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%'e present a semiphenomenological model calculation of the nitrogen-related traps in GaP and

related compounds. %orking in the one-band —one-site approximation, the complex character of the

lowest conduction band is taken into account by using the model density of states previously intro-

duced by Kleiman. In the case of NN pairs in GaP, this results in different series of levels whose

energy position depends on structure factors which couple the nitrogen-nitrogen relative positions in

real space and the extrema of the conduction band in lr. space. A tentative identification of these

levels is done, in the light of the present calculation, by taking account of the experimentally deter-

mined symmetry. A comparison is next performed with recent hydrostatic stress experiments and

with the pair dependence of the local-field parameter which splits the I 8 bound hole. Concerning

isolated nitrogen, the model predicts composition and pressure dependences in very good agreement

with experimental results in Ga„Inl P, GaAsl „P„orGaAs.

I. INTRODUCTION

In spite of considerable theoretical and experimental in-

terest, the understanding of isoelectronic traps in semicon-
ductors is still far from complete. The best example is ni-

trogen in gallium phosphide. ' In the concentration range
N &10' cm, nitrogen acts as an isolated electron trap
which behaves like a deep center. The corresponding
binding energy is, however, vanishingly smaller'~ and the
exciton binding energy ( —11 meV) is only understood in
terms of exchange and correlation effects. In the concen-
tration range N & 10' cm, a second series of traps ap-
pears deeper in the forbidden band. The corresponding
centers are pairs of nitrogen atoms. A conventional
model, first proposed by Thomas and Hopfield' associates
the deeper state NNi with two nitrogen atoms in first-
neighbor position on the anionic sublattice; then NNz
would correspond to the second-neighbor position, and so
on. This natural viewpoint is supported in part by stan-
dard model calculations made in the framework of the
effective-mass theory, which, however, ignores the mul-

tivalley structure of the conduction band in GaP. In fact,
the only two (to our knowledge) ' elaborate calculations
which have explicitly taken into account this complex as-
pect of the conduction band show that rather intricate in-
terference effects due to the presence of equivalent mini-
ma in the Brillouin zone severely affect the position of the
pair levels and that this simple natural ordering is lost.

In the preceding paper, hereafter referred to as paper I,
we have presented an investigation of the real-space orien-
tation of nitrogen-nitrogen (NN) pairs in GaP. Applying
a series of uniaxial stress in order to lower the crystal
symmetry, we could deduce in turn the symmetry proper-
ties of pairs ranging from NNi to NNq. We came to the
conclusion that the standard assignment could not stand
up to experimental results and should be reinvestigated to

account for the new experimental findings. It is the pur-
pose of the present work to provide us with a semi-
phenomenological model calculation which keeps all the
basic ingredients of the problem —e.g., the short-range na-
ture of the nitrogen perturbative potential and the mul-
tivalley structure of the conduction band of GaP—but
stays simple enough to be extended to the analysis of the
experimental data under external perturbations. Although
such an oversimplified model cannot be expected to give
absolute energies for the pair recombination lines directly
comparable to the experimental data, it will be helpful in
clarifying the relative infiuence of the interference effects
due to the presence of several principal and subsidiary
minima in the Brillouin zone. On the basis of the result-
ing ordering of the levels and of the experimentally found
pair symmetry, a tentative identification of the levels ori-
gin will be discussed. Since the multivalley structure of
the conduction band in GaP strongly affects the position
in energy of the pair levels and their pressure dependence,
the results of our model will be checked versus hydrostat-
ic pressure and alloy composition in Ga„Ini „P and
GaAsi, P, . The behavior under hydrostatic pressure of
the N level in GaAs will lastly be considered in the light
of recent experimental data.

II. SPECIFICITIES OF THE PROBLEM

A correct description of the binding mechanism of exci-
tons bound to isoelectron centers has deserved consider-
able attention during the last twenty years. Focusing
only on nitrogen in GaP, the most important points are
the following.

(i) Hopfield, Thomas, and Lynch (HTL) introduced the
very workable concept of isoelectronic donors and accep-
tors. According to this simple vie~point, nitrogen in GaP
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is an isoelectronic acceptor. It introduces a bound state
for the electron which next binds a hole by Coulomb in-

teraction. Although its binding energy is very weak, this
bound-electron level possesses the characteristics of a
"deep-impurity state" because of the localized nature of
the impurity potential. Such a viewpoint is partly sup-

rted by luminescence excitation spectroscopy in the case

of deep NN pairs. ' On the other hand, assuming that the
potential of the substitutional impurity is nothing but the
difference between the bare atomic (pseudo) potentials of
nitrogen and phosphorus, Faulkner performed a pioneer-

ing calculation. Developing the bound state over the two
lower conduction bands, he ended up with a binding ener-

gy of the order of 1 eV, which is two orders of magnitude
larger than the exciton binding energy ( —10 meV).

(ii) Discussing the weakness of this approach, both Phi-
lipps" and Allen'i suggested that the lattice deformation
around the impurity should play an important part in the
binding mechanism. Indeed, recent Green's-function cal-
culations proved that significant results could be achieved

by taking into account the multiband nature of the level'~

and by using a more realistic medium-range potential
but, although the position of the bound-electron level was
found to be more realistic than the one formerly obtained

by Faulkner, more progress in this direction sf+ms yet to
be rather difficult. This is because of the farmidable task
of incorporating properly lattice relaxation as well as elec-
tronic polarization and multielectronic correlations in a
multiband self-consistent calculation. ' '

(iii} Coming now to the problem of NN pairs in GaP, a
simplified non-self-consistent approach is usually adopted
in which the whole perturbation is obtained as the super-
position of two identical model potentials adjusted to
describe properly the isolated impurity. In this way both
Faulkner, s on the one hand, and Brand and Jaros, 6 on the
other, report a satisfactory agreement with experimental
data as far as the energy range of pairs spectra is can-
cerned (-0—150 meV). However, their resulting se-

quence of levels differ with each other and also with the
conventional assignment.

