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Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggre-

gates of fine silica particles has been studied. The samples possessed average densities ranging from

0.008 to 0.45 g/cm . Assuming power-law correlations between particles and a finite correlation

length g, we derive the scattering function S(q) from specific models for particle-particle correlation

in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied.

The fractal dimension df corresponding to the power-law correlation was 2.61+0.1 for all dry sam-

ples, and 2.34+0.1 for the water-suspended samples. The intensity of scattering was found to scale

with the correlation length in the manner expected for a fractal system.

I. INTRODUCTION

The clustering of small particles into 1'arge ramified ob-
jects is a commonly occurring phenomena. In biological
systems one finds protein aggregation, in colloid and poly-
mer chemistry one finds coagulation, flocculation, and gel
formation, and in metallurgy one finds a range of nu-
cleation and growth processes, all of which can be treated
theoretically in terms of kinetic models of the kind first
discussed by Smoluchowski. '

The recent efforts in this field have been stimulated by
the observation that the resulting clusters often show a
considerable, and quite remarkable, degree of self-
similarity or scale invariance. In particular, the work by
Forest and Witten on silica smoke particles and the sub-
sequent computer simulations by %itten and Sander, '

who devised the simple, elegant diffusion-limited—
aggregation (DLA) model, have started an avalanche of
both experimental the theoretical work which seeks a
quantitative understanding of the aggregation processes.

An important and fundamental parameter in the
description of the geometrical arrangement of the parti-
cles in a scale-invariant cluster is called the fractal dimen-
sion, d~, loosely identified as the Hausdorff-Besikowitch
dimension, which describes how the mass of the cluster
increases with its linear dimension r,

M(r) r f, df&d.

Contrary to what is found in normal condensed-matter
systems, the exponent df can take on noninteger values
between 1 and the embedding dimension d.

In this paper we will describe how scattering experi-
ments can be used to determine df and we mill present ex-
perimental results obtained by small-angle neutron
scattering from low-density powders of silica smoke parti-
cles mhich are available commercially under the trade

names Cab-0-Sil and Alfasil. They are produced by the
process of fiame hydrolysis in which SiC14 is burned to
give a snowlike product in which the basic small-particle
units are amorphous SiOz spheres roughly 5 nm in diame-
ter. A preliminary account of these experiments has been
published previously. Similar diffraction studies of col-
loidal silica aggregates formed in suspensions have been
reported by Schaefer et al. , who used x-ray and light
scattering to obtain the diffraction profiles. They were
able to determine the fractal dimension df ——2. 1 from
their data. The process of colloidal aggregation has also
been studied by Weitz et a/. , ' who used electron micros-
copy to characterize the geometry and have subsequently
confirmed their values for df by diffraction experiments
using light, x-ray, and neutron scattering.

Diffraction experiments probe the density correlations
on length scales which correspond to the inverse momen-
tum transfer q ', and since the intensity per particle
scales with the correlated mass in the probing volume, it—d
is to be expected that the intensity scales as q ~. How-
ever, as will be discussed later, in real physical systems the
scale invariance is limited to a finite range between upper
and lower bounds. These limits will be treated explicitly
in this paper and we will demonstrate how they can be in-
corporated in the theoretical expressions for the scattering
law one expects from a sample consisting of finite-size ag-
gregates.

The paper is organized in the following manner: First,
we describe the small-angle neutron scattering experi-
ments we have carried out on compressed powders and on
suspended samples of Cab-0-Sil and Alfasil silica aggre-
gates. We then develop the scattering theory for such sys-
tems and, finally, analyze our scattering data and extract
the relevant structural parameters as the fractal dimension
and the upper and lower cutoff lengths from fits to the
data. Finally, we discuss to what extent the data are real-
ly consistent with a fractal model of the aggregates.
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II. EXPERIMENTAL DETAILS

A. Samples

The coinmercial products Cab-0-Sil and Alfasil are
produced by hydrolysis of silicon tetrachloride vapor in a
flame of hydrogen and oxygen. The production process
has been studied in detail by Ulrich and Riehl. " They
measured the aggregate mass by a light scattering tech-
nique as a function of growth time in a number of cases,
varying both the SiOz concentration in the flame and the
burner type.

