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The frequency shifts of the vibrational and rotational transitions of H2, D2, and HD molecules

trapped in solid Ar are calculated at zero temperature and at pressures 0 & P & 373 kbar. It is found

that the pure vibrational and rotational-vibrational transition frequencies are strongly red-shifted in

the solid at P =0, compared to gas-phase values, and the agreement with Raman scattering mea-

surements is generally good. The calculated pure rotational transitions also show a small red shift at
P =0 in the solid and are in generally good agreement with the measurements of Jodl and Bier, but

less so with those of Prochaska and Andrews, who, except for D2(Ar), measure small blue shifts.

The calculated local-mode frequencies of the impurity molecules in the solid at P =0 are also in

good agreement with experiment, especially when thermal corrections are considered. VA'th increas-

ing pressure all transition frequencies and the local-mode frequencies are strongly blue-shifted with

respect to P =0 solid values.

I. INTRODUCTION

The vibrational and rotational spectra of Hz, Dz, and
HD impurities in solid argon have previously been mea-
sured at various temperatures under zero external pressure
using Raman' and infrared absorption techniques,
and ir measurements of Hz in argon have been extended to
P=11-kbar pressure. Most of the transition frequencies
measured by the two Raman experiments'2 differ by an
amount apparently outside of experimental uncertainty.
There is also a divergence of values reported from the ir
works. 6 All agree, however, that the pure vibrational
and vibrational-rotational transition frequencies show
strong red shifts in the solid at P=O, compared to their
gas-phase values. Also measuredz were the local-mode
frequencies of Hz and Dz in solid Ar.

In a previous calculation, Vitko and Coll determined
the pure vibrational Qi(0) frequency shifts and the local-
mode frequencies of X=H2, Dz, and HD in solid Ar at
P=0. Their calculated Qi (0) frequencies were red-
shifted considerably more than is indicated by experiment,
but the agreement is reasonably good considering that the
X-Ar potential they used was a more primitive version of
the one used in this work. In their calculation they ig-
nored the distortion of the lattice around the impurity and
the anisotropic part of X-Ar potential. Both approxima-
tions we will show are reasonable at P=O in the solid.
Their calculated local-mode frequencies are in good agree-
ment with experiment.

In this work a different technique is used to extend the
calculation to include the pure vibrational, pure rotation-

al, and rotational-vibrational transition frequencies of Hz,

Dz, and HD impurities substitutionally trapped in solid
Ar at pressures 0&P&373 kbar. The local-mode fre-
quencies of the impurities have also been calculated at all
pressures. Central to this calculation is the use of an im-

proved version of the X-Ar potential, derived by LeRoy
and Carley, a relaxation to equilibrium of the first 16
shells of Ar atoms around the molecular impurity, and
the use of terms up to seventh order in a power-series ex-

pansion of the hydrogen intramolecular potential'o in
terms of the displacement of the bond length about equili-
brium. The zero-point oscillations of the impurity mole-
cule and the host lattice atoms are calculated using a Har-
tree approximation. At P=O, where contact with experi-
ment exists, the calculated results are in substantially
better agreement with observed data' than was the case
with previous calculations, and transition frequencies
heretofore not calculated also agree well with experiment.
At high pressures, strong blue shifts of all the modes are
reported.

II. FORMULATION

For a single molecule X=82, HD, or D2 isolated in an
argon matrix, the Hamiltonian can be expressed as

0=H~. +~x+ V~.-x
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(3)
V&,(R)=e[UO(r)+ Ui(r)],

Uo(r) = g A„(r —1)"exp[P(1—r)]

J =2

T

2

r
(8)

where m, M, and p, are the X, Ar, and reduced-X masses,
respectively. The rotational kinetic energy operator of the

X molecule is J, g=(r —r, )/r„where r is the instan-
taneous bond length of the X molecule in the solid lattice
and r, is its gas-phase value. " The index i=1 always
refers to the X molecule and i =2,3, . . . , N refers to the
host lattice argon atoms. The Ri specifies the position of
the X-molecule mass center, R,J is the distance between
mass centers of particles (i,j ) and 8ij is the angle between
the molecular axis of molecule X and the vector R'»,
specifying the distance between the charge center of mole-
cule X and the jth host lattice atom. Except for HD,
R'» ——Rij, the distance between mass centers. For HD
the mass center is displaced by a distance r/6 from the
center of the molecular charge distribution. Thus
Rij ——Ri~+(r/6)8, where 0 is the unit vector identifying
the location of the mass center with respect to the center
of the charge distribution. The rotational constant is
given by

B(r)=R /(2pr ) =R /[2pr, (1+f) ] .