It is the purpose of the present work to check how far a
simple calculation can lead when dealing with nitrogen
pairs. Similar paths along this line have been already fol-
lowed by Hsu et al. '6 and by Kleiman, ' but were mostly
restricted to isolated nitrogen. In this work we perform a
Slater-Koster —type model calculation which takes into
account the indirect structure of the lowest conduction
band in GaP. We find that different series of levels

should appear, depending on the structure factors which
couple the nitrogen-nitrogen distances in real space and
the extrema of the density of states in k space. Most lev-

els obtained in the calculation correspond with sym-
metries Cz„or C, and can be associated with the experi-
mental results of paper I. However, some levels appear
also in the calculation which do not correspond to existing
symmetries. Since similar orderings are found in more
elaborate calculations, ' we do not believe in a systematic
discrepancy. These levels should correspond to lines of
unidentified symmetry and confirm that lattice-relaxation
effects play a very important part in the final description
of the complex.

III. BINDING TO NN PAIRS:
A ZERO-STRESS CALCULATION

The most general Hamiltonian that describes a bound-
exciton state is

H =Hp(e)+ V;(e)+Hp(h)+ V;(h)+ V(e, h)

where Hp(e) and Hp(h) stand, respectively, for the indivi-
dual Hamiltonians of the electron and the hole in the ab-
sence of one another in the perfect crystal; V~(e) is the
short-range (attractive) impurity potential, associated with
pair i, which binds the electron, while V;(h } is the (repul-
sive) isoelectronic potential experienced by the hole;
V(e,h) denotes the mutual Coulomb and exchange in-
teractions. Let us follow the path of HTL and concen-
trate on the electron binding energy E,. This is found by
solving the simplified Hamiltonian

[Hp(e)+ V;(e)]
~ y) =E,

~ y) . (2)

The localized electron (E, ) behaves like an acceptor and
binds a hole with an energy EI. The binding energy of
the exciton is then Es E, +Ez——. These simplifying as-
sumptions mean that the acceptor binding energy EI is in-
dependent of E, and that the variations in the exciton
binding energies E~ are primarily determined by the elec-
tronic part of the perturbation. This has been well estab-
lished for deep NN; pairs. 'p Next, in the light of a pertur-
bative approach it will be interesting to examine the possi-
ble dependence of El with the configurations of the pairs.
This will be done in the following section (Sec. IV), where
a comparison between the theoretically and experimental-
ly determined local-field parameter si is made.

In order ta simplify the computational work and get an
easily tractable model which could be extended to the
analysis of external perturbations, we now make the so-
called "ane-band approximation. " This amounts to
neglecting the expansion coefficients of the bound state

~
g) on all crystal Bloch states except the lowest conduc-

tion band. This can be justified in the light of previous
multiband calculations ' and, because of the small bind-
ing energies investigated, should not be a too bad approxi-
mation.

A. Model potential

Within this scheme, Hp(e) now describes the lowest
conduction band of GaP, while V;(e) corresponds to the
pair potential. Since we just want one single parameter in
our semiphenomenological calculation, the best way is to
concentrate first on NN„. This corresponds to the well-
known problem of one single nitrogen atom in GaP whose
solution is a marginal potential with a vanishingly small
binding energy. Expanding

~
P) on the Wannier func-

tion of the conduction band, we get the bound state as a
solution of the equation

where
i R„) denotes the conduction-band Wannier func-

tion (WF) centered at site R„and Gp(E) is the Green's
function of the conduction band:

Gp(E) =(E—Hp)
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Written in the WF basis, the matrix elements of the
Green's function are

ik.(R„—R )

(R„ i Gp(E) iR~)=-
k

(4)

E(k) is the energy of the Bloch state with wave vector k,
and the sum in (1) has to be extended over all the wave

vectors of the first Brillouin zone (BZ). U is a short-range

Koster-Slater (KS)-type potential which acts on electrons
in the conduction band. In order to check the possible
importance of lattice-relaxation effects, we investigated
two slightly different models. First a conventional (one-
site) KS potential was used. It affects only the site of the
impurity and can be easily fitted to give a vanishing bind-

ing energy for isolated nitrogen. Next, an "extended"
KS-type potential was introduced. It affects both the site
of the impurity and the first shell of its nearest (anionic)
neighbors. Previous investigations along this line concera
isolated N traps in GaAsi, P, (Ref. 16) and it was found
that such a model potential might simulate the strain field
surrounding the impurity. In this work we use the same
type of medium-range potential to investigate how a more
extended perturbation could affect the results obtained
with a zero-radius Koster-Slater approximation. It is
shown in Ref. 16, that within the energy range of interest
here (0—150 meV) and when dealing with the totally sym-
metric A i state which is the most likely to be bound, this
extended KS model is formally equivalent to an energy-
dependent one-site potential. As a consequence, we shall
write the pair potential as

V, =V,(io)(oi+ iR;)(R; [),

—ik.k.
((}(k)=A Up 1+

E+ E—k

where A is a normalization constant. As already noticed
by Faulkner, it is clear from Eq. (9) that two different
states will exist. States with P(k =0)=0 cannot be associ-
ated with the direct creation and/or recombination of a
bound exciton at k=O. They are said to be dipole forbid-
den. States with ((}(k=O)+0, on the contrary, are dipole
allowed. We shall come back to this point later when dis-

cussing the results of the calculation. Let us now define
the model density of states used to describe the conduc-
tion band.

B. Model density of states

In order to perform reliable comparisons, we have used
in this calculation the model density of states already in-
troduced by Kleiman. ' The BZ is partitioned in regions
associated with I, X, and L, minima around which the en-

ergy dispersion of the band E;(k) is approximated by a
parabolic expansion of finite extent. The great advantage
of such an approach lies in its ability to describe the mul-
tivalley aspect of the conduction band in GaP as well as
the change in band structure which appears under hydro-
static and/or uniaxial stress or when alloying GaP with
GaAs. This can be done simply by shifting the relative
minima 1, X, and L relative to each other and taking the
appropriate effective mass. A full description of the
model is given in the Appendix, together with the numeri-
cal values affecting the parameters.

In this case, the Green's functions can be expressed as

where 0 and R; indicate the locations in real space of the
two N impurities constituting the pair. V0 is constant in
the one-site approximation.

