-
ized by spin-split virtual bound states. %e find that there are two distinctly different types of aniso-

tropic Dzyaloshinsky-Moriya couplings. One depends only upon the magnitude of the third mag-
netic moment and has the vector coupling form familiar from ternary spin glasses:

(k; Xk;) (S;XSJ). The second type depends upon both the magnitude and direction of the third

moment and has the coupling structure (k; Xkt ).Sk (S;X SJ ) Sk. We define spin-dependent critical
distances R; in terms of which the coefficients of the two anisotropic interactions, acting relatively

independently, take on preasymptotic or asymptotic forms according to whether the average inter-

particle spacings are less than or greater than the R,—.These critical distances are themselves vari-

able, depending upon the separation of the virtual bound-state resonances from the Fermi surface.
%hen the resonances are sufficiently close to EF, there will be large regions ~here the interactions
exhibit preasymptotic behavior (1/R ). If the resonances are sufficiently far from EF, the interac-
tions quickly reach their asymptotic forms. In the practical cases of CuMn and AuFe, we find that
the critical distances are of the order of a nearest-neighbor distance so that the interactions fall off
as 1/R . This feature has great consequence in calculations of the macroscopic anisotropy energy.

I. INTRODUCTION

Experimental data showing the infiuence of added im-
purities with spin-orbit coupling on the behavior of spin
glasses led two of us to propose a model of anisotropy
based on the Dzyaloshinsky-Moriya mechanism. ' In
this model, the s-d mixing interaction V~ at a nonmag-
netic impurity site enhances the l =2 component of the
conduction-electron wave function about the site and
gives rise to a virtual bound state (VBS). This mixing en-
ables the conduction electron to feel more strongly the
intra-atomic spin-orbit force within the impurity. The
electron in a VBS is described by Friedel wave functions.
An effective coupling between localized moments, mediat-
ed by the conduction electrons, is obtained by calculating
to third order the change in energy of the electron gas due
to spin scatterings at the magnetic sites and spin-orbit
scattering at the nonmagnetic impurity site, ' and is of the
Dzyaloshinsky-Moriya (DM) form. Of considerable in-
terest is the effect on the DM interaction of a magnetic
moment on the terrmry site. In particular, one would like
to understand the origin of anisotropy in binary spin
glasses for which all three sites are identical. In AuFe,
for example, one may conceptualize a "AuFe Fe " system
in the sense that iron ions are acting as their own ternary
impurities, modifying the wave function by s-d mixing
and providing both spin-orbit and spin-spin scattering.

One must at the outset distinguish two possibilities.
For transition-metal spin-glass alloys such as CuMn and
AuFe there are spin-split magnetic VBS's, so that we
have to consider the effects of spin-orbit scattering on

spin-split states. The second case is that of alloys in
which the magnetic iona interact with the conduction
electrons through nonmagnetic VBS's; e.g., in noble-metal
rare-earth alloys. Then we consider the spin-spin and
spin-orbit scatterings on an equal footing.

In this paper we confine ourselves to the transition-
metal alloys: the case of the magnetic VBS. The follow-
ing paper (hereafter denoted as II) will consider the rare-
earth case. We use the Hartree-Fock approximation so
that the effect of the third moment is built into the
zeroth-order Hamiltonian Ho The condu. ction electrons
are described by spin-polarized Friedel wave functions de-
fined with spin-dependent phase shifts. We find that in
the binary spin-glass alloys there are two different
Dzyaloshinsky-Moriya couplings, one depending only
upon the magnitude of the third moment and the other
depending upon both its magnitude and direction. Specif-
ically, the interaction has the form

E-a(R~ XRa) (Sz XSa)

+p(Rg XRa) ST (Sg XSa) Sr ~

where Sr is the spin of the third moment. As we will
show, in the limit as the magnetic moment on the third
site vanishes, the coefficient P goes to zero while the term
in a reproduces the "nonmagnetic" result given earlier
when the VBS resonance is near E~. At the opposite ex-
treme, in the limit when the separation of the spin-split
VBS's is very large, the term in e vanishes and the entire
coupling is given by the second term in Eq. (1). The ab-

sence of terms of the form (R~ XRa)+(S~ XStt)+ in this
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H ff(A. ) =al s+ b(l ST)(s ST)+el Sr (2)

This perturbation operates in the space spanned by the un-

coupled basis
~

kmicr) W.hen Eq. (2) is combined with
spin scatterings at site A and 8, we show that the resul-
tant third-order perturbation energy of the electron gas is

given by Eq. (1). Note that the term I ST in Eq. (2} makes
A

no contribution -(Rq X Ra Sr) to the energy in Eq. (1):
From time-reversal invariance, there can be no contribu-
tion from an odd number of impurity spins.

limit merely reflects the fact that there can be no spin-flip
contributions; i.e., terms arising from 1+s+, between

we11-separated states.
Our calculation has been performed using a spin-

polarized Friedel wave function P(ri ). For P(ii ) to be
an eigenfunction of Hp, the direction along which o takes
on the values + must be that of ST since we view the elec-
tron gas as being polarized by the moment itself. Thus,
rotational invariance has been lost so that one may ask if

A A
the term in (Rz XRti) Sr (Sz XSa) Sr is an artifact of
the Hartree-Fock approximation. In Appendix A, we
show by general symmetry arguments that the effective
Hamiltonian describing the perturbation about the spin-
orbit scattering site is given by

In passing, we note that both types of DM terms in Eq.
(1) yield the same form of macroscopic anisotropy for rig-
id mtations. For such rotations of the spin system with

respect to the lattice, the vector (Sz XSs}ST is a con-
A A

stant, and the vector (Rz X Ra) ST yields the same result

under rotation as does (Rq XRa)'(Sq XSa). Thus, both
terms in Eq. (1) contribute to the unidirectional anisotropy
of binary spin glasses when the rotations of the spin sys-
tem can be considered as rigid.