Three sets of samples were prepared for the present ex-
periments based on commercially available material.
Samples with densities ranging from 0.05 to 0.2 g/cm
were made by packing the materials in 1- and 2-mm-thick
cuvettes. Samples with densities up to 0.5 g/cm~ were
made by pressing equal amounts of material into 20-mm
disks using a hydraulic press. Note that the highest densi-
ty studied was still much lower than that of bulk silica
(=2.5 g/cm ). Suspended samples were prepared by mix-
ing 2 wt. % Cab-0-Sil with water of different

[HzO]/[D20] ratios and decanting the liquid after centri-
fugation, yielding low concentrations of the aggregates
(=0.006—0.008 g/cm ). The samples with different con-
trasts [H20]/[D20] ratio) were investigated to ensure that
aggregates were entirely dispersed, i.e., that no enclosed
air remained in closed pores giving rise to additional
scattering.

B. Experiment

The experiments were carried out at the small-angle
neutron scattering (SANS) facility' at the Rishi DR-3
reactor. The SANS instrument is situated in the neutron
house at the end of a cold-neutron guide tube outside the
reactor. A mechanical velocity filter consisting of a rotat-
ing drum with tilted slits selects a wavelength band from
the continuous cold-source spectrum. For the present ex-
periment wavelengths of 0.6 and 2.2 nm were used with
hA, /A, =0.18 FWHM (full width at half maximum). The
first collimating slit (16 mm) and the monitor for the
incident-neutron dose are situated behind the velocity
selector. The distance to the second slit (8 mm) in the
sample chamber was 2.25 m. A sample changer with
holders for 1- or 2-mm-thick quartz cuvettes was used,
and a pumping system at the sample position kept the
pressure in the entire instrument from monitor to detector
at 10 mbar. The distance from the sample to the area-
sensitive detector was 3 m. The detector was a multiwire
proportional He detector' with an active area of 40 X40
cm, in which three planes of wires mounted on fiberglass
frames were used for position determination. The 65
wires in each plane were interconnected with resistors to
obtain a suitable E.C delay. The position was determined
by the difference in risetimes of the pulses induced in the
wires by a neutron event measured at each side of the
plane. The overall position resolution at the detector cor-
responded to 9X9 mm (FWHM) and, with the chosen
slits, the width of the direct beam was 20 mm in diameter
at half maximum at the detector. Correction for back-
ground was done only for the samples in quartz cuvettes

by subtracting an empty-cell spectrum from the dry sam-

ples and a spectrum from the pure H20-D20 mixtures for
the suspended samples. Small variations in the efficiency
over the detector area were corrected for by dividing the
data by a spectrum from an incoherently scattering sam-
ple ("flat" spectrum). Here, a 1-mm HiO sample was
used. Both corrections were performed pixel by pixel.

III. EXPERIMENTAL RESULTS

A. Data
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FIG. 1. Double-logarithmic representation of scattering
curves for all samples measured. The data are shown in original
form, only corrected for background and detector efficiency.
The upper four curves are from the dry samples with varying
densities: 6, 0.13 g/cm3; 6, 0.17 g/cm; 6, 0.34 g/cm; 4,
0.45 g/cm'. The lower five curves are from the water-dispersed
samples with varying contrast ([DiO]/[H20] ratio): C3, 8%; 0,
0%;6, 100%; Q, 25%; +, 50% (by weight).
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After background and normalization corrections, the
spectra were radially averaged. Data taken at A, =2.2 nm
cover the q range 0.05—0.2 nm ' and data taken at
A, =0.6 nm from q=0. 1 to 0.9 nm '. The scale factor be-
tween these sets of data was determined approximately by
the ratio of the integrated scattering from a 1-mm HzO
sample' with the two wavelength configurations. How-
ever, in the least-squares-fitting routine the scale factors
were left as free parameters and were found to settle
within +10%%uo of the experimentally determined value.