Thus, in Eq. (2) the first term gives the kinetic energy of
host lattice argon atoms and the second term gives the po-
tential energy between argon atoms. In Eq. (3) the first
three terms are the kinetic energies of the X-molecule
center of mass (c.m. ), intramolecular vibrations, and rota-
tions, respectively. V~,~(f) is the intramolecular poten-
tial energy. From the work of LeRoy and Carley, s

3

V(R')~, 8)~,g)= g g Vii(Rij)Pi(cos8ij)g
k=0 A, ~0,2

In Eq. (6) the Pi are Legendre polynomials. These poten-
tials have been very accurately fit to spectroscopic data,
and the range of validity of the g dependence has been ex-
tended by requiring that the potential agrees with that of
He-X in the limit $~0.

The intramolecular potential is

7

V;„„,(g)= g a;g',
l =2

[A6(r —1) +A7(r —1) ]exp[P(1 —r)], r & 1
Ui(r) = ~

0, r&1

exp[ (d /—r —1) ], «d
1, r&d

where r =R /ro, A 0 ———0.023 456 55, A i ———5.087 821 4,
A2 ———1.017947, A3 ——1.5170947, A4 ———11.60406,
A5 ———10.424389, A6 ———0.97960724, A7 ——9.1866675,
p= 11.25, C6 ——1.067 262 3, Cs ——0.582 6109, C9
= —0.0910328, Cia ——0.3564661, ro —3.773 —A, d=1.8,
and e= 143.224 K.

An important element in simplifying the calculation is
to recognize that the rotational, translational, and in-
tramolecular vibrational degrees of freedom are only
weakly coupled to one another. For example, Eq. (6)
shows that the angular dependence in the Ar-X potential
appears as P2(cos8). However, the sum of this term over
a static lattice with cubic symmetry is well known to be
zero. Thus, only noncubic distortions of the crystal
around the impurity can lead to nonzero orientational
contributions. As will be discussed later, there are several
such mechanisms, but they are most assuredly small at
low pressures. This is supported by experimental evi-
dence' ' ' '5 which shows that the rotational states are
very close to the free-rotor states of the isolated molecule.
As for the intramolecular degrees of freedom, an inspec-
tion of Eq. (6) shows that the terms dependent on g are
small compared to V~„,m(g) and thus represent a perturba-
tion on the isolated molecule potential. Similarly, since
the g-dependent terms in Eq. (6) are small compared to
the term k=0, the c.m. degrees of freedom are nearly
decoupled from the orientational and intramolecular de-
grees of freedom. This suggests that the ground state of
the system can be accurately described by the product
function,

(9)

where the I R; j locate the instantaneous c.m. positions of
the particles. Because of the relatively strong coupling of
the X molecule to the Ar atoms, the center-of-mass
motion can be accurately described by the Hartree expres-
sion, which is also known to be quite accurate for pure Ar
crystals:"

(10)

where the parameters a; are taken from van Kranen-
donk. ' The effective Ar-Ar pair potential V& is a piece-
wise fit of calculated results by LeSar, ' deduced from
electron gas calculations. The well and long-range part of
the potential is formulated to closely agree with the excel-
lent results of Aziz and Chen, and Barker and Bobetic. '

It is given by

I R; & =exp[ —a;(R; —R; ) /2]

(12)
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Equation (12) is clearly appropriate since the rotational
states are nearly free mtors for which the spherical har-
monics YJ~ are eigenstates. The a; and Cz~ are varia-
tional coefficients to be determined. The equilibrium po-
sitions of the Ar atoms t R; I, i =2,3, . . . ,X, must also
be treated as variational parameters because of the distor-
tion of the lattice around the impurity. Similar to

~
8),

the state
~ g) can be described by an expansion using a

harmonic-oscillator basis set.
The first step in the calculation is to determine the dis-

tortion of the host lattice around the X impurity. In this
work the weak angular dependence of the X-Ar potential
is neglected and, because of the weak coupling of the c.m.