In Sec. II we calculate the form of the anisotropic pair
interaction that comes from scattering by magnetic spin-
orbit coupled impurities. In Sec. III„we discuss the coef-
ficients of the interaction and, in particular, demonstrate
the variable range dependence of the coupling. Section IV
is devoted to a discussion of the binary spin glasses CuMn
and AuFe. We point out that numerical results depend
upon four parameters for each material: the number of d
electrons at the impurity site, the magnetic moment, and
either the width or position of the resonance for each spin
state. None of these parameters are known with sufficient
precision for us to give more than somewhat general re-
sults for these alloys. We will show the effects of varia-
tions in these quantities and our conclusions will be
presented in Sec. V.

II. CALCULATION OF THE INTERACTION

We now proceed with a sketch of the calculation of the Dzyaloshinsky-Moriya interaction in the Hartree-Fock approx-
imation for the binary transition-metal spin glass. The scattering of the conduction electrons by the ternary site is
described by the VBS wave functions,

fi, (ri )= e'"'"+e'" '"'sin[ri (k)] g Yz (k)$2 (r) X

and
r

Pi~(ri )= e'"'—4ire'" '"'sin[ri (k)]hz+'(kr)g Yz~(k)Yz (r) X~ (3b)

for the regions near to and far from the ternary site, respectively. In these equations, $2~(r) is a core d orbital, b, is the
half width of the associated VBS, h z+' is an outgoing spherical Hankel function, X is the electron's spin state, and ri (k)
is the phase shift imparted to the electron by the mixing at the impurity site:

g (k):—riz(k) =tan
~ res Ek

(4)

where E, is the center of the resonance.
Our starting point is the expression for the third-order energy correction for an electron gas due to perturbations as de-

rived in Ref. 1,

kFI dkpkii J dki ki I dki ki P p 1

&k -&k
0 2

8.2
6(Ek Ek )5(Ek Ek )—v(kp, ki, k2), — (5)

where

V(k„k„k,)= g I dn„, J dn„ I dn, , Vi, i.. .V„, , i.. .Vi„,, i
crO, a&,cr2
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and the potential is given by

V„ii,= [S„.s5(r —R„)+Ski s5(r —Rii)]+X(»)I s .

At sites A and B we have written the local moment-conduction electron spin interactions as if they were due to a term
such as I S 8 even though they should, in principle, be described by magnetic VBS s as we do at the ternary site. There is
a seeming inconsistency in this but we are concerned primarily with the lowest-order correction of spin-orbit coupling to
the energy. Thus, one takes it into account at only one site at which we must consider the effect of spin-orbit scattering
from spin-split VBS s. At the other sites A and B we consider only spin scattering and for ease of calculation, model it
as I S s. A proper description of the magnetic scattering at sites A and B requires consideration of the energy depen-
dence of I . This has already been done for the two-site problem but we cannot introduce this feature into three-site cal-
culations at this time as it makes the phase-shift analysis very difficult.

Since the spin scattering at site T has been built into Hp, the energy denominators in Eq. (5) are, in principle, spin-
dependent. However, as we are interested in dilute alloys with small concentrations of magnetic impurities, the spin
dependence of the energy of the conduction electrons can be ignored.

When Eq. (6) is substituted into Eq. (5), one obtains 27 terms of which six are trilinear in the three particles. One par-
ticular term is

2I' A,d (1)
M~za =

~0~& ~2

(7a)

where

M~~n, = &koa'o
I
Sa's@r Ra) I ki~i &&ki&i I

I's
I
k20'2&&k2o'2

I
Sa's@r Ra)

I
koo'o&

and the spin-orbit constant A,d is defined by

4= f, d»»
I fid(») I

', (7b)

where f3d(») is the radial part of the 3d core wave function. The subscripts A AB refer to the order of individual scatter-
ings. The remaining five matrix elements M' ', 2 & 1 & 6, are obtained by permuting the operators in Eq. (7).

The individual factors of Eq. (7) have been given earlier without the o indices. Their product is quite long and will
not be given. As we are interested only in the leading terms of the coupling, we can extract these from the general ex-
pression. After performing on these terms the angular integrations and summation over the initial spin variable op, we
obtain

g f dQk f dQk, f dQk, M",', , =
I Ad i dkF kFd sin(kpRgii) a&ai

2 y 1 y 2

4 k 8(4m. )' 1 2 g(1)
0 aa

kl R~, k2R~ 0 )n2

where

I krak~ ——j~(kR)j2(k'R')expI —i[i) (k) —ri (k')]I+jan(kR)h2 (k'R')exp[ —i' (k)]»n[ri (k')]

+hz+'(kR)j2(k'R')sin[ri (k)]exp[iri (k')]+hz+'(kR)hz '(k'R')sin[i' (k)]sin[ri (k')]

and

[Y'«A)&&Y'«8)]0(SA SB 2SA,S'8, ) —[Y—'«A)x Y'«8)]'-1(SA SB SA,S'8 )—
—[Y'(R„)XY'(R )],'(S„S —S„S ) [Y'(R„)XY'(R }],'( —S Ss + —,'S„S,)

J

%'e are using spherical tensor notation

Sp ——Sg, S+ ——+ (S~+iS ),1
gl

2
x—

and the vector product of the Y tensor is defined as

m" m, m

(12)

[Y'(8,$)X Y'(O', P')]'

=pa - g(2m, 2m'I lm")Yi (0,$)Y2 (()',P'),
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where a - is a generahzed unit vector with the property
a„a„=5~, and the symbol (tm, I'm'

~

I"m") is a
Clebsch-Gordan coefficient.