Figure 1 shows a double-logarithmic representation of
the radial averaged scattering curves for the four dry sam-
ples (Fl—F5) with increasing densities and the H20-D20
dispersed samples with roughly the same density. The
scattering curves have the same overall shape. The slope
increases at higher q and decreases at lower q, the latter
being the only region where a significant density depen-
dence was found. Qualitatively, the observed line shapes
conform with the intuitive guess that the low-q data
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A representation of the data in a Guinier plot [log(I)
versus q ], as shown for a typical sample in Fig. 3, clearly
indicates that there is no simple characteristic length scale
to be deduced from the data, except possibly the Guinier
radius corresponding to the limiting slope at small q.
Scattering curves of this kind are often analyzed as
scattering from a hypothetical distribution of spherical
particles with a distribution of radii. ' This approach can
be used to represent the present data for the dry samples,
but the parameters derived in this fashion do not have any
obvious inicroscopic significance, e.g., the obtained
particle-size averages show a very strong dependence on
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FIG. 2. Plot of square root of normalized scattered intensity
at constant q =0.3 nm ' versus contrast for the water-dispersed
samples. The existence of a well-defined matching point shows
that the clusters are fully dispersed, i.e., no empty pores remain
unfilled.

(g'~&1, where g is a typical cluster size) should show a
trend toward saturation due to finite aggregate size.

B. 82O-DqO contrast variation

A contrast-variation method using HiO-DzO infusion
can be evaluated to determine whether the particles have
open structures accessible to the dispersing water or closed
pores remaining empty under the suspension. In the latter
case, the system Si02+ empty pores+ H20-020 would
have no simple contrast-matching point upon continuous-
ly varying the [H20]/[D20] relative concentration. On
the other hand, if the liquid fills all the pores, one has
simply two scattering-length densities, namely that in the
SiOz (p, ) and that in the HzO-D20 mixture (po). Thus, a
well-defmed inatching point (po p, ) implies that there
are no empty pores.

Figure 2 shows the square root of normalized intensity
versus contrast for q =0.3 nm '. From this we conclude
that no significant deviation from a linear relationship
can be deduced, i.e., no empty pores remain unfilled by
the dispersing water. The match point is determined to
=66 wt. /o D20 in H20, corresponding to a scattering-
length density' of 40.4&&10 ' cm/nm and a Si02densi-
ty in the primary particles of 2.55 g/cm~, in agreement
with table values.

C. Size distribution
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FIG. 3. Guinier plot (logI vs q') for a representative sample.
As may be seen, no simple characteristic length scale can be de-
duced from the data.

0.6

density, and yield a narrow distribution of relatively small
particles, whose peek occurs at (=30 nm) for the highest
densities and a broader distribution of larger particles for
the uncompressed samples. This picture is not in agree-
ment with electron micrographs taken from the samples.

We argue that a more natural interpretation of the
scattering curves can be based on the assumption of
power-law correlations between the centers of small fairly
monodisperse spherical units (R 2.0 nm). As will be
shown below, this gives a consistent description of the
data at all densities.

IV. SCAT. +BRING FUNCTION

I (q) =DO(p, —po)'f'(q)S(q), (4.2)

where p, is the scattering-length density averaged over a
particle of volume Uo, po is the scattering-length density
of the embedding mehum, and f(q) is the single-particle

As discussed qualitatively in the Introduction, the as-
sumption of scale invariance implies the simple but im-

—dfportant power-law form I(q) ~q f for the scattering
function. In real systems of aggregates the scale invari-
ance is limited both at large r (by the finite size of the
cluster, or by the entanglement of the clusters) and at
small r by the finite size of the particles making up the
aggregate The qu. alitative effects of these cutoffs are il-

lustrated schematically in Fig. 4, and below we derive an-

alytic expressions for S(q) which include the effects. The
scattering function I(q) per particle is given by

I(q)= —g f dr f dr'p(r R;)p(r' RJ)e'q-"—
l,J

(4.1)

where N denotes the total number of particles, the sum is
over all pairs of particles, and p(r —R;) denotes the
scattering-length density of a constituent particle situated
at R; minus the average scattering-length density of the
macroscopic sample. All the particles are assumed to be
identical here, although the extension to polydisperse sys-
tems is trivial. We may rewrite Eq. (4.1) as
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(4.7}

