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Sections of configuration space for Lennard-Jones matter were obtained by probing all the
normal-mode energy profiles, following diagonalization of the dynamical matrix for a 240-particle
system. For the crystal and sufficiently cold glass, these are single welled, whereas increasing num-
bers of double wells occur as the glass is warmed toward the fluid. This indicates that there might
be a fundamental difference between the topologies of the constant-potential-energy hypersurfaces
of crystalline and noncrystalline Lennard-Jones matter.

I. INTRODUCTION

We have made observations which indicate that there
might be an interesting distinction between the crystalline
and noncrystalline (i.e., glassy, liquid, and gaseous) states
of Lennard-Jones matter. This distinction would be in-
dependent of any identification of specific atomic ar-
rangements, such as special distributions of free volume in
pseudorandom packings of atoms or defects in quasicrys-
talline configurations. We have formally applied the
mechanism of diagonalization of the dynamical matrix to
instantaneous configurations of our model. We probed
the normal-mode energy profiless to obtain one-
dimensional configuration space sections, and found these
to possess only single wells in the crystalline state. In the
noncrystalline states, however, some of the sections
displayed double-well behavior. These double wells,
which occur more frequently as the glass is warmed to-
wards the fluid state, are indicative of a fundamental
difference between the topologies of the constant-
potential-energy hypersurfaces of crystalline and noncrys-
talline Lennard-Jones matter. If this difference is subse-
quently shown to be generally applicable to matter with
other types of interatomic force, it could prove to be one
of the defining characteristics of the noncrystalline state.

The available memory size in some of the latest digital
computers is now sufficiently large to permit calculation
of all the vibrational eigenmodes in systems of several
hundred particles. There has been an understandable in-
terest in identifying these modes in the various physical
states of matter, and the ingenious quench-echo tech-
nique,"? in particular, has shed much light on vibrations
in glass. We were interested in all the modes of our
three-dimensional 240-particle system, in its various phys-
ical states, both those with positive eigenvalues, which
correspond to real vibrational frequencies, and the
imaginary-frequency negative eigenvalue modes. The
latter are not accessible through the quench-echo ap-
proach, so we diagonalized the entire dynamical matrix,
of order 720, a task which takes about 30 min on an IBM
3083 computer. We chose to simulate a system with 240
atoms because the corresponding number of degrees of

33

freedom (i.e., 720) is close to the maximum that could be
handled by the matrix diagonalization procedure, without
running into prohibitive round-off problems, and also be-
cause this system provides a simple geometrical relation-
shi3p go the 336-atom model we have reported on previous-
ly.°~

Details of the computer simulations are presented in
Sec. I, including a definition of the reduced units which
were used throughout the work. Section III describes the
main results of the study, namely, those appertaining to
the topology of configuration hyperspace for the various
physical states investigated. We were also interested in
the degree of localization of the different eigenmodes cor-
responding to each state, and results which shed light on
this question are presented in Sec. IV. Finally, and re-
flecting our continuing interest in the entropy changes
which accompany the transitions between the different
states,* we have investigated the relationship between the
entropy and the diffusion coefficient as the system is
warmed from the glassy state into the liquid. These re-
sults are discussed in Sec. V. Section VI summarizes the
new information gleaned from all these studies and puts
them in perspective, both in general, with respect to
current knowledge of the nature of the different states of
simple matter and the transitions between them, and, in
particular, to some other recent studies which have ad-
dressed themselves to the same broad questions.%’

II. DYNAMICAL MODEL

The study of molecular model systems, typically
comprising a few hundred particles, is now a standard and
well-documented® accomplishment of modern computa-
tional physics. For simple substances, such as the noble
gases, the assumption of purely central forces has usually
been taken as justified, and the most-used functional form
is that proposed by Lennard-Jones, namely,

Vu(r,-j)=E[(ro/r,-j)12—2(r0/r,-j)6] ,

where Vy;(r;;) is the potential energy between the two
particles i and j, separated by the distance r;;. This in-
teraction was cut off at the distance 2.12r,, a truncation
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which allows each atom to interact with its closest 54
neighboring atoms in the low-temperature crystal, and ap-
proximately that same number in all the states investigat-
ed. The constants, € and r, in the interaction potential
were used to define the reduced units of density, 75 >; en-
ergy, €; pressure, €/rd; and temperature, €/kp, kp being
Boltzmann’s constant. The reduced units for the dif-
fusion coefficient, D, and the entropy, S, were thus
role/M)V/? and kg, respectively, where M is the atomic
mass. It is further convenient to use a reduced system in
which the latter is set at unity.