The matrix A '" has the property that

g A~,~, =~10[F (Rg)X F (Ra)]'(Sg XSa)
~&*~2

which follows from'

iv 10[F (Rg ) X 1' (Rii )]'= Pi (Rg Rii ) Rg XRii
4n

it follows that

g &~,~, -(RgXRa) (SgXSs) .
a&,o2

(16)

Sz XSa ———iv 2+a - g (lm, lm'~ lm")(Sq)~(Ss)~
N II IN, N

= —if(S~ Sa,—S~,Sa }ai

+(Sw Sa —Sa Sii )ap

+(Sg,Sa —S~ Sa, )&-(l (14)

Since

and

[F (Rg ) X F (ka)]'(Sq XSa)

=g( —) [F (Rg) X F (Rii)]' (Sg XSa) . (15)

sin[kR+ri (k)] sin[k'R'+ri (k')]
kR, k'R' —

kg k'R' (18)

By substituting this expression into Eq. (8) and after mul-

tiplying by the factor (kpkik2) of Eq. (5), we obtain for
the contribution of the matrix element Mz'~a to the quan-
tity (kpkik2) V(kp ki ki) of Eq. (5):

Thus, when the space and spin variables are decoupled,
i.e., if the ternary impurity is nonmagnetic so that the
function 1 in Eq. (8) is independent of cri, oq there is only
one anisotropic coupling of the form of Eq. (17).

For dilute spin glasses the average distance between
magnetic ions is large; furthermore, the dominant contri-
butions to the interaction come from wave vectors around
the Fermi level. Thus, kR is large and the function
I ka k ~ may be replaced by its asymptotic form

(kokik2) ~ (ko, ki, k2)= g a (,(k)sin(koRxa)sin[r/ '(ki)]sin[k(Ra+ri (ki)]
cr&, Cr2

Xsin[ri '(k2)]sin[kzR&+ri '(k2)]A",', , (19)

where

0') CT2

1 A,g 3
~dkr~k~d kok)k2a,~,(k}= (4(r)i

4 &2 g~(g~i R„RgRgs

By a permutation of the operators, we obtain the contribution of the matrix element

2
(2)

Magog —— g M ~. . .
CT0, 0'), Cf2

with

M"~ ~, (koap
~
Sa ——s 5(r—Ra }

~ kiter i) (k,(T1 (
I's

~
k2&2) (k2(T2 ( Sg 'S5(r —Rw ) I kp(ro&

to the coupling in Eq. (5):

(kpk&k2) P' '(kp, k„k2)= g a~,(k)sin(kpR~ii)sin[re '(k)]sin[k(R~+ri '(k()]
cr&, a2

Xsin[il '(kq}]sin[kiRq+ri '(k2)]A', ', ,

(20)

(21)

where

~ (2]
(1) (1)A + A++

so that

~(2) y ~(&)
0' ),f72
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The remaining four contributions come from the matrix elements Ma&i, M„~i, M~A, and Mqz~. When the
principal-value integrals are performed, we obtain for the total of all'six contributions

2 '2—i ~ ~d 2m
aaz[4 ri ]

1
V Vdk~ k~d ()) ( I)I A {23)

where we have set all pairs of dummy spin variables equal to (cr, o') T. he integrals I'" are given by

I'" =f dk k sin(kR&a)sin[ri (k)]sin[g '(k)]

X Icos[kR& +ri ( k)]c os[ kRa+rI (k)]——,
'

sin[ kR„+rl'( k)]sin[ kRs+q (k)]},
(2) (1)

Iacr' =Icr'0

(24a)

(24b)

I' ' =f dk kcos(kR&a)sin[ri (k)]sin[g (k)]

X Icos[kR&+rt (k)]si n[kR a+g (k)] —,
' sin[—kRq+ri (k)]sin[kRa+ri (k)]},

kFI' '= d cos Rz~ sing sing

(24c)

and

X tcos[kR&+ri (k)]sin[kR&+ri~(k)] ——,
' sin[kR&+i) (k)]sin[kR&+ri (k)]},

(5) (4)
Incr' =I+'e ~

(6) (3)Icm'=In''a &

(24d)

(24e)

(24f)

and for the matrices A "', we have

A '"=A ' '=A ' ' and A ' '=A ' '=A ' '.
In Eq. (24), we have set the initial wave vector ko equal to k. Now Eq. (23) may be written as

QCT+tf

where

( &) (I)&ao'= g Ie~'
(I odd)

(26)

(2)

(I even)

By adding the integrands of the I'", we find

~ =f dkksin[il (k)]sin[i) (k)]sin[k(R&+Rz+Rza)+r) (k)+ri (k)] .