The bound states introduced by the different NN; pairs
are then easily found as solutions of

Gp(E) =gr(E)+3gx(E)+4gl. (E),

Gp(EiR~)=fr(Ri)gr(E
I
R

I )+fx(R }gx(E
I
R

I
)

+fr.«)gl. «
I

R
I »

(10)

Gp(E)+Gp(E, R;)= 1
0 & I y

where Vp produces a bound level with energy ' Ep-0 for
the isolated impurity (marginal potential):

1
Gp(Ep) =

V0

In these expressions, Gp(E) and Gp(E, R;) are the diago-
nal and nondiagonal Green's function given by

ik R,.

Gp(E, R;)=—
X q E Ek—

The plus and minus signs in Eq. (6) correspond, respec-
tively, to the familiar bonding and antibonding molecular
states E+ which lie on either side of E0. The k com-
ponents (i.e., the expansion coefficients on the Bloch func-
tions of the conduction band) of these two states can be,
respectively, written as

where the functions gk(E) and gk(E,
~
R;

~
), correspond-

ing to the three minima I, X, and L, are given in the Ap-
pendix. All coefficients fk(R;) (k =I,X,L) are structure
factors defined by

where the sum in (11}has to be performed over all non-
equivalent minima of type k whose position in k space is
given by Kl. The important point to outline is that, ac-
cording to the relative separations R; between the two ni-
trogen atoms, these structure factors take different values.
They are listed in Table I.

The nitrogen-nitrogen pairs can now be classified into
(2X3} classes, according to the respective values of the
fk(R; }. Each class is constituted by all R; values which
have the same set of structure factors. Lastly, since each
gi, (E,

~
R;

~
) is a monotonical function (decreasing with

increasing ~R; ~
), it is readily seen from Eq. (6) that

within each class the binding energy of NN impurity lev-
els is a monotonically decreasing function of

~
R;

~

. In
other words, within a class, we find the simple physical
idea that the closer the impurities the deeper the bound
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TABLE 1. Structure factors fk(R;) which concern both I
and I. valleys for several values of the nitrogen separation E.
%e define 8 as a function of the components along the elemen-

tary cubic axis: ~=(ai2)(m+Pj+yk), with a =5.45 A.

110
112
002
022
224
222
044
244
123
013

fx(~)
—1
—1

+3
+3
+3
+3
+3
+3

—1

fr. (Kpy)

0
0

+4

0
0

state. The new point comes from the six different classes

introduced by the multivalley structure of the conduction
band. The relative ordering of levels which belong to dif-

ferent classes can only be obtained by a numerical calcula-

tion.

C. Numerical results and discussion

We have used both the one-site approximation and the
multisite nearest-neighbor KS-type potential already dis-
cussed. Both were ad&usted to give a vanishing binding
energy for the isolated N impurity and give energy levels
in close agr~mnent. This is shown in Table II. The most
striking feature of both calculations is the relative order-

ing of the levels. Although these energies have the correct
order of magnitude when compared with the experimental
data of Cohen and Sturge, ' the pair ordering is at vari-
ance vrith the one predicted by the conventional model.
This is a direct consequence of the dependence of the non-
diagonal Green's function Go(E,R;) on the direction of
8; which comes through the structure factors fk(R&).
The lowest level does not originate from the nearest-
neighbor (011) pairs as in the conventional model but
rather from more distant (022) pairs. Even more in-
teresting to discuss is the fact that (110) should not be
dipole active. This comes from the infiuence of the X val-
leys which greatly outweights that of L and I' because of
their proximity to the bound levels.

The six classes of pairs previously defined can be re-
grouped into two families, according to the value of their

TABLE II. Electron binding energies obtained for NN pairs
in the calculations using different model potentials.

Pair

220
200
400
422
440
442
622
660
644

110
211
123
013

Dipole
character
at k=0
allo~ed
allowed
allowed
allowed
allowed
allowed
allowed
allowed
allowed

forbidden
forbidden
forbidden
forbidden

Unisite
calculation

114
46
44
28
19
1S
12
11
9

66
19

8

8

Multisite
calculation

117
43
40
23
14
11

8

6

64
14

allowed

structure factors at point X (+ 3 or —1). fx(R)=+3
gives only a bound level when the plus sign is inserted in
Eq. (6), while for fx(R) = —1, only the minus sign gives a
bound state. Now, it is readily seen from Eq. (9) that in
this latter case the k=0 component of the impurity state
is null: without the participation of a momentum conser-
vative phonon, we cannot directly create or recombine a
bound exciton. Belonging to this family are (110),
(112), (123), ete. As previously analyzed by Faulkner, '
we emphasize that these striking effects come from the in-
terferences between the contributions of each X minimum
to the wave function of the impurity level.

These interferences are a direct consequence of the mul-
tivalley structure of the conduction band and of the
short-range character of the perturbative potential. This
prevents, in our case, the use of the conventional interval-
ley scattering perturbative approach, as it is often used in
the framework of the effective-mass thtxiry. However, in
the framework of this theory, it has been effectively
shown that such interferences induce a renormalization of
the effective potential appearing in the effective-mass
equation. ' In our case, this is the same kind of renormal-
ization which occurs for axial defects, but the renormali-
zation is now orientation dependent.

We perform in Table III a comparison between the

TABLE III. Respective order of levels which have been found by Faulkner (Ref. 5), Jaros and Brand (Ref. 6), and in this work.
The deepest pairs with allowed (forbidden) configurations are 220 (110),whatever may be the details of the calculation.

Faulkner'

Jaros et al. b

This work

'Reference 5.
b Reference 6.

aBowed
forbidden

allowed
forbidden

allowed
forbidden

220
110

220
110

220
110

200
330

200
411

400
310

400
321

222
211

420
330

422
411

422

420

222
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theoretical ordering found in this calculation and the one
obtained by Faulkner and Brand and Jaros. There is a
striking similarity between our results and those obtained

by Brand and Jaros. In the calculation of Brand and
Jaros, a sophisticated Green's-function method, involving
a ten-band expansion for the defect levels and a model
pseudopotential for the N impurity, was used. The model
pseudopotential incorporated a short-range attractive part
and a medium-range repulsive contribution. In both cases
we find the following: provided the isolated N level is ad-
justed at the conduction-band edge, the (022) pairs lie at
nearly the same energy in both calculations. This together
with the close correspondence between the ordering of
most energy states led us to feel that our approach
(despite its simplicity) retains all the basic ingredients of
the problem. The disagreement between the conventional
affectation of the levels and the energy scheme found in
both theoretical approaches is evident. It can be explained
in two different ways.