Substituting the expression in Eq. (4.5) and carrying out
the Fourier transform yields

complicated forms of the scaling function involving ex-

ponentials of arbitrary powers of rig could be considered,
as has been done by Aharony et a/. ' for the case of spin
correlations on percolating clusters. The advantage of the
present form is that it lends itself to an analytic form for
S(q) which may be used to fit the data. Furthermore, the
fact that it leads to internally consistent values of the fit-
ted parameters, as we shall see, did not seem to necessitate
exploration of more complicated forms of this scaling
function. ]

Thus, we write, instead of Eq. (4.6},
d —d

Gs;ff(r) = ( A Ir f )exp( r /g)—.

2ro 1/( 1Ir,

log (q)

FIG. 4. Correlation function G(r) and corresponding scatter-

ing function S(q) for a fractal structure. (a) Infinite cluster, (b)

cluster with upper cutoff at r=g, and (c) cluster with both

upper and lower cutoffs. The particle centers cannot approach
closer than a radius 2rp and the simplest corrections for this is

to set G (r) to zero for 0 ~ r & 2rp.

form factor given by

f(q) = J p(r)e'q'dr .
VO(Pz PO)

(4.3)

f(q) is thus normalized so that it goes to unity at q=0.
S(q) is the structure factor of the particle centers, given

by

1 ~ —q.(R) —Rg)

N,.J
(4.4)

which may be written in terms of the particle pair-
correlation function G (r}by

S(q)=X J G(r)e '~'dr, (4.5a)

6 ( r}=5(r) +Gs;ff(I ) . (4.5b)

For a fractal object of fractal dimension d~ it may be easi-
d

ly shown that the definition N(R)-R [where N(R) is
the number of particles within a radius R around a given
particle] leads to

d —df
Gs;ff(r) =A Ir (4.6)

where A is a constant. However, for the actual systems
we are considering, where the aggregates have a finite
cluster size and, furthermore, the clusters may be quite
entangled, we have to weight Gruff(r) with the probability
that the fractal correlations around a given particle exist
for distances greater than or equal to r. We may
represent this by a scaling function F(rig) characterized
by a single effective cutoff length g, and for simplicity we
assume an exponential form for this function. [More

df
C(dg 1)I'(dy— 1)g ~—(1+q&g2)) ~&

S(q) =1+
(1+q g) ~

sin[(d~ —1)arctan(qg) ]
X

f
(4.8)

where C is a constant. Note that the second term

behaves —for qg»1 —as q, as expected from thedf

fractal nature of the correlations between the particles.
For very large q the first term will dominate, and when
multiplied by f (q) [see Eq. (4.2)] will lead to Porod-type
scattering characteristic of scattering from the individual
particles, which are assumed to have a well-defined sur-
face area. However, for the q ranges measured in this ex-
periment, this term is negligible compared to the second
term in Eq. (4.8). For qg«1, S(q) has the expected sa-

turation behavior and leads to a value proportional to g f
as q~0. For spherical, monodisperse particles, as is the
case for the aggregates studied here, the form factor may
be written as

sin(qro )—qrocos(qro )f(q)=3
(qro)

(4.9a)

where ro is the particle radius.
For the particle sizes and q ranges relevant to the

present experiment, one may equivalently use the Guinier
approximation to this, which is

f (q)=exp( ——,q ro) . (4.9b)

Equations (4.8} and (4.9b) were used together with Eq.
(4.2), after folding with the instrumental resolution, to fit
the experimental data in terms of the adjustable parame-
ters d~, ro, g, and C, as will be discussed in the next sec-
tion.