This is symmetric in (cr,a') so that

(2) (1)

Then Eq. (26) becomes

y«T gO'
dkF kFdz„,„[y(q )]-g

(27)

(28)

(29)

where

(I) (1)A+++A
2A"'+

2A'"
(30)

and from Eqs. {10),(14), and (16), we find
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A A—i Pi(R„Rt])X
4n

(Rg XRa)p(Sg XSt])p —2(Rg XRg) (Sg XSt])+

—2(Rp XRp)+(Sg XSa) (Rp XRt])Q(Sg XSa)p
(31)

From Eqs. (23) and (31), and by defining

Ck, C~
K ~=, J«2 gogo'

~I,~ f dkss(ss[s)s(k)]siss[s)s(k)]s(ss[k(R„+Rs+R»)+s)s(k)+s)s(k)], (32)

we obtain
A A.

(3) 135 Apl P](Rg Rt])
Egad. [f(9')]=— (Rq XR ) K (S„XS ),

EF A B AB

where the dyadic K is given by

(33)

K=E+ I+[ , {E+~+—E ) E+ ]S—rSr . (34)

We have used the relationship EF——h kF /2m, kz ——3m M„where M, is the density of states for one spin direction, and

the fact that for noble metals there is one electron per atom so that M, =N. Since the quantization axis was that of Sr
itself, we have set ap ——Sr', also E+ is equal to E +.

Equations (33) and (34) together with Eq. (32) represent the Dzyaloshinsky-Moriya coupling between two magnetic
moments in the presence of the third magnetic impurity. The effect of the spin scattering at the ternary site is fully con-
tained in the phase shifts ri2(k). We will discuss these equations in Sec. III. For the moment, we point out two obvious
limits. When the ternary impurity is nonmagnetic, we have g =ri =g. All the coefficients E«c lol pase into a single

function. The second term of Eq. (34) vanishes and the interaction goes as (R~ XRa) (Sq XSt]) as is well known. ' At
the opposite extreme, if the spin scattering is sufficiently strong so that the spin-split VBS's are well separated, ri+(k)
goes to m as Ek increases from zero to EF before ri (k) differs significantly from zero. The product
sin[g (k)]sin[ri (k)] of the integrand of E+ vanishes throughout the range of integration. Then E+ vanishes so

A N)s

that the interaction is dominated by the term in (Rq X Rt] ) Sz (S~ X S~ ) Sr.

III. RANGE DEPENDENCE OF THE COUPLING

To complete the calculation, it is necessary to evaluate the integrals E,Eq. (32). With the use of

(kt], )i, E, = {k, )2,
282 27'

a~= [(k~)4+(k~)4]"41k
(35)

and

'=a~e

kF ikR
G (R)= dk

k (k„) +i(k )— (36)

we show in Appendix 8 that

I Ck, I'
E~~ =

QCT
Isin[g2(kF)]sin[3k~A, „+ri2(kp)) —sin [ri2(0)]+3R,„(ka) ReG (3R,„)I

and

16 (R)
En =Uk, I'-a~ I z f«, —E+ )'+(~ —~+)'] I

'Re [{8 —E+ )+t (& —&+)] &
R=3R „

(37)

(38)
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where

and

3R,„=Rg+Eg+Rq~

dG dG+
dR dR

dG

dR

The integral G (3R,„)is given by'

G (3R,„)=(2kFp ) {exp(—i 3kFR,„p')[E,{ i 3—kFR,„(1+p ))—E, ( —i 3kFR,„p')]
—exp(i 3kFR,„fP)[Ei( i 3k—FR,„(1 fP) )—Ei (i—3kFR,„p'}]J,

where Ei (z) is the exponential integral defined by

ao

Ei(z}= dt, ~argz
~

&m .
g t

The derivative of G, (3R,„)is given by

dG (R)
{exp( i 3k—FR,„p')[Ei( i 3kFR—,„(1+@))—Ei( i 3kF—R,„3 )]

dR n =3s,„2

(39)

(40)

+exp(i3kFRayp')[Ei{ i3kFR,„—(1—p')) —Ei(i 3kFR„p')] I . (41)

First, we derive analytic expressions for the range
dependence in the two regimes of large and small average
interparticle spacings, "large" and "small" being defined
relative to spin depen-dent critical distances R, which, as
we show, are themselves dependent upon the positions of
the VBS resonances with respect to the position of the
Fermi level. We then discuss the Dzyloshinsky-Moriya
interaction itself. Our key point is that the interaction
displays a variable range dependence. If both resonances
are far from the Fermi level, the interaction can be
represented by its asymptotic form even for nearest-
neighbor triads. At the other extreme, if the resonances
are close to kF, the interaction will display its preasymp-
totic form even at large average interparticle spacings.

The behavior of the functions G~(3R,„} and
[dG (R)/dR]x 3si is determined for large R,„primari-
ly by the term in Ei( i 3kFR,„(1——p')} for which the
argument is smallest for a given value of R,„of the four
functions Ei in Eqs. (39) and (40). Consider, therefore,
the term

exp(t'3kFR, „p')Ei( i'3kFR, „(1—p —))
—:e " '"e' Ei(z ), (42)

where

Then with z =x +iy, we obtain

x =3kFR,„a sin(P'/2)

and

y = —3kFR,„[l—a cos(P /2)] .