I

coordinates to g, the distortion is calculated using only the
dominant term (k, A, =O) in Eq. (6). Hence, the calcula-
tion reduces to a simple Hartree impurity problem. Ar-
gon atoms in the first 16 shells around the molecule are
allowed to relax to equilibrium, ' and atoms beyond that
range are assumed to have equilibrium positions identical
to that of the pure lattice. Because of the uncorrelated na-
ture of the product state given by Eq. (9), the distortion
preserves the Os symmetry experienced by the impurity,
so the number of independent-symmetry coordinates that
must be determined by optimization of the total energy
reduces to 30. Thus, ' the energy of the system is

N N
E=(3A /4) (ai/rn)+ g (a;/M) + g [ajlrr(Rij) ]' J (Rij+Z)exp( aJ—Z )V(RJ+Z)dZ,

l =2 l /=1
l (J

(13)

where

a;~ =a;aj/(a(+aj) .

In the integral of Eq. (13), Vij, j =2,3, . . . , N, refers to
Eq. (6}and, for i,j =2,3, . . . ,k, VJ is represented by the
Ar-Ar potential. To simplify the calculation ai, associat-
ed with the molecule, and az associated with the first-
nearest-neighbor, argon atoms are treated as independent
variational parameters. The a;, i =3,4, . . . ,N, are as-
sumed to be the same as for the pure rare-gas crystal and
were determined by a subsidiary calculation. Thus, Eq.
(13) was minimized with respect to the 30 symmetry coor-
dinates I R; I and ai and a3 at each of 30 different molar
volumes. The one-dimensional integrals were evaluated
using a Hermite quadrature routine, and lattice sums were
taken out to a distance of five-nearest-neighbor lengths.
The optimization of the energy in Eq. (13) with respect to
the 30 symmetry coordinates and the two independent pa-
rameters ai and a2 in the wave function is accomplished
by a pattern recognition optimization at each volume of
the multidimensional function E(ai,a3, I R, j ). The de-
tails of this strategy are given elsewhere. ' As will be
shown in the next section, the lattice distortions are small
and have only a minor effect on the predicted vibrational
and rotational transition frequencies. The equilibrium po-
sition of the center of charge of the molecular impurity is
assumed to be at a substitutional site in the argon host lat-
tice which, except for HD, coincides with the position of
the center of mass.

The analysis of the internal vibrational and rotational
spectra of the trapped molecule is simplified by first tak-
ing the expectation value of the total relaxed Hamiltonian
with respect to the product states

~ jR;] )
~
8). Because

of theoretical and experimental information presented ear-
lier, the small anisotropies in the X-Ar potential are
neglected, so the rotational states are given by those of a
free rotor. Thus the only perturbation of the rotational
states, caused by the crystal field of the host lattice, is due
to the change in the rotational constant 8(g), given by
Eq. (5). By expanding 8(g) in powers of g up to cubic
terms, the resulting effective Hamiltonian, except for ig-

norable constants, becomes

7

H(g, J)=— Vg+ g b„P,
2p n=0

where

bp —B,J(J+—1)=(A /2pr, )J(J+1),
N

bi ——y (Vpi(Ri ))—2B,J(J+1),
j=2

(14)

b3 ——ai+ g ( V02(Rig))+38,J(J+1),

b3 =83+ g ( V03(R i ))—48 J(J'+ 1)
J

b;=a;, i =4,5,6,7,
where ( Vpk(R ij))= (Ri,R~

~
Vp~ ~

Ri,RJ ) is the Hartree
integral over the c.m. motion of particles ( l,j).