(i) Either one assumes that a calculation cannot provide
reliable informations about the pair problem (this is the
standard viewpoint, implicitly adopted up to now}, or

(ii) one assumes that the theoretical results might have
some significance and use it «s a guideline in discussing
the experimental data. Of course we know -that no
theoretical approach can be expected to position the
bound states with an accuracy sufficient to allow an
unambiguous one-by-one affectation but we can try to
make a tentative identification in terms of local symme-
try. In other words, we shall classify all states which are
compatible with the results of the calculations and the ex-
perimental findings.

The first problem we want to deal with concerns NN2.
Remember that NN2 (i) is associated with a very small
luminescent intensity, (ii) has never been found in absorp-
tion experiments, " (iii} exhibits the most important pres-
sure coefficient, and (iv) exhibits the larger local-field
splitting of the bound hole. ' We believe that NNz is a
forbidden pair associated with the two nitrogen atoms in
first-neighbor position ( (110) pair).

%'e emphasize that this assignment does not corre-
spond, in a strict sense, to the result of the calculation (the
(110) states appear too high) or to the local symmetry
[we have found a local symmetry (aac) with a &c].
These discrepancies certainly come from the relaxation of
the lattice around the defect which contributes to making
the trap luminescent. It is to be noted here that the ex-
istence of theoretically forbidden or allowed transitions
previously noted [Eq. (9}] is strictly dependent upon the
superposition rule [Eq. (5}] implicitly assumed in con-
structing the pair potential. Although this rule is
presumed to be valid at large separations, the additivity of
local strain effects around each impurity (which can be
absorbed in the one-site potential at large distance) be-
comes more and more questionable with decreasing dis-
tance. The highest sensitivity of the (011) pair to hydro-
static pressure could then also be explained by a coupling
between the two Wannier functions centered- an each im-
purity via a strain-induced potential.

Concerning NN~, we resolved a local C2„symmetry
which agrees satisfactorily with the symmetry of the

lower bound state with P(k=0)&0. This is (220), what-
ever the model calculation is (see Table III). Accordingly
we believe that NN, is associated with the family of
(220) pairs. NN4 and NN7 correspond also with Cz„, ex-
perimental symmetry, and strongly radiative defects.
Similarly, we believe that they should be associated with
the next defects of (aa 0) symmetry obtained in the cal-
culation. They are (440) and (660) pairs, respectively.

Concerning NN3 we resolved a C, local symmetry and
a close consideration of the data suggested a &c. Since
the pair appears strongly allowed, both in luminescence
and absorption spectroscopy, we do not believe in a for-
bidden configuration. We suggest that NN3 might be as-
sociated with the (442) pair [which is the pair of lowest

energy which appears in the different calculations with
(aac) symmetry and a &c] or with any configuration
similar to (442).

Concerning NN5 and NN6, we could not resolve any
unainbiguous splitting patterns and clearly determine the
local pair symmetry. However, outlining the preferential
sensitivity to (001) stress which had been noticed, we
suggested some possible C, orientation with c & a. Again
we emphasize that NNs corresponds to strong absorption
and luminescence lines: it should not be associated with a
forbidden pair. On the other hand, we find in the calcula-
tion, two levels ((002) and (004) ) which cannot be sim-
ply associated with any experimental result, despite the
fact that their calculated binding energy lies in the compa-
tible energy range. The corresponding symmetry does not
correspond to any splitting patterns under stress of any in-
vestigated pair. We have thus performed several model
calculations, slightly varying the parameters in Kleiman's
conduction-band model. We have next used another
model density of states due to Mariette et al. ' and even
introduced anisotropic masses at point X. Every time we
find the same ordering for the lowest level, which indi-
cates a strong insensitivity to the details of the model
used. Keeping in mind the oversimplification of our
model, which does not include long-range strain or polari-
zation effects and involves an oversimplified conduction-
band model, we suggest that I~q could be associated with
the lowest level ((200) ), provided a strong lattice distor-
tion is involved.

Concerning NN6, the radiative efficiency is lower and
two possibilities exist which should be equally discussed.

(i) Either we deal with an allowed pair and, in this case,
NN& might correspond to any pair with C, symmetry pro-
vided c &a (for instance, (422), (622), (644)) (it might
also correspond to (400), provided a large lattice relaxa-
tion is involved}, or

(ii) we deal with a forbidden pair; however, in this case,
a large lattice relaxation should be involved in order to ex-
plain the radiative efficiency. As seen in Table III, the
next forbidden pair which appears in the calculation is
(112).

IV. DESCRIPTION OF LOCAL-FIELD
SPLITTINGS OF I SOUND HOLES

We want first to investigate, in light of the assignment
previously discussed, the local-field effect experienced by
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where

Q(ri, rz)=3R /8+r]/4 —3rz/4+3(ri —rz) /(8R ) .

The integration over dr, can be performed analytically;
then, the integration over dr& is done numerically.

Let us now discuss the choice of Vz(rz). Far the
isoelectronic potential, Vz is just a constant in a sphere of
radius ro. For the potential created by the electronic
cloud, we proceed as follows: we assume that the shape of
the electronic cloud depends mainly on the binding energy
and an the effective mass of the electron. In the Hartree
approximation, one can show that the wave functions of
the electron are quite similar in NNX and in NN . On
the other hand, it was shown in Sec. III that the NN
problem in GaP was tricky because of the contributions of
X, I., and I conduction bands, each NN configuration
giving rise to specific interference effects. Considering
that the weight of X and L valleys is preponderant and
that average effective masses are comparable in these val-

leys (-0.6mo), we admit that for each NN configuration,
the true system can be replaced by a single-valley semi-
conductor, where the depth of the isoelectronic potential
(acting on the electron) has been adjusted in order to
reproduce the experimental binding energy of NN, We
have used a scp~~re-well potential of radius ro 1.5 ——A and
the electrostatic potential Vz is computed from the charge
density by integration. Equation (14) has been evaluated
for NN] to NN7 using the pair configuration suggested
from the results of uniaxial stress experiments combined
with the theog of NN binding energy (see Sec. VII). A
value a'=12 A was used. The results are summarized in
Table IV. We have taken for the isoelectronic patential
acting on the hole V~ ——2.83 eV in order to get an exact
value for NN4 (in that part, the isoelectronic potential act-

ing on the electron is V, = —8.25 eV). Notice that this
value of V]] is in the range of admissible values.