(43a)

y = 3(kF k, )R—,„. —

One may define two critical distances,

R, —:(3ikF —k, i) (44)

such that if the average interparticle spacing R,„ is much
greater than the larger of R,+-, it follows that both of

~

z+-
~

are sufficiently large that Eq. (42) as well as the
remaining terms E, in Eqs. (39) and (41) may be replaced
by their asymptotic forms. Then from the expansion

e
—g

Ei(z) = 1 + 0 ~ ~

z
(45)

Since the phase angle P is always small, and since
kFa =k, , we may write

x ='3k„R,„P /2

z = —i3kFR,„(1—p') . we obtain

ReGO(3R,„)=[3(ka)R,„] ' —sin[f2(kF)]sin[3kFR, „+ri2(kF)]+sin [gz(0)]

2kF 2
2

sin [riz(kF }]cos[3kFR,„+2gz(kF)]+0(1/R,„)
3(ka) R,„

(46)
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dG R

dR ii =iii,„3(kz )zR,„
(47)

We immediately note from Eqs. (37}and (46) that in this regime the first two terms of K are canceled by the first two
terms of ReG~(3R,„). Then K«and K~ ~ fall off as R,„' and the range dependence of the DM interaction, Eqs. (33}
and (34), will have the general form [R&RiiR&ii(R&+Rii+Rza)] '

Sp. ecifically, for large R,„we have

32—ir EF cos[3k+R,„+27}z(k~)]
K = i sin [i}i(kF)] (48a)

kp(ka)z 3E,y

and

32rr Ep (g+g —)'~z
E~

3kpR,„(E,~ —E ) +(6+—5 )

X z sin[rlz (kF)]I(E,~ —E, )cos[3kzR,„+ilz+(kz)]—(6+—6 )sin[3k~R»+i}z+(k~)] I
(ka+ )

(ka )
, »n[i)z «F)]I(Eres E )cos[3kFR v+92 (kF)1—(~+—~ )sin[3kFR-+F12 (kF)]) (48b)

To obtain these, we have used the relation

gtT

16m Ep

kFM(EF )

Note that both K++ and K behave independently, each being a function of the position of its own resonance with
respect to that of the Fermi level. The coefficient K+ depends upon the relative positions of both resonances. One
may state that if both resonances are far from kF, then they are far from each other so that K+ is much smaller than
either K++ or K

If R,„ is much smaller than the lesser of R;+, then ~y ~

and therefore
~

z
~

will be small. One may then obtain the
coefficients K ~ with the aid of a small argument expansion of Ei(z), or by direct integration. One sees that K ~ is
given by

16&EF
K =

&
sin[i}z (k~)]sin[3kFR,„+rtz (kz)],

kF
(49a)

since the term proportional to G in Eq. (37) is negligible, going as (3k~R,„)(ka) /(kFk, ).
The coefficient K in this case does not have a simple form, but if one makes the additional assumption that the

two resonances are near kF, then an integration of Eq. (38) yields

—(1&r /k~)E (5+5 )'~z

[(E+ —E ) +(b+ 6}]—
sin[rlz+(kF )]

X '(E+ E, ) ln — sin(3kFR, „)+[i}i+(kF)—r}z (kz)]cos(3kFR,„)
sin[rlz (k~)]

sin[rl i+ (kF )]+(6+—6 ) —[rli+(kz) —i}i (kz))sin(3kFR, „)+ln cos(3kzR, „)
sin[ili (kF }]

(49b)

Note that Eq. (49a) is valid for any position of the resonance k„. Equations (49) demonstrates the fact that in the small
R,„regime, the DM interaction exhibits the range dependence (R~RsR&s) ' [see Eq. (33)].

The Dzyaloshinsky-Moriya interaction, Eqs. (33) and (34), may be written in a simple form for two special cases. If
R,„ is much greater than the larger of R; and if the two resonances are sufficiently far apart; i.e., if K+ « both
K++ and K, we obtain from Eq. (48a),

2
13Sw ~d I Pi(Rg Rii)

E~si.[4(i} )]=+
32 Elk~~ RgRgR„s(Rg+Rg+Rgg)

Xg sin [i)i(kp)]cos[kp(R~+Rii+R~s}+2rlz(kF}](R~ XRs).Sr(S~ XSg).Sz .
(ka)i

(50)
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The interaction is dominated by the anisotropic coupling term arising from both the magnitude and direction of the mag-
netic moment of the third impurity. To obtain Eq. (50}we have assumed that the density of states for both spin states o
is the same.

The different structures of Eqs. (49a) and (49b) preclude a general form for the interaction when R,„ is much less than
both R,+ and R, . However, if the two resonances approach each other, coalescing at a value k, not necessarily equal to
kF, the magnetic moment Sz vanishes so that all three coefficients E ~ become equal to that given by Eq. (37) but with
the 0 index deleted. Then, the "nonmagnetic" DM interaction is given by

135m 41' Pi«~'RB}
Eg'Bi. [y(rl }]=—,, I si n[ i}2( kF)]» n[ kF( Rg +RB+RgB)+pi(kF )]

EFkF A B AB

+(Rg+RB+RgB)kgReG(R~+RB+R~B) J(Rg X RB) (Sg XSB), (51a)

which is seen to equal the result given earlier only if the term in G(R) can be neglected; this is the case when k„ is near
kF. However, if the (single} resonance is far from the Fermi level, one finds a substantial contribution to the interaction
arising from electrons scattering out of (into) the occupied (empty) states of the tail of the VBS. In these cases, the term
in G (R) dominates so that for R,„much greater than R„Eq. (44), the ternary DM interaction is given by

13S Pi(Rg RB)
E~Bx[0(ri}]=+

16 EFkFka RgRBRqB(Rq+RB+RgB)

X sin [rig(kF )]cos[kF(Rg +RB+RgB )+2gi(kF)](R~X Rii) (Sp, X Sa) . (51b)