We have calculated the eigenvalues E~ of Eq. (14) in
several different ways that give very similar results. First,
it is noted that Eq. (14) is in a form automatically suited
for the Wentzel-Kramers-Brillouin (WKB) solution for-
mulated by Dunham' which, by all accounts, is fairly ac-
curate. Another method we have used is to solve the
Schrodinger equation directly using the Numerov-Cooley
method. That is,

a'
p dr r

where r is the intramolecular bond length and V(r) is the
sum of Vi„(Ref. 20} and

y g (V»(~R; —RP~))g'.
j=2 k=O

The third method is perturbation theory where the
zeroth-order Hamiltonian is that of the free molecule,
with the potential given by Eq. (7). This Hamiltonian is
solved to obtain the exact eigenfunctions of the free mole-
cule I ( uJ)], and the frequencies of the transitions are
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given by the eigenvalues

QJSJSS ~ IJS ~ SSJSS ~ (16)
Q(O)

J=2

J =0

Then the perturbation given by the isotropic part of Eq.
(6) is introduced. That is,

J =2

k=o j=2

where ( Vok) is the Hartree average over the center-of-
mass motion of X and the argon atoms. The resulting fre-
quency shifts between levels O'J' and U

"J"are

hv= g g (Vok)((U'J'~ g'
~

O'J') —(U"J"
~

g'
~

U"J")) .
k j

(18)
(0)

Q, (0)

g(o)
J=O

Sjg(1)
J= l

Somewhat more accurate results can be achieved by recog-
nizing that the leading term in the perturbation, Eq. (17),
is the term k= 1, linear in g. This term can be incor-
porated into the zeroth-order Hamiltonian, and by comp-
leting the square of this term and the quadratic term in

V;„,~, a better set of zeroth-order eigenfunctions can be
obtained. All other terms are then treated as perturba-
tions evaluated using lowest nonzero order perturbation
theory.

The Dunham expansion' and the Schrodinger solutions
give the vibrational and rotational states of the molecules
in close agreement, as does the perturbation expansion at
low pressures. At high pressure, the perturbation results
are less accurate. For example, at P= 373 kbar the calcu-
lated frequency shifts of the So(0) and Qi(0} transitions,
based upon the perturbation method, are 10.3% and 14%
higher than those determined using the more accurate
Dunham-expansion and Schrodinger-solution methods.
In this work only the results of the Dunham expansion's
will be reported.

HD impurities present a special calculational problem
in that the charge center and the c.m. are displaced from
one another by a distance r/6. However, the single-
particle orbital

~
Ri) is properly centered about the c.m.

equilibrium position Ri, but the interaction between the
molecule and the jth host lattice atom depends on the dis-
tance between the charge center and the c.m. of the jth
atom. That is, R'» ——R»+(r/6}Q, where 0 is a unit vec-
tor giving the direction between the molecular c.m. and
the center of charge. In this work it was assumed that be-
cause the rotational states are nearly isotropic, the charge
center uniformly samples a spherical surface of radius
(r/6) about the center of mass, and so iI is averaged over
this surface by integrating over the solid angle d 0„-. This
can be accomplished by either expressing

~
Ri) in terms

of u and R'i or transforming Eq. (6) to a function of the
center-of-mass position V(Rij, u, 8»,g}, as was done in
this calculation.

%ithin the Hartree approximation it is also possible to
calculate the local-mode frequency of the molecular im-
purity in the cage produced by the surrounding argon
atoms. It is given by

v, (cm ') =a i(A'/mc), (19)

where c is the velocity of light.

FIG. 1. Rotational and vibrational transitions for (a) para-H2
and ortho-02 and (b) ortho-H2 and para-02. J and v are the ro-
tational and vibrational quantum numbers, respectively.

III. RESULTS
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FIG. 2. The solid line gives the variational parameter a3 in
the wave function for pure solid Ar versus pressure. The dashed
lines, from top to bottom are the variational parameters for the
02, HD, and Hq impurity wave functions, respectively.

Figure 1 shows the transitions investigated in this work,
where (U,J) correspond to the vibrational and rotational
quantum numbers that characterize the states of the mole-
cule. Thus Fig. 1(a) identifies those transitions allowable
for para-H2 and ortho-D2, and Fig. 1(b} is for ortho-Hi
and para-D2. Since HD is not homonuclear all transitions
[Figs. 1(a) and 1(b)] are allowed.