By inspection of Table IV, one can draw the following
conclusions.

(i) The two perturbations we have computed indeed give
sizable contributions to a~.

(ii) With our choice of Vi„ the net result has indeed the
right order of magnitude and the positive sign of s] is im-
posed by the perturbation of the nonspherical electron
cloud.

(iii) The perturbation related to size mismatch, which
we have neglected, decays rapidly with pair separation;
very likely, it plays a significant role only for NNz and
NN).

(iv) For NN6 we gave two possible assignations: (400)
and (211). The comparison favors the second one.

Nz[F(r, r, )z+F(—r, rz) +2F(r, —r] )F(r, —rz)], —

where N z=2(1+0) and 0 is the overlap integral. We
neglect the cross term on the grounds that it is rather cen-
tered around the midpoint 0. Then V{r) in (12) is the
sum of two equivalent parts Vi and Vz centered on each
N atom; the integration in (12) can be done in the bipolar
representation

a=8C, C, V, r, exp —Zr, a' z' ——,
' x'+y'

)& r] rzR 'dr, drzdg, (13)
pvhere r~ and r2 are polar coordinates originating, respec-
tively, from 0 and N atoms; R is the ON separation. After
some algebraic manipulations one gets

5=16mC]Cz/R I drz rz Vz(rz)
R+r2

dr]r i exp( —2r]/a')
I
R —r2 j

V. HYDROSTATIC PRESSURE DEPENDENCE

%'e have already published a detailed investigation of
the pressure dependence of ¹elated traps in GaP (Ref.
20). Striking results were obtained which demonstrated
the great sensitivity of the binding energy to the lattice
perturbations. Increasing the pressure, one expects the
lattice constant to decrease. This should result in a
deepening of the binding energy which is not found. In-XQ(r„rz), (14)

e rs bound hole. Experimental investigations have been

conducted along this line in Ref. 19, and the magnitude of
the local-field parameter {e])has been obtained. It is in-

teresting to note that e] was found maximum for NNz but

practically canceled for NN5 and NN6. In this section, we

show that we can identify and evaluate two explicit con-

tributions to the uniaxial-field parameter s].
The bound-exciton wave function is taken in the Har-

tree approximation as f(r, }g(ri, }, where g(r], ) is an ac-
ceptorlike wave function centered at the midpoint 0 be-

tween the pair, and f(r, ) is of the bonding type. In Ref.
22 it was shown that in zinc-blende semiconductors the

acceptor ground state undergoes a splitting b, when sub-

mitted to a perturbation V(r}:

6=4C, C, J V(r]exp( 2m la'(—[z —,'(x'+y (]—d'r,

(12)

where Ci and Cz are normalization coefficients of the
Kahn-Schechter wave function and a'=2/(a~ '+az ');
a] and az are Bohr radii of this multicomponent wave
function. It is obvious that a nonzero value of (1}( is ob-
tained if V(r) has contributians of quadrupolar symme-
try. In our problem, one can easily find two such contri-
butions.

(i) The attractive potential of the electronic cloud corre-
sponding to the bonding wave function f ( r, ).

(ii} The repulsive potential, of isoelectranic origin,
which is produced by the two nitrogen atoms on the hole;
let us remark that this component was hitherto neglected.
Its sign, as well as its order of magnitude, can be obtained
from the work of Harrison.

One can anticipate a possibility of cancellation between
these two contributions of opposite signs. A third contri-
bution related to the lattice strains caused by size
mismatch is also present; however, for isalated N, it can
be incarporated into the isoelectronic potential. For a
pair, a contribution of lower symmetry might arise be-
cause strains would not add linearly; such terms are not
evaluated in this paper.

The electronic wave function f ( r, ) =N[F(r, r,)—
+F(r, —rz)] gives rise to a density of charge
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TABLE IV. Comparison of the theoretical and experimental values of the local-field parameter cl
which drives the splitting of the I 8 bound hole. The isoelectronic potential V~, acting on the hole, has
been adjusted to give an exact value for NN~. In the case of NN~, two possible assignments have been
found. The comparison favors (211).

NN)
NN2
NN3
NN4
NNg

NN6

NN7

Assignment

(22O)
( 110)
(442)
(440)
(2OO)
(21»
(4(x})
(660)

2R
(A)

7.71
3.85

16.35
15.42
5.45
6.67

10.91
23.113

0.8
0.184
2.5
1.71
0.2
0.3
0.7
2.28

—0.7
—0.224
—1.6
—1.49

0.4
—0.5
—1.1
—1.8

E)

(theory)

+ 0.1

—0.04
+ 0.9
+ 0.22
—0.2
—0.2
—0.4
+ 0.48

El

(expt. )

0.3
0.45
0.20
0.22
0.07
0
0
0.25

creasing the pressure, one finds the binding energy to de-

crease both for single-impurity bound excitons and pair
levels. Identical results have been found independently by
other workers.

Using a simple model of coupled quantum wells, this
could be satisfactorily accounted for by renormalizing
versus pressure the potential well associated with each ni-

trogen impurity. This was done in the form
V= Vp(l+e}, where a variation of s versus pressure
d s/dP = —0.S% per kbar around a mean value

ep ———0.08 was shown to fit nicely the evolution of all

binding energy from NNi to NN„. Since we believe in a
new ordering for the various pair levels, it is of interest to
check how the evolutions under hydrostatic pressure are
accounted for in the new model. Intuitively, under appli-
cation of a hydrostatic pressure, two effects must happen.
They should act again in an antagonistic manner on the
bound states.