%e wish to emphasize several points. Although we
have given expressions, both for the coefficients K ~ and
for the DM interaction itself, for average interparticle
spacings R,„much less than or much greater than the
two critical distances R;, Eq. (44), it must be pointed out
that in practical cases E++ and E are independent so
that one of these may meet the conditions specified while
the other may not. Most importantly, the critical dis-
tances R; are themselves variable, being dependent on the
magnitude of the displacement of the resonances from the
Fermi surface as well as on the widths of the resonances
themselves. " Thus, in real systems, both R; may be suf-
ficiently small that the interaction is given by its asymp-
totic form 1/R even at the minimum value of R,„which
is Ro(2+v 2)/3 for the nearest-neighbor triad on an fcc
lattice, Ro being the nearest-neighbor distance and equal
to 2.55 A for CuMn and 2.88 A for AuFe. Alternatively,
both R;+ may be sufficiently large that the interaction is
given by its preasymptotic form 1/Ri for any R,„.
Clearly, one coefficient may behave as 1/R while the
other may fall off as 1/R . This feature has great conse-
quences for calculations of macroscopic anisotropy ener-
gies. We now discuss our results for CuMn and AuFe.

where

kFI = sin 3kR,„+2g2

and to evaluate E in the form

16+EF(~+~ }~i-
K (E+ —E,„)'+(b,+ —b, -)'

X[(E,„—E+ )(a+ —a-)
(& b, +)(—8+ 8—)], —-

where

1 kF
cos 3kR~„+2g2

(ka)

kFsin(3kFR, „) cos(3kR,„)—1
+

3R,„
'" +

(3R,„)i

and

kF—I k sin[3kR, „+2rii(k)]dk
(ka)

kFcos(3kFR, „) sin(3kFR, „)

(53)

IV. DZYALOSHINSKY-MORIYA INTERACTION
IN CuMn AND AuFe

3R,„I~I ), —(52)

As a practical example, we consider the binary spin
glass CuMn. The simplest way to evaluate the coeffi-
cients E ~, Eqs. (37) and (38), is to numerically integrate
Eq. (B5) for the diagonal terms:

16m EF
IC =

3 (sin[i}i(kF)]sin[3kFR,„+i}i(kF)]
F

+ —, [ cos[i}z(0)]—cos(3kFR,„)

tan[i}z(kF)]
(54)

where gi(kF) is determined by the Friedel sum rule
rgb(kF) = (m/5)Z~ where Zd is the number of electrons in
spin state 0, given by Z~++Z~ ——Z~ and Zd+
—Z~ ——p/pB, the magnetic moment in units of a Bohr

The parameters 5 and E, which appear explicitly in
these equations as well as implicitly in the expression for
g2(k), Eq. (4), are not known precisely. One relationship
between them is [Eq. (4}]
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FIG. 2. Envelopes of the coefficients K++ and E and of
their preasymptotic and asymptotic forms for model I of CuMn,
as functions of the average interparticle spacing,

Z~++Zg ——6,
Zgf —Zgf —2a 2

rl2+(kF)=2. 5761, r}& (kF)= 1.1938,

h, + =0.20 eV, E~+ =5.2148 eV,

=0.40 eV, E, =5.6884 eV,

(59}

and in our second model, we used the following values:

AuFe II:

F., Thus preasymptotic corrections are more important
to K++ than to E,and the deviation of E++ from its
asymptotic form exceeds that of K . The situation is
reversed in model II. However, in both models, the sum
of E++ and E is roughly constant so that the interac-
tion coefficients K+ and Koo

—= ,' (E—++
+E } E+— of Eq. (34}are very similar. Consequent-

ly, we display in Fig. 4 K+ and Koo for CuMn I only.
The strengths of the two types of Dzyaloshinsky-Moriya

A A
terms (RJ XRa) (SJ XSa) and (RJ XRs}ST(SJ
X Sa ) Sr are nearly equal.

A much stronger variation in the interaction coeffi-
cients E+ and Em may be seen from our choice of
models for AuFe. In our first model, we have used the
following values:

AuFe I:
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their preasymptotic and asymptotic forms
CuMn.
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and E and of
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i}2+(kF)=3.0882, r}2 (kF)= 1.3100,
4+ =0.10 eV, E,~ =3.6267 eV,

=0.35 eU, E =5.6237 eV,

(60)

where EF——5.53 eV.
In Figs. 5 and 6 we illustrate our results. Once again

we have plotted the envelopes of the amplitudes of K+
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ing. The results for model II are nearly identical.
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FIG. 5. Envelopes of the interaction coefficients K+ and
E and of their asymptotic forms for model I of AuFe.
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FIG. 6. Envelopes of the interaction coefficients E+ and

Koo and of their asymptotic forms for model II of AuFe.

U. CONCLUSIONS

We have found that in transition-metal binary spin-
glass systems there is a second type of Dzyaloshinsky-
Moriya coupling which depends upon both the magnitude
and direction of the magnetic moment on the third impur-
ity site. The relative values of the density of d states at
the Fermi surface of the VBS resonances determine the
strength of the coefficient E+ of the "unpolarized" DM
term (R~ XRs) (S~ XS~} Uis a vis that of -th-e new "po-

A A
larized" term (Rz XRii).ST (S~ XSii) ST. For example,
if pz &&pq, the unpolarized term is suppressed. Both
densities play a role in determining the strength of the po-
larized term and we find that the magnitude of its coeffi-
cient K is somewhat model independent as can be seen
from Figs. 4—6. Thus, in our model, the primary differ-

and Koo, together with their asymptotic forms.
In model I, X+ is about twice Koo so that the

strength of the DM term in (Rq XRs ) ~ (Sg X Sii ) is about

twice that of the term in (Rq XRii) Sz. (Sq XSii) Sr. In
model II, X00 is unchanged Uis a vis -m-odel I but E+
has been reduced considerably. The anisotropy is dom-
inated by the second type of DM interaction.