The first stage of the calculation involved relaxing to
equilibrium the first 16 shells of argon atoms around the
impurity and evaluating the wave-function parameters ai,
a2, and a& which minimize the crystal energy, Eq. (13).
At zero pressure, V~22.5 cm /mole, the ratios of the
H2-Ar bond lengths of the first 16 neighboring Ar shells,
to those for a pure argon lattice are 0.9942, 1.0010,
0.9993, 1.0001, 0.9997, 0.9998, 1.0000, 0.9998, 1.0000,
1.0000, 0.9999, 1.0000, 0.9999, 1.0000, 1.0000, and 1.0000,
and the parameters ai, az, and ai equal to 7.62, 57.02,
and 58.25 A, respectively. At P=373 kbar the bond-
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length ratios for the first five shells are 0.981, 1.001,
0.997, 0.997, and 1.000. Thus, the lattice distortion is

very small and remains so for all calculated pressures.
This is also true for Di and HD in argon. However, the
parameters (ai,az, a3) strongly increase with pressure and
depend on the impurity species, as shown in Fig. 2. This
will be shown to be an important factor in the analysis of
the transition frequencies. The dashed lines in Fig. 2
show the ai (right-hand scale) for Hz, HD, and Dz, versus

pressure, and the solid line (left-hand scale) shows a& for
pure argon. a2, not shown, is from 1.1 to 1.25 A lower
than a3 over the entire pressure range. From the values of
ai the local-mode frequencies can be calculated at all
pressures using Eq. (19).

Table I shows the vibrational and rotational transition
frequencies calculated in this work at zero temperature
versus molar volume and pressure. The pressures are
determined by differentiating a polynomial fit of the

TABLE I. Frequency shifts (cm ') with respect to gas-phase values versus molar volume (cm'/mole), for vibrational, rotational,
and rotational-vibrational transitions of H2, D2, and HD impurities in solid argon. Pressures are in kbar.

P Volume So{0) So(1) Q, (0) Qi(&) Sg(0) Si(1) Qi(0) Qi(1) S2(0) Si(1)

0.11
0.86
2.86
5.72
9.80

15.60
23.85
35.66
52.64
77.27

113.37
167.03
248.18
373.37

22.5
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
14.0
13.0
12.0
11.0
10.0

22.5
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
14.0
13.0
12.0
11.0
10.0

—1.77
—1.73
—1.62
—1.42
—1.10
—0.61

0.11
1.17
2.73
5.00
8.32

13.20
20.41
31.17

—0.97
—0.96
—0.91
—0.83
—0.69
—0.47
—0.13

0.37
1.11
2.20
3.80
6.17
9.69

14.96

—2.94
—2.88
—2.69
—2.35
—1.82
—1.01

0.20
1.97
4.57
8.35

13.88
22.01
34.02
51.92

—1.61
—1.59
—1.52
—1.37
—1.14
—0.77
—0.21

0.63
1.86
3.67
6.34

10.29
16.15
24.93

—21.04
—19.94
—16.80
—12.02
—4.96

5.29
20.00
41.02
71.04

114.01
175.74
264.88
394.41
583.76

—17.35
—16.75
—14.90
—11.97
—7.50
—0.88

8.77
22.71
42.82
71.81

113.73
174.60
263.49
394.04

H)-Ar
—21.01
—19.90
—16.75
—11.95
—4.86

5.42
20.17
41.26
71.36

114.44
176.31
265.66
395.45
585.16

02-Ar
—17.35
—16.74
—14.89
—11.95
—7.47
—0.84

8.82
22.79
42.92
71.95

113.92
174.86
263.84
394.51

—22.72
—21.57
—18.27
—13.23
—5.77

5.06
20.63
42.90
74.72

120.29
185.78
280.40
417.94
619.11

—18.30
—17.67
—15.77
—12.73
—8.09
—1.22

8.81
23.31
44.24
74.43

118.10
181.54
274.22
410.41

—23.80
—22.60
—19.18
—13.95
—6.20

5.06
21.25
44.41
77.52

124.92
193.06
291.52
434.65
644.02

—18.91
—18.27
—16.33
—13.21
—8.45
—1.40

8.90
23.80
45.30
76.32

121.21
186.43
281.73
421.78

—39
—37
—30
—19
—4
18
49
93

156
246
375
561
829

1221

—34
—32
—28
—22
—12

1

22
51
92

152
239
364
547
814

—39
—36
—29
—19

18
49
94

157
247
376
562
832

1224

—34
—32
—2S
—22
—12

2
22
51
93

153
239
365
547
815

—41
—38
—31
—20

4
18
50
96

161
254
387
579
857

1261

—34
—33
—29
—23
—13

1

22
51
94

155
244
372
559
832

—42
—39
—32
—21
—5

19
52
98

165
260
396
593
877

1291

—35
—34
—30
—23
—13

1

22
S2
96

158
248
378
567
845

22.5
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
14.0
13.0
12.0
11.0
10.0