(i} The distance between the two N impurities decreases.
This should result in a deepening of the level.

(ii) The lattice constant decreases. This dilates the Bril-
louin zone, moving the minima of the conduction band
further apart in k space, and thus reduces the strength of
the interferences. This should induce an uprise shift of
the level. Indeed, this effect has been recently analyzed by
Resca in the framework of the effective-mass equation.
He has shown, that with increasing pressure, the interval-

ley scattering factor
~
P(r)

~

which multiplies the impuri-
ty potential V(r) in his effective-mass formalism is scaled
to a smaller region around the defect, which results in a
lowering of the binding energy of the bound level.

Which of these effects is the dominant one can only be
answered by performing a numerical calculation.

A. Details of the pressure-dependent calculation

Under application of a hydrostatic pressure, the con-
duction band deforms. Each I, X, and I. minimum shifts
with its own pressure coefficient C;. When considering
axial defects it is expected that the pressure coefficient de-

pends upon the relative weights of the regions around I,
X, and L and thusin , our model, varies differently ac-
cording to the class of defects to which it belongs. In our
numerical calculation, we first consider a linear variation
of the lattice constant versus pressure:

a =ap[l+(Sii+2Si2)P] .

(P is taken negative for a compression, and the coeffi-
cients SJ have been taken from the literature. )

We also assume a linear shift of each minimum with
pressure, with coefficients C» ———1.4 meV/kbar, Ci
=S.S me&/kbar, Ct ——10.7 meV/kbar, according to the
work of Ref. 2. All results are listed in Table V for the

TABLE V. Calculated changes in electron binding energy (meV/kbar ) versus hydrostatic pressure.
(a) takes only into account the change in nitrogen-nitrogen distance, (b) includes the change in band
structure„(c) accounts also for the change in BZ, and lastly, (d) corresponds to theoretical values ob-
tained by changing the nitrogen potential by —0.5% kbar

NNl
NN2
NN3
NNg
NN5
NN6
NNp

' Reference 20.

Assignment

220
110
442
440
200
211
660

0.28
0.22
0.15
0.18
0.20
0.17
0.12

—1.1
—0.7
—0.2
—0.4
—0.5
—0.4
—0.3

—1.98
—1.31
—0.63
—0.75
—1.21
—0.70
—0.65

(d)

—5.9
—3.7
—1.9
—2.2
—2.8
—2.3
—1.6

Expt. '
—3.13
—3.52
—2.72
—2.10
—1.91
—1.65
—1.8
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NN; pairs, together with the experimental values. Con-

sidering only the change in nitrogen-nitrogen distances,
band-structure effects, and renormalization of the Bril-
louin zone, the signs and orders of magnitude are correct-

ly reproduced (all levels more towards the conduction
band), but the calculated values displayed in column (c}
are systematically lower than the experimental ones. This
difference cannot be attributed to the hole contribution
which is one order of magnitude lower and must be as-

cribed to a change in potential experienced by the elec-

tron, originating most probably from the variation versus

pressure of the local strain field surrounding the defect.
In fact, it can be verified using an extended impurity po-
tential that a local compression around each N atom re-

sults in a decrease of the equivalent one-site effective po-
tential. This is best seen on Fig. 1. We show V,ff/Vo for
different strengths of the intersite first-neighbor interac-

tion. Intuitively, one may think that the pressure will de-

crease the distance between each N atom and its sur-

rounding neighbors, increasing the nondiagonal matrix
elements Voi of the impurity potential and thus resulting
in a delocahzation of the electron. Taking a variation of
these nondiagonal Voi matrix elements of the multisite
SK potential of + 7% per kbar is found in our model to
be equivalent to a decrease of =0.5% for the one-site ef-
fective potential and results in a satisfactory agreement
between the calculated and experimental variations of the
binding energies, as can be seen in Table V.

VI. DEPENDENCE OF LEVELS VERSUS
COMPOSITION AND PRESSURE IN Ga In~ „P

AND GaAs& P

In the preceding sections we have shown that an easily
tractable model calculation accounts satisfactorily for the
physics of the nitrogen problem in GaP. This could be
done by simply adjusting one matrix element which de-
scribes the nitrogen potential. Applying a hydrostatic
pressure we have found that this matrix element varies.
Again we could fit a complete series of data by simply ad-

justing the pressure dependence of our marginal potential.
Since pressure and alloying have long been recognized to
induce very similar effects, the question is to check the
model versus composition.

A. Ga„In) „P

This corresponds to the simple example of alloys where
one substitutes only the cation. Assuming that the main
effect of both pressure and alloying is to change the
strength of the strain field surrounding the impurity, we
can compute the composition dependence of the nitrogen
level in Ga Ini P from the change in lattice constant.
Increasing the lattice constant increases the potential and
results in the composition dependence shown in Fig. 2.
We find a striking agreement with the experimental re-
sults of Ref. 27. The composition dependence of the con-
duction band which enters the calculation is obtained
from the work of Ref. 28:

=0 195

~ ~ ~ ~ Q, )3

~——y-0156

:0. 065

Ep ——1418+770x +684x

Ex ——2369—152x + 147x

EL ——2199—765' + 1204x 2,

where the position of the l. i minimum in InP is obtained
from Ref. 29. In order to perform a quantitative compar-

~ ~ 0 ~ Oy ~ ~ ~ 0 ~ ~
' +&may~ ~ g ~

~ ~ ~ y~ ~ o

2300

E 2200

f

30 60 90
ENERGY ( meV }

R
R
LLi 2100

FIG. l. Plot of the effective potential V~f, in units of the
"one-site" parameter of the Slater-Koster approximation {Vp)
and for several values of the dim ensionless parameter
8= Vp] / Vpp. 8 is the main parameter of the problem. It
characterizes the strength of the isoelectronic potential in the
real space around the impurity and equals zero in the one-site
approximation. Given 8, V~/Vp is an increasing function of
the binding energy. At constant binding energy, V~/Vp de-
creases versus 8 when the delocalizations of both the wave func-
tion and the isoelectronic potential increase. Versus pressure,
we expect 8 to increase and the effective potential to decrease.