These results may be understood in terms of the density
of d states p~

——(1/mh )sin riz at the Fermi level. For
both CuMn I (p~+=0. 1348 eV ', pd

——0.0674 eV ') and
CuMn II (p~ ——0.0200 eV ', p~

——0.2131 eV '}, one
value of pd is noticeably larger than the other but neither
turns out to dominate in either model. For AuFe I
(pq

——0.4570 eV ', pd
——0.6879 eV ') the same may be

said. Thus, for these models, we see that both types of
DM interaction are important. However, for AuFe II
(p~+=0.0091 eV ', p~

——0.8490 eV '} the density of
states at Ez of the upper resonance is 2 orders of magni-
tude larger than that of the majority spin state. This leads
to a strong suppression of the term in

(Rq X Rii) (Sq X Sii) relative to the spin-polarized contri-
A A

bution (R~ XRii) Sr(Sq XSii) ST. It is clear then that
there is sufficient variation of the material paraineters of
CuMn and AuFe in the literature to preclude a presenta-
tion of exact number results.

V(Egin )
S~'Sa

R~g
(61)

where V(R&ii)/R„ii varies from 1/Rzs to 1/R„ii. This
particular calculation has been done more precisely by
taking into account the variation of I with energy, and is

ence between materials shows up in the prefactor of the
DM interaction, the factor AdI' /EF in Eq. (33). If one
assumes that both A,~ and I are similar for CuMn and
AuFe, the DM interaction in AuFe will be twice as strong
as that of CuMn since the ratio of the cubes of EF is 2.0.
Then the macroscopic anisotropy energy -(EDM) will be
4 times larger. There are additional sources of anisotropy
in AuFe which we have not taken into account, the effects
of the gold hole and of the orbital contribution to the
magnetic moment of iron.

We have also shown that the coefficients of both types
of DM interactions exhibit a variable range dependence
whose most important determinant is the magnitude of
the separation of the VBS resonances from the Fermi sur-
face,

~
kF —k„~. For hypothetical materials for which

this quantity is very small, the interactions E ~ /R will
fall off as 1/R . In practical cases, the interactions ex-
hibit this behavior only in the nonphysical regime where
the average interparticle distance is less than a nearest-
neighbor distance. In the spin-glass regime where R,„
ranges from 1 to 10 lattice constants, the interactions
show strong deviations from 1/R ~ behavior, going over to
the form 1/R for sufficiently large R,„. However, de-
pending upon the material parameters, "sufficiently large
8,„"can be as small as a lattice constant. In general, the
1/R forms of the interactions are better approximations
but preasymptotic corrections will be important when

~
kF —k,

~

is small. The major consequence of this find-
ing is that previous calculations have lead to serious
overestimates of the macroscopic anisotropy energy.

We have refrained from attaching specific numbers to
our results. Four parameters are required to determine
the magnitudes of the functions E+ and Eoe. the num-
ber of d electrons at the impurity sites, the value of the
magnetic moinent, and one of the pair 6 and E, for
each VBS resonance. Three additional parameters are
needed to evaluate the interactions: the spin-orbit con-
stant, the strength of the spin-spin coupling constant, and
EF. Generally A,& and Ez are known but the values of the
remaining five parameters are not known with sufficient
precision to allow for a good numerical analysis. For ex-
ample, one of the pair I and S (or p), depending upon
which is considered the independent variable, can be rnea-
sured by the approach of the magnetization to satura-
tion' and by NMR. ' Both experiments probe the first
few nearest-neighbor interactions, and previous analyses
assume that the impurities are coupled by the Ruderman-
Kittel-Kasuya- Yosida (RKKY) interaction. However, the
latter assumption is questionable. The variable range
dependence of the DM interaction is not a characteristic
of the DM interaction per se; i.e., of the effect of spin-
orbit scattering, but is an effect of the resonant scattering.
A crude second-order RKKY-type calculation but with
the wave function given by P(q ) instead of by plane
waves shows the same behavior:
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able to explain the variation of the spin-glass temperature
with impurity concentration. Thus, it is clear that the
experiments probe the region where the interaction is
closer to 1/R than it is to 1/R . Consequently, the
values of I and/or S derived by assuming the interaction
goes as 1/Ri are probably incorrect. Thus, before one
can accurately calculate macroscopic anisotropic energies,
experiments which give the necessary parameters should
be reanalyzed with more realistic interactions.
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APPENDIX A: EFFECTIVE HAMILTONIAN

We wish to show that the perturbation about the spin-
orbit scattering site can be written as an effective Hamil-
tonian

H,fr(A, ) =al.s+p(l ST )(s ST )+yl ST,

where Sz is the magnetic moment at the site of the spin-
orbit scattering.

From Eqs. (5}and (7) we may write

I

CT, CT qtT

&4(ri ) I
S&'s

I
a'&&oui'a' IH rf(~) I

iriI"rr" &&a"
I
Ss s

I
0(ri }& .