—1.27
—1.23
—1.12
—0.94
—0.66
—0.24

0.38
1.28
2.59
4.49
7.24

11.26
17.16
25.89

—2.11
—2.05
—1.86
—1.56
—1.09
—0.38

0.65
2.16

7.50
12.09
18.78
28.61
43.15

—16.09
—14.82
—11.34
—6.18

1.26
11.89
26.96
48.28
78.45

121.24
182.17
269.29
394.44
574.96

HD-Ar
—16.06
—14.79
—11.29
—6.12

1.35
12.01
27.12
48.49
78.73

121.62
182.67
269.96
395.32
576.12

—17.26
—15.95
—12.31
—6.92

0.88
12.02
27.83
50.21
81.90

126.87
190.92
282.55
414.25
604.33

—18.01
—16.65
—12.89
—7.33

0.72
12.24
28.58
51.72
84.50

131.01
197.27
292.07
428.35
625.06

—29
—26
—19
—7

9
32
64

109
173
263
390
572
832

1206

—29
—26
—18
—7

9
32
64

109
173
263
391
573
834

1208

—30
—27
—19
—8

9
32
65

112
177
269
401
588
SS5

1239

—31
—28
—20
—8

9
33
66

114
181
27S
409
599
872

1264
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TABLE II. Measured Raman frequency shifts from gas-phase values (cm ') at zero pressure for H2, D2, and HD impurities in
solid argon at temperature 12—15 K. Data taken from Refs. 2 and 1, the latter in parentheses. Impurity local-mode frequencies v,
are calculated at zero temperature.

System

Hq(Ar)

D,(A )

HD(Ar)

So(0}

3.6
( —2.3)
—6.1

{—0.16)
7.9

so(1)

3.9
( —2.86)
—0.52

(0.68)

Qi(0)

—23.1

( —17.93)
—16.6

( —20.4)
—13.1

Qi(1)

( —18.3)
—14.45

( —20.35)

SI(0)

—17.7

—16.3

—3.5

—19.8

—13.4

vc.m.

112'

vc.m.

(theory)

127

84.4

92R6

'Measured at 82 K.
Measured at 80 K.

energy-volume results. The listed frequencies represent
the shift from gas-phase values given by Stoicheff. '"
Most notable in these results is that the pure vibrational
and vibrational-rotational transitions are strongly red-
shifted in the solid at pressure P=O, compared to the gas
phase. These results can be compared to the observed Ra-
man scattering data of Prochaska and Andrews and Jodl
and Bier (values within parenthesis), shown in Table II.
The calculated pure rotational transition frequencies show
a small red shift at P=O in the solid compared to their
gas-phase values, and comparisons with experimental
data'2 displayed in Table II can also be made. The calcu-
lated and observed local-mode frequencies, v, I, are also
shown in Table II.

At pressures P+0, all the calculated transitions shown
in Table I are strongly blue-shifted with respect to their
P=O solid values. The solid lines in Fig. 3 show our cal-
culated P- V relation at 0 K. The circles represent mea-
surements2' taken at 4 K, and the squares and trian-
gles s are room-temperature measurements. The sohd and
dashed lines in Fig. 4 show the pressure dependence of the
Qi(0) transition frequency for H2 and Dq, respectively.

These curves are almost identical to those for the Qi(1)
transition. The frequencies for HD are quite close to
those for Ht and are therefore not shown.