2000
05 0-6 0.7 -0.8

co M pos t T I oN x
09

FIG. 2. Composition dependence of the nitrogen level in

Ga„In~ „P. All experimental data are taken from the work of
Ref. 27 and the band-structure variation versus composition is
deduced from the work of Ref. 28. Notice that the electron-hole
exchange and correlation effects shift the exciton by 33 meV
with respect to the electron binding energy in the composition
range 0.7 ~ x & 1.
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ison with experimental data (excitons), we account for the

electron-hole exchange and correlation effects in a very

simple way: we simply shift the electron energy line by 33
meV. [A correction of 33 meV makes a vanishingly small

bound electron in Gap coincide with the experimental
bound-exciton state (full line)]. This gives the theoretical

exciton line, displayed as a solid line. It is interesting to
notice that, depending on which minimum of the band

structure appears lower, the agreanent is best with (i) the
exciton line in the range 0.7& x & 1, and (ii) the electron

line in the range x ~0.7.
This can be qualitatively understood in light of a recent

theoretical work. Considering a medium-range correla-

tion potential, Jaros shows that the wave function asso-

ciated with a weakly bound N electron state is inter-

mediate between the strongly localized electron state given

by the simple Slater-Koster model and the strongly delo-

calized one characteristic of standard hydrogenic donors.
This is because the binding energy is mainly controlled by

the stabilizing effect of the medium-range potential.
However, it depends also on the properties of the lowest

conduction band through a repulsive contribution. When

going from GaP to InP, the lowest minimum changes

from indirect to direct and the repulsive part of the bind-

ing energy increases. This makes the binding energy de-

crease to around -0.7.

B. GaAs~ „P

Coming now to a more complicated situation, we inves-

tigate the nitrogen levels in GaAs&, P„. This means that
for composition x we substitute nitrogen to the virtual

anion (As& „P„). Considering the corresponding matrix

element, one must take into account, first, the change in

lattice constant. This is straightforward and has been

done already in the case of Ga~ In P. Second, one must

take into account the change in ionicity associated with
the virtual anian. We have tentatively associated ionicity
and atomic energy, and write

2100

—1900

E

w 1700
R
LLI

150 0
0 0.1 L2 0.3 0.4 0.5 06 0.7 0 8 09

Co&POS~TiON

FIG. 3. Same as Fig. 4 but for GaAs& „P„.

the electron line ( &0.2& X &0.45}. Concerning NN
pairs we find much fewer experimental results and con-
centrate on a very small range of composition near GaP
(Ref. 30). Again the agreement is very good and shows
that both the nitrogen potential we use and the band-
structure parameters of Ref. 2 are very realistic. This is
shown in Fig. 4. We emphasize that this approach is
based on the virtual crystal approximation (VCA). When
going to higher As concentrations, additional effects
should be accounted for which come from a deviation
from the standard Veguard law. The deviation is now
well understood. ' The microscopic structure of pseudo-
binary alloys is intermediate between the VCA and the
pure ionic picture of Pauling and Huggins; the cation sub-
lattice remains perfect and follows the Veguard law; on
the contrary the anion sublattice relaxes to preserve the
bond length of pure binary compounds. Since the local
distortion mainly affects the anionic sublattice, these ef-

~s(» —Es{As)
V,(Gms) -V, (GaP)

Es(N) —&s(P)
(15)

Taking all atomic energies as given by Harrisan, this
gives in GaAs a resonant bound state of about 90 meV in
the lowest conduction band which compares satisfactorily
with the value deduced by Wolford et al. ~ by stimulating
GaAs:N luminescence under hydrostatic pressure at 5 K
(80& E~ & 120 meV). We are now in a position to com-

pute the change in electron binding energy versus compo-
sition an the full composition range. The results are
displayed in Fig. 3 (dashed line). To favor a comparison
with the experimental data of Ref. 2, a value of 33 meV is

again assumed for the sum of exriton binding energy and
electron-hole correlation effects and gives the "theoreti-
cal" exciton line (solid line}. All values for the composi-
tion dependence of the conduction band are obtained from
the work of Ref. 2. Obviously, the agreement between our
computational work and the experimental data is very
good and supports the model. Again we find that, de-

pending on the details of the lowest conduction band, the
agrecunent is better with the exciton line (0.6& X & 1) or

o 2200

U

z~ 2400

2000.
0.7

*data from R@f. 30

0.9

CQM POS I T ION X

FIG. 4. Composition dependence of the NN~ pair in

GaAs~ P and comparison with experimental data of Ref. 30.
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fects should not be missed when deahng with more ex-

tended ranges.
Since we have independently checked our calculation

versus pressure in GaP and versus composition in

Ga In& P and GaAs
& „P„,it is tempting to investigate

what our predictions are using pressure on an alloy very

close to GaAs. This corresponds with the experimental

results of Ref. 2 on GaAs095"/POQ43 up to 60 kbar. Our

theoretical findings are summarized in Fig. 5 and obvious-

ly agree very well with the experimental data.

1900

E

1800

VII. NITROGEN PROPERTIES IN GaAs

As already stated, nitrogen forms a resonant bound

state in GaAs which emerges from the continuum of the

conduction band around 22 kbar. At P =0, the corre-

sponding eigenstate mainly depends on the electronega-

tivity difference between arsenic and nitrogen and a crude

estimate could be obtained, assuming that the change in

electronegativity just reflects the change in atomic ener-

gies. A resonant bound state was found at 92 meV above
the lowest minimum of the conduction band (see Sec.
VIS) which is a very reasonable value and which rein-
forces the model.