O, 0', a"
(A2}

In Eq. (A2) the trace over spin states cannot be taken im-

mediately because the space and spin variables are coupled
in the wave function P(ri ). However, the spin depen-
dence of the spatial part can always be expressed as

I
ri & (g I

=g +ha 8, where u is an axis of quantization.
We obtain

E'~'-g(o
I S„s(g+hs u)l s(g'+h's u)S s

I
o &,

(A3)

so that

H ff(A, )=(g + ha u)l s(g'+ h 's u}

By expansion, this is equivalent to

2

H, (fry, )=(g ——,h )l.s+ (1 u}(s u)+ —,'ghl u.
2

(A7)

This result has been demonstrated for an arbitrary axis of
quantization. However, for P(ri~), Eq. (3), to be an eigen-
function of the zeroth-order Hamiltonian, the axis u must
be that of ST itself, which proves Eq. (Al).

The term in 1 Sz of Eq. (Al) makes no contribution to
the energy as we now demonstrate. From Eqs. (A3},
(A4a), and (Al), we have

E'"-X&alS„s[al s+P(l Sr)(s S~)+yl Sr]Ss s Ia&

=a'1 (S„XSs)+p'1 ST (S& XSs) ST+y'1 Sr S& Ss
H,fr(A, )=gg'1 s+ hg's. u l.s+gh'l. s s u

+hh's Ql ss 8.
With the use of

s As B=—,A.B+—,is (AXB),1 1

we obtain

(A4b)

(A5)

(A8)

and after the angular integrations of Eq. (5) have been

performed, 1-+Rq XRs so that the matrix element in Eq.
(A2) contributes the term

E' '=a"(Rg XRs) (Sg XSs)

H (Ad,r)= gg' — 1-s+ (1 u)(s.u)
hh' hh'

4 2

A A
+P"(R, XRs) Sr(S„XSs)ST

+ y "(R„XRs ).ST (Sg Ss ) . (A9)

+ 4 (hg'+gh')l. '9+ —(hg' —gh')s. (uX1) .
2

When the principal value integrals indicated in Eq. (5) are
performed, the last term on the right-hand side of Eq.
(A6) will vanish, since hg' is a function of k', k" while
gh' is the same function of k",k'. The remaining terms
are

If one considers the matrix element similar to that in Eq.
(A2) but with the order of scatterings changed from
(Sq s, l s,Ss.s) to (Ss.s, l.s,S„.s), one obtains the same
result as Eq. (A9} but with (Rz,Sz) interchanged with
(Rs,Ss). The first two terms of Eq. (A9) are invariant
under this operation but the third term goes into its nega-
tive. Thus, when all six contributions to the energy are

A A
considered, terms like (Rz XRs).ST S„.Ss pair off and
cancel, leaving only two types of anisotropic interaction as
we have already shown.
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APPENDIX 8: INTEGRATION OF EC

The coefficients of the DM interaction, Eq. (32},are given by
I

Uk I'k~
K ~=, I dEksin[q (k)]sin[rl (k)]sin[kR+rl (k)+rl (k)],

where the phase shifts are given by

(ka)
r) (k)=—gz(k)=tan

(k, )2—ki

Here, ka ——(2m'~ jR )'~ and k, =(2mE~/iri )'~ .
By means of the identity

dEk dr)

sin g
we obtain for the diagonal term K

g~(k~)

E~ = I dq~sin(kR+2r) }.
An integration by parts yie1ds

E = (sin[g (kz)] isn[k~ R+i)(kF)]+TIcos[rl (0)]—cos(k~R) —RI I),I
Ckl' 1

(81)

(83)

(84)

(85)

where

kF k~I = sin 8+2'~ —=Im e'~ t:os 2g +i sin 2g k

From Eq. (82), one finds

2i(ka )
cos[2rl (k)]+i sin[2rl (k)]=1-

k2 —(k, ) +i(ka)

Thus,

k~I'= ——[cos(kpR) —1]—2(ki)'Re f e+" dk,
k —(k„) +i(k )

from which

yo' 2

{sin[i) (kF)]sin[kFR+i) (kF)]—sini[rl (0)]+R(ka) ReG (R)I,

(87)

(8&)

where

~
~

kF 16 (R)= e'" dk.
k (k, ) +i—(ka)

This is Eq. (37) of the text.
The off-diagonal coefficient K may be obtained in a similar way. It may be written as (EC+ ——K + )

vdl, I'a,a
E = Im dk k e' e.'& sing+ e.'" sing

27tl Q+ Q 0
(89)

and by means of

(ka)
c'& sing =

(k, ) k i (ka)— —
and the use of partial fractions as

(810}

b H~(R)
K~ =2Ygg Vg Im

(E,~ E,~) i (b, 5—+)— —

(811}

where
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and

kF i'
H (R)=J dkk

z 2(k„)z —k —i (k a )

h[H~(R)] =H—~ (R) H—(R) .

a =[(k„) +(kit) ]' /kp

Since H =id/dRG, this yields Eq. (38) of the text.
There remains only the integral G~(R) to be determined.

By defining p =kR, G (R) may be cast into the form Then a change of variables p=it+p+ in Eq. (B12) leads
to

G (R)=

(B12)

JPF
0 p

—lpF+lp+
dp, =e -+ dt

P+ IP+

where p, + are the roots of the equation
({ts ) =({tt„)2—i(pa) . Therefore,

+~frei P~/2 (B13)
where Ei(z) is the exponential integral function. This
completes the integration of G (R), Eq. (39).
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