The three-dimensional system of N particles was stud-
ied by the technique of molecular dynamics,® which is
essentially a finite difference approach to the solution of
the Newtonian equations of motion:

I=—Vod(r),

where ®(r) is the total potential energy of the system
when its configuration is specified by the 3 N-dimensional
vector r. The reduced computational time step was
3% 1073, in units of ro(M /€)!/2. The model was made
pseudoinfinite by use of periodic boundary conditions, the
irreducible computational cell having the dimensions 5rj
by 4(3)!/%ry by 2(6)!/?r,. We were particularly interested
in the topology of constant potential-energy surfaces of
®(r) in 3N-dimensional hyperspace, and we probed sec-
tions of this function by diagonalizing the dynamical ma-
trix, of order 3N, the elements of which are
3D/ 09X »0x;,. The subscripts m and n each denote one
of the three Cartesian positional coordinates.

Although the limitation of the interparticle interaction
did produce numerous zero-valued matrix elements, the
truncation was not so tight as to produce a truly sparse
matrix. We were thus dependent upon one of the stan-
dard diagonalization procedures, and it proved convenient
to use the EIGRS routine of the IMSL (International
Mathematical and Statistical Libraries) system.” Even us-
ing double precision it was not possible to successfully di-
agonalize a matrix of order 1008 (=33<336), and this pre-
cluded using the 336-particle model we have studied ear-
lier.3—> It was possible to diagonalize a 720-order matrix,
however, and the 240-particle system was in fact obtained
by slicing away a 96-particle slab from the largest dimen-
sion of our earlier model, retaining the original particle
density.

III. POTENTIAL-ENERGY HYPERSPACE SECTIONS

The system of particles was simulated in the crystalline,
glassy, and fluid states, all runs being carried out at the
same density to facilitate comparison with previous
work,?~3 namely, a density of unity in our reduced units.
After proper equilibration of a given state, the instantane-
ous atomic configuration was used as input for the
dynamical-matrix diagonalization. In general, this was
found to produce both positive and negative eigenvalues,
and we paid particular attention to the negative members,
which correspond to imaginary eigenfrequencies. Each
eigenvector A,, given by A,=(a,), with p,g
=1,2,...,720, defines a unique direction in 720-
dimensional configuration space. We probed all of the
system’s energy profiles E,(A)=®[Ry+AA,)—P(Ry),
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FIG. 1. Typical normal-mode energy profiles, arbitrarily
selected with mode numbers mutually separated by a factor of 4,
for the crystal at a reduced temperature of 0.670. The abscissa
represents distance in the direction of the eigenvector, and the
ordinate shows the relative energy. The width of the lowest pro-
file corresponds to |AA | =0.50, and the linearly-plotted energy
has been arbitrarily cut off where the next computational point
would carry the (now rapidly rising) energy above 0.17. Figures
2 and 3 use the same scales. The eigenvalues of the five states
shown corresponded to squared frequencies of —108.5, —51.3,
—18.2, 19.0, and 194.8, respectively, in increasing order.

where R, is the 720-dimensional state vector of the above
instantaneous reference configuration and ®(R,) is the to-
tal interaction energy. This was done for |AA, | values
up to about the nearest-neighbor distance. These energy
profiles displayed marked differences depending upon the
state under investigation. The simplest type had a
minimum at A=0, rising monotonically for both positive
and negative A values. The more general profile had a
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FIG. 2. Typical normal-mode energy profiles for the glass at
a reduced temperature 0.034. The abscissa represents distance
in the direction of the eigenvector, and the ordinate shows the
relative energy. The scales are the same as in Fig. 1. The eigen-
values for the five states shown corresponded to squared fre-
quencies of —15.8, —1.7, 7.7, 48.0, and 227.1, respectively, in
increasing order.
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FIG. 3. Typical normal-mode energy profiles for the fluid at
a reduced temperature of 0.405. The abscissa represents dis-
tance in the direction of the eigenvector, and the ordinate shows
the relative energy. The scales are the same as in Fig. 1. The
eigenvalues for the five states shown corresponded to squared
frequencies of —113.3, —68.8, —39.9, 5.0, and 210.2, respec-
tively, in increasing order. In contrast to the situation in the
(warm) crystal and (cold) glass, shown in Figs. 1 and 2, respec-
tively, some of the lower profiles display double-well behavior.

minimum at finite A, either positive or negative, but for
this type too, dE,(A)/0A was zero only at that single
minimum. In both the crystal over the entire range from
zero temperature to the previously-reported crystal insta-
bility,® and the glass around zero temperature, only these
types of profiles were observed. Figure 1 shows a selec-
tion of typical profiles for the crystalline state, the num-
bers identifying the modes (in increasing order starting
from the most negative eigenvalue of the entire 720-
member set). Figure 2 shows a similar selection for a
low-temperature glass.