On the other hand, recent investigations of the pressure
dependence of shallow bound states in GaAs have been

conducted ' and detailed information about the pressure

dependence of the band structure has been obtained. i~ In
the light of these new results, we are in a position to rein-

vestigate very accurately the energy position of the nitro-

gen resonant state in GaAs. We take experimental pres-

5 900-

25 50 75
PRESSURE {kbar)

FIG. 6. Pressure dependence of nitrogen states in GaAs. The
solid line is computed with Vo ——2. 1 12 eU and

{1 / Vo)(d Vo/dp) = —1 ~ S5% per kbar '. %e assume a constant

energy of 33 meU for exchange and correlation effect. The
resonant bound state is found at 169O meU under atmospheric
pressure conditions. Experimental results at S K are from Wol-

ford et al. (Ref. 2) and M. Leroux (Ref. 33).

sure coefficients (dEq/dP =10.73 meV/kbar, dEI /dP
=5.5 meV/kbar, and dEx/dP = —1.34 meV/kbar) to-
gether with energy differences [E(Xi)=2010 meV and
E (L i ) = 1840 meV] from the work of Ref. 32 and slightly
adjust our matrix element ( Vo} and pressure dependence
(d VoldP) in order to get the best overall agreement. The
results have been displayed in Fig. 6. We find a resonant
state in GaAs lying 170 meV above the I'i, minimum of
the conduction band which, under hydrostatic pressure,
forms in the gap at 24 kbar. Increasing the pressure, the
binding energy first increases up to 41.5 kbar and then
starts to decrease. The bound electron should ionize at 9O

kbar, which corresponds to the experimental situation en-

countered in GaP under atmospheric pressure conditions.

VIII. CONCLUSION

1700

20 40
PRESSURE ( kbar )

FIG. S. Pressure dependence of nitrogen-bound excitons in
GaAso 95/Po (g3 Experimental results are from Ref. 2.

We have presented a model calculation of nitrogen
bound states in GaP and related compounds. This calcu-
lation was voluntarily restricted to the one-band —one-site
approximation in order to give meaningful results. Tak-
ing full account of the indirect structure of the lowest
conduction band, it allowed a satisfactory comparison
with previously published results and permitted us to dis-
cuss the assignment of NN levels. In light of this new

proposal, we could discuss up to NN7 the hydrostatic
stress dependence of the bound-exciton complex and the
local-field splitting experienced by the I 8 bound hole.

Considering next the change in nitrogen potential asso-
ciated with the formation of Ga-X-P alloys (X=In,As},
we got satisfactorily data for the composition dependence
of the nitrogen bound state. We emphasize again that this
result is obtained over the full composition range without
the help of any additional parameter. When substituting
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the cation (X=In), the change in nitrogen potential is

only driven by the change in lattice parameter surround-

ing the defect. On the contrary, when substituting the

anion, both the change in lattice parameter and ionicity
must be taken into consideration. This gives a resonant
state in GaAs located —100 meV above the I ~,
conduction-band minimum. Again this is in satisfactory
agreement with the experimental data. %&en changing
now the hydrostatic pressure, we change only the lattice
parameter and again compute data in very satisfactory
agreement with the experimental results.

Ta summarize, we have presented a very simple calcu-
lation of nitrogen properties in GaP and related com-

pounds, which satisfactorily accounts for all existing data.

Applying this calculation to the problem of nitrogen-

nitrogen pairs, we have discussed a possible ordering
which differs from the conventional one. This ordering
takes into account the local symmetry af NN traps.

¹teadded in proof

Since the completion of this work, we have been aware
of the results of a new calculation that has been published
[Phys. Rev. B 22, 6907 (1985)]. The calculation assumes
a defect potential described by two parameters V, and V~

and the host band structure is obtained from a ten-states
linear combination of atomic orbitals. Working in the
framework of the assignment given by Thomas and Hop-
field, with electron energies deduced from the work af
Cohen and Sturge, ' the authars use Vz to adjust the fam-
ily of (110) pairs at an energy of 120 meV (NNi). Next
V, determines the whole series of levels from NNi to
NN7. They find again an ordering at variance with the
standard assignment but their proposal does not agree
with our experimental symmetries.

Although one must be very cautious in discussing the
results af various theoretical calculations, this work ques-
tians the existence of the interference effects discussed in
this work and already noticed by Faulkner' or Brand and
Jaros. One explanation might be the poor representation
of the density of states in the conduction band obtained in
the scheme of Hjalmarson et al. '

by artifically lowering
the X point by means of excited S' states. In fact, one
must remember that the same type of Green's function
calculation performed with a ten-bands Hamiltonian by
Brand and Jaros shows that the interference effects do ex-
ist due to the proximity of the lowest conduction band to
the I'M bound states.

where E; denotes the energy at the minimum of interest
and q &k; . a; is directly related to the effective mass

m; at k;t. a;=Pi /2m; . Here we have taken isotropic
effective masses

mr/rno=0 12 mt. /mo=0. 298, rn»/mo 0——36. ,

where mo is the free-electron effective mass.
The "cutoff' k; momenta, which determine the rela-

tive weights of each region surrounding the critical point,
have been attributed to the same values as the ones ob-
tained by KIeiman' by requiring that the total number of
states in each region be equal to the one determined by
pseudapotential densities of states. These values are,
respectively,

k~a =0.974, k~a =3.898, kI a =2.443,
0

where a is the lattice constant; a =5.45 A in GaP.
Using this partition of the Brillouin zone, the Green's

function

»e E, k-
can then be easily shown to be given as

G, (s,R}=g f;(R)g;(s,R),

where

f,(R}=ge
l&i

( ~) 0 f &'

q sin(qA)

2ir a;8 o qo+q

qo (s E;/a;)' ——an—d A=a /4 is the unit-cell volume.
In the particular case E. =0,

G ( )
0 d k

(2n.)' » s —E,(k)

is obtained as

G, (s) = g n;g;(s),

where n; is the number of inequivalent minima of each
type (nr 1, n» ————3, nL ——4) and g;(E) is obtained as

The model used to describe the lowest conduction band
in Crap has bcmf already discussed by Cx. G. Kleiman'
and then used extensively in the studies of single nitrogen
impurities in Gap and GaAs~ „P„. According to this
model the Brillouin zone is divided in regions associated
with the I, I, and L minima. Around each nonequiva-
lent minimum k;i of type i (i =I,X,L), the energy
dispersion is taken as parabolic with finite extension:

E~(k) =E~(ke+q}=Et+aiq

0
g;(E)=-

2K CXg

E; —qo arctan

EL ——395 meV .

In Gap the relative energies of the I and I. minima with
respect to the lowest X have been taken as

E~ ——530 meV
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