IV. CONCLUSIONS AND DISCUSSION

An inspection of Table II shows that there exists con-
siderable divergence in the transition frequencies observed
at P=O from different Raman scattering experiments'
and, in many cases, these differences are outside the re-
ported uncertainties. In the work of Prochaska and An-
drews two lines at 4138 and 4144 cm ' were observed for
H2(Ar), and they argued that the 4138-cm ' line corre-
sponded to Qi(O) and the 4144-cm ' lines are due to
molecular aggregates. Jodl and Bier' have argued that
these identifications are incorrect, and that the 4144-cm
line is the Qi(0) mode and the 4138-cm ' line is the
Qi(1) mode. If so, then Prochaska and Andrew's data
would give 17.13 and 17.20 cm ' for the Qi(0) and
Qi(1) frequency shifts, respectively, which puts the two
experiments into good agreement for these modes. A
comparison of our calculated results for (H2, Dt,HD)Ar
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and experiment' for these pure vibrational transitions
agrees with experiment and are well within the uncertain-

ty in the measurements. Moreover, the calculations show
that the shifts in Qi(0) and Qi(1} are nearly the same,
which most closely agrees with the measurements of Jodl
and Bier, ' although it is puzzling that they measure larger
shifts for D2 than for H2. This is contrary to our expecta-
tions and to our results.

The calculated frequency shifts of the pure rotational
transitions, So(0) and So(l) in the solid at zero pressure,
also show red shifts for all the isotopic impurities. These
calculated shifts are small and they agree well with the ex-
perimental data of Jodl and Bier, ' but not so well with the
measurements of Prochaska and Andrews, who get blue
shifts for Hz(Ar) and HD(Ar). In the latter case the mea-
sured blue shift is quite large. It is not possible to say at
this point which of the experiments is most accurate, but
it does have an importiuit bearing on our understanding of
this system. Recall that the orientational term in the po-
tential that couples the molecule to the host lattice was
neglected in this calculation, so the only crystal-field ef-
fect that perturbs the rotational states is the change in the
rotational constant via a change in the intramolecular
bond length, which increases with respect to r, in the
solid at P=O. Thus, the only possible outcome from a
calculation is a red shift, and any reliable measured data
that gives another result must be a consequence of the po-
tential anisotropy.

The calculated vibrational-rotational transitions Si(0)
and Si(1) are also strongly red-shifted at P=O, and while
the agreement with experiments is not as good as for the
pure vibrational transitions, it is, with the exception of
Si(0} for HD, reasonable. The drastic discrepancy for
this mode is not understood. The calculated shifts for the
higher transitions Qi(0), Q2(1), Si(0), and Si(1) have
not been experimentally measured.

The calculated local-mode frequencies at P=O in the
solid are in good agreement with experiment, as shown on
Table II, although care must be taken because the mea-
surements are at 80 K and the calculations are at zero
temperature. In fact, there is clear evidences that these
frequencies v, increase considerably with decreasing
temperature, and by extrapolating the experimental values
to zero temperature it is evident that our calculated results
should agree even more closely with experiment.

Our calculations for each of the isotopic impurities
were extended to pressures 0 &P & 373 kbar. An examina-
tion of Table I shows that all the modes exhibit very
strong monotonic blue shifts with increasing pressure. In
fact, dvldP is approximately 3—4 times larger than for
02, Nq, CO, and CO2 in their own lattices. These large
shifts are no doubt due to the relatively strong repulsion
at small separations in the X-Ar potential. One interest-
ing feature of these results has to do with the fact that the
Qi(0) mode of Hz in its own solid lattice increases in fre-
quency up to approximately 330 kbar and then softens
and begins to decrease, at least up to the limits of the
measurements at about 600 kbar. One may speculate that
this is due to the onset of the often-predicted molecular-
to-atomic phase transitions in solid hydrogen where it is
reasonable to assume that the charge distribution of the

molecule becomes altered by the crystal field of the sur-

rounding molecules, thus weakening the intramolecular
bond. Because the interrelationship between the in-
tramolecular and intermolecular forces in the Hz-Hz in-
teraction is not well known, especially in the condensed
state, a direct test of this hypothesis is not presently possi-
ble. On the contrary, this interrelation is well known for
Hi-Ar because of the work of LeRoy and Carley, at least
for isolated pairs. Thus, a question can be posed. Is the
turnover in Qi(0) in pure solid H2 only a consequence of
the large external pressure of the crystal field on an Hi
molecule, in which case the turnover should be seen for
H2 in solid Ar also, or is it a special feature of Hz-H2 in-
teractions themselves? Our results show no evidence of a
turnover in Qi (0) for H2 in Ar up to 373 kbar.