It should be noted that Eq. (4.7) does not properly
describe the behavior of G(fjff(r) at small r For instance, .
the particle centers cannot approach closer than a radius
2ro. The simplest improvement one can make is simply
to set Gruff(r) as given by Eq. (4.7) by zero for r & 2ro. In
this case S(q) may still be written in analytical form, i.e.,
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C(df 1)g' f (1+qzgz)1/2
S(q) =1+

( 1 z~2)df
Iz

X&m[[&(df —1, (2&o/go)(1-iqg))]Icos[(df —1)arctan(qg)]+i sin[(df —1)arctan(qg)]I/{df —1)] . (4.1())

Here, 1 (a,z) is the incomplete I function with complex
argument' defined by the complex integral

I (a,z)= J w 'exp( —w)dw . (4.11)
z

The form (4.10} will differ significantly from that given
by Eq. (4.8) only for qro) 1, and thus the present experi-
mental data is not sensitive to the difference between the
two forms.

V. ANALYSIS AND DISCUSSION

Equation (4.2), together with the different forms for
S(q), was used to make least-squares fits to the data. The
instrumental resolution was taken into account in the fit-
ting procedure via a convolution of I(q) with the SANS-
system resolution function, R (q, q'),

I, (bq)= f dq'I(q')R(q, q') . (5.1)

R (q, q') describes the probability of detecting a scattering
event with momentum transfer q at the momentum
transfer q', and it was obtained by assuming a two-
dimensional Gaussian resolution function in the detector
plane that was radially averaged. R (q, q') has the form

I 2+( lt)2

R (q,q') =
z exp — i Ic{q'q/o (q)),

o (q) 2oi(q)

(5.2)

where Ic(x) is the modified Bessel function of the first
kind and order 0. The q-dependent cr (q) is approximated
by a quadratic form

cally related to the macroscopic density p. g is found to
scale roughly with p ', as expected if the degree of en-
tanglement of the cluster scales down linearly with the
average distance between clusters.

The values for the constant C do not vary significantly,
indicating that the nearest-neighbor correlations between
primary particles are not changed. A determination of
the coordination number for these units is, in principle,
possible if the scattering curves were extended to higher q
values to obtain better estimates for C and rc.

The scale factor Ai, normalized to the number of
scatterers and corrected for transmission and, for the
dispersed samples, the contrast, also appears to be fairly
constant for all samples. The fiuctuations for the
dispersed samples are most likely due to inaccuracies in
the determination of the Si02 concentration in these sam-
ples. This implies that the intensity for p

=0 scales as ex-

pected for a fractal system, I(q =0)0:g I [see Eq. (4.8) or
(4.10)], giving an independent test of the consistency of
the model.

VI. CONCLUSION

We have measured the scattering function S(q) for a
series of samples of aggregated silica particles of varying
densities. The densities range from extremely low values
of 0.008 g/cm {corresponding to the water-dispersed ag-
gregates) to 0.45 g/cm (corresponding to the most

10

cr (q)=A+Bq (5.3)
10

1

A was measured from the direct-beam profile to A =6.2
X 10 nm and 8 was estimated from the wavelength
resolution, hA, /)I, = 18% (FWHM), yielding 8 =7.2
X IO-'.

The two models (4.8) and (4.10) were both used to make
least-squares fits to the data. With the use of (4.10} one
obtains fits with X around half of the value compared to
(4.8), but the comparable parameters —df, r&, and g—did
not change markedly from one model to another. Figure
5 shows model (4.10) fitted to data from a representative
set of samples and Table I gives the values for the ob-
tained parameters.

From Table I we conclude that df ——2.61+0.1, indepen-
dent of the macroscopic density for the dry samples, while
for the dispersed samples, df ——2.34+0.1. The lower
value in the latter case may be due to the decanting pro-
cedure in the sample preparation or the infused water may
cause a slight opening of the structure.

The primary particle radius pp seems to settle around 2
nm for all samples, while the upper cutoff g is systemati-
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FIG. 5. Three representative scattering curves with the fitted
model shown (solid curve). From above: G, water dispersed,
0.01 g/cm; 0, dry, 0.13 g/cm; 6, dry, 0.45 g/cm . The
mater-dispersed data are scaled by the ratio of prefactors, A, ob-
tained by the fitting routine. Note the logarithimc scales.
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TABLE I. Fit results. Results from least-squares fits of Eq. (42) where Eqs. (4.9a) and (4.10) have

been inserted. The prefactor Uo(p, —po) in (4.2) is represented by A» which here is shown corrected
for sample density p, thickness 1, transmission T, and, for the dispersed samples, contrast
cr =[(~;o —pn Q~ o)/~;o ) obtained from Fig. 2.