There is a feature in our calculations that has a bearing
on the above discussions. It is almost certainly true that
the orientational interaction in the X-Ar potential contri-
butes at most a negligibly small amount to perturbing the
vibrational and rotational states of the hydrogen molecule
in solid Ar at P=O. The observed magnitude of the rota-
tional frequency shifts, and the lack of evidence for a
splitting of the rotational levels is consistent with this ar-
gument. However, the coupling constants V2k(R ij ) in the
orientational part of Eq. (6) clearly increase strongly with
increasing pressure so that even small noncubic distor-
tions of the crystal field may become important at high
pressures. If so, the perturbation of the rotational states
could, under the most drastic circumstances, lead to an
orientational order-disorder transition at high pressures,
m ~~ in pure bulk hydrogen.

25 26 An inspection of the
X-Ar potential leads to the conclusion that the vibration-
al states would not be significantly altered by such an oc-
currence, but the rotational eigenstates most surely would.
Clearly, the only way the orientational interaction can
contribute to system properties is via a correlation be-
tween the c.m. and orientational degrees of freedom,
which is missing in our uncorrelated product wave func-
tion. In principle, it is possible to solve this difficult
problem, but it is presently unclear as to what approach
would be most tractable. Experimental information about
the rotational transitions at high pressure would greatly
elucidate this problem and test the validity of the above-
mentioned conjecture.

The Ar-Ar pair potential Vz, used in this work is taken
from the electron-gas work of LeSar' and is fitted so that
the well and long-range region closely agrees with the ex-
cellent work of Aziz and Chen, and Barker and Bobetic. '

In this way the known departure in the condensed phase
of the short-range repulsive region, given by accurate iso-
lated pair potentials, is properly described. As shown by
Fig. 3, the calculated pressure-volume relation is in excel-
lent agreement with low-tern erature measurements ' and
with room-temperature data '2 when thermal corrections
are accounted for, as provided by Zou et al. and Finger
et al. Note that the room-temperature data coincides
with our zero-temperature isotherm mentioned above, ap-
proximately 100 kbar, where thermal corrections are rela-
tively small. Thus, it is expected that the calculated pres-
sures are quite accurate. Regardless, the volume depen-
dence of the frequency shifts depends almost entirely on
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the Hartree average of Vok(R ij ) and only very weakly on
the details of the short-ranged part of the VA„as has been
verified by calculation.

Finally, we have examined various special cases of our
theory in order to better understand the important
features of the problem. In one case, an Einstein approxi-
mation was used in which the Ar atoms are fixed classi-
cally at their relaxed equilibrium lattice sites. In that case
the Hartree averages in Eqs. (15) are of the form
(Ri

~ Vot, (
~
Ri —Rg ~

)
~
Ri ) which reduces to simple one-

dimensional integrals. The results for the various transi-
tion frequencies and the local-mode frequencies are quite
close to the full Hartree approximation characterized by
Eqs. (9)—(12). An examination of the ai shows why this
is so. That is, ai &&at, i =2,3, . . . , so that the rms c.m.
fluctuations of the argon atoms are very small compared
to hydrogen and can, to a first approximation, be neglect-
ed. A more drastic approximation, which treats the c.m.
motion of the molecular impurity as well as the argon
atoms classically, was also carried out. In this case, the

g& (Vok) in Eqs. (15) become simple classical lattice
sums. Here, the error is dramatic. For example, the shift
in the Qi(0) mode for Hi at P=O for this case is —33
cm ', compared to —21.04 cm ' based upon the full
Hartree average. Thus, averaging the contributions

gi ( Vpk(R')ii ) over at least the c.m. motion of the hy-

drogen impurity is vital in obtaining accurate results.

In summary, we have predicted the frequency shifts of
all the low-lying vibrational-rotational transitions of H2,
Dq, and HD over a wide range of pressures, and the agree-
ment with experiment' has been generally quite good, al-
though a few unexplained exceptions exist. In this work
we have taken advantage of the most recent descriptions
of the X-Ar potential, and the intramolecular potentials
have been expanded out to seventh order in the bond-
length displacement from equilibrium, which was deter-
mined to be necessary to achieve the desired accuracy. In
addition, the relaxation of the host lattice around the im-
purity was calculated to high accuracy. It is evident that
additional experimental information that gives the fre-
quencies of a larger number of rotational and vibrational
states than is now available would be highly desirable in
the solid at P=O and at high pressures.
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