Sample
F. dry
D: dispersed

F1
F2
F3
F5
D11
D31
D41
D51

Density
(g/cm )

0.13
0.17
0.34
0.45
0.008
0.006
0.010
0.008

A ~ /(pdTcr)

0.96+0.1
0.92+0.1

0.90+0.1

0.94+0.1

1.27+0.2
1.79+0.2
1.48+0.2
0.92+0.2

C
(10 ')

1.02+0.07
0.96+0.07
1.02+0.06
1.32+0.11
0.91+0.06
1.02+0.14
1.43+0.14
0.91+0.07

(nm)

13.2+0.6
12.1+0.4
10.4+0.3
10.0+0.4
31 +2
56 +10
52 +9
42 +4

Po

(nm)

1.9+0.1

1.9+0.1

1.9+0.1

1.8+0.1

2.3+0.1

2.4+0.1

2.2+0.1

2.3+0.1

2.60+0.03
2.65+0.03
2.64+0.03
2.55 +0.04
2.41+0.02
2.27 +0.04
2.29+0.03
2.38+0.02

compressed disk). It is the ability to study the fractal na-

ture of this system over such a wide range of densities
that is one of the unique features of our experiment. In
terms of the experiment we have established the useful-
ness of the concept of an upper length-scale cutoff g,
which must be used to analyze scattering data from real
{as opposed to mathematical) fractals, as in the case where
the aggregated clusters have a finite size or become entan-

gled, thus losing the power-law correlations which exist
on a single cluster. The essence of this picture may thus
be applied to systems such as polymer gels or other struc-
tures where the power-law correlations decay at large
length scales.

The consistency of our use of the parameter g is seen
both from the behavior of g as a function of the macro-
scopic density and of scaling behavior of the intensity in
terms of g. In the former case we find that g scales
roughly as p '~, which gives credence to the concept of
the degree of entanglement of the clusters scaling down
linearly with the average distance between clusters. In the

d
latter case the fact that I{q =0) ~ g f, where both param-
eters, g and df, have been determined from our fits, con-
stitutes an independent test of the internal consistency of
our analysis in terms of the fractal nature of the aggre-
gates.

We now turn to a discussion of the value obtained for
df. It is interesting that df appears to be independent of
the macroscopic density, except for a slight decrease in
the case of the low-density water-suspended samples.
This value is close to the value obtained in computer
simulations of the diffusion-limited —aggregation process
in three dimensions. In the case of slow aggregation of
colloidal gold particles, Weiz et al. ' measured a value of
df ——2.05. This is close to the value 2.12 obtained by
Schaefer et a/. for aggregates of collodial silica particles.
Fast aggregation of colloidal gold particles, on the other

hand, yields a value of df =1.8. This latter value is in

good agreement with computer simulations based on the
cluster-cluster model. In the study of protein aggregates,
Feder et al. deduce a value for df=2. 56. The growth
models used by Ulrich and Riehl" to analyze their light
scattering data from Cab-0-Sil in the early stage of the
aggregate formation are consistent with a fairly high frac-
tal dimension {=2.5). They observe a crossover to less
dense growth at an aggregate size of =50000 particles,
which corresponds to a length scale much larger than is
accessible in the present experiment. It is not yet clear
whether these various values for df are universal and
characteristic of different mechanisms for aggregation. If
so, df provides a signature for the aggregation process
and may thus be useful in studying and characterizing
such systems.

Further studies of the fractal nature of aggregates are
needed to establish this point. In addition, we point out
that this present system may provide a convenient experi-
mental testing ground for further current theoretical ideas
concerning the physical properties of fractals. In particu-
lar, it would be of interest to measure also the spectral di-
mension related to the low-frequency dynamics of such
systems.
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