As the glass was warmed towards the fluid state, we ob-
served progressively more profiles of a quite different
type: profiles with 3E,(A)/dA=0 for three different
values of A, one positive, one at zero, and one negative.
Figure 3 shows typical profiles of this double-well type.
For such modes, the system is unstable against spontane-

TABLE I. The number of double-welled normal-mode energy
profiles, Ny, as a function of the reduced temperature, 7, for
the amorphous states (i.e., glass to fluid). Also shown are the
excess entropy relative to the crystalline state at the same tem-
perature, AS (for the analogous 336-particle system; see Fig. 8),
and the diffusion coefficient, D, both in the reduced units
described in Sec. III.

T Ny AS D
0.034 0 0.00 0.000
0.195 4 0.10 0.014
0.293 7 0.18 0.018
0.405 9 0.25 0.023
0.606 16 0.35 0.028
0.831 38 0.44 0.077
1.392 59 0.57 0.168

ous atomic rearrangement along the corresponding eigen-
vector. The number of observed double-well profiles is
listed as a function of reduced temperature in Table I.
These double wells are indicative of a fundamental differ-
ence between the topologies of the constant-potential-
energy hypersurfaces of crystalline and noncrystalline
matter.

IV. EIGENMODE LOCALIZATION

If a small model such as ours is to establish its viability,
it is clear that it must display all of the significant
behavior expected in a system of macroscopic dimensions.
There will, of course, be features that are a direct conse-
quence of the model’s finite size and of the use of periodic
boundary conditions. The first of these factors introduces
the familiar temperature variations, for example, while
the periodic boundaries imply a long-wavelength cutoff of
the phonons. Our main concern, however, was with the
presence of all modes that might have an important bear-
ing on the transitions between the various physical states.
We thus checked the spatial extent of the most pro-
nounced instability modes, for each state. This was con-
veniently done by stereo plotting of the various eigenvec-
tors.

By way of introduction to the method of plotting, we
reproduce in Fig. 4 two of the 720 eigenvectors for one of
the crystalline states. The instantaneous atomic positions
are indicated by the dots, upon which all of the com-
ponents of the eigenvector have been superimposed as
lines, with lengths proportional to the magnitudes of the
components. The lower stereo plot shows eigenvector
number 8, and the plot is instantly interpretable as
displaying a single transverse wave in the vertical direc-
tion, with one wavelength fitted into the irreducible cell’s
vertical dimension. The upper stereo pair of Fig. 4, which
shows eigenvector number 60 for the same state, is not
nearly so easy to rationalize; the complexity stems from
the mixture of several spatial harmonic waves, having
various wavelengths, directions, transverse and/or longi-
tudinal characters, and phases. Both the eigenvectors
shown in Fig. 4 would be said to be delocalized, and this
was true of all eigenvectors for all the crystalline states in-
vestigated.

Eigenvectors number 1, 100, and 700, for the glassy
state at a reduced temperature of 0.034, are shown as
stereo pairs in the lower, middle, and upper pictures of
Fig. 5, respectively. The degree of localization was found
to vary slowly and systematically upon proceeding up
through the entire set of eigenvectors, and these three ex-
amples reveal that the highest and lowest extremes of the
set are characterized by considerable localization. The
majority of the eigenvectors lie between these extremes,
however, and they display the delocalization illustrated
for eigenvector number 100.

Figure 6 corresponds to the fluid state at a reduced
temperature of 0.405. Once again, and to facilitate com-
parison with Fig. 5, eigenvectors number 1, 100, and 700
have been plotted, as stereo pairs. As for the glass, the ex-
treme members of the set show considerable localization,
whereas the central members are delocalized. Figures 5
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FIG. 4. Stereo plots showing the instantaneous atomic posi-
tions (as dots), with the eigenvectors superimposed (as lines), of
two modes for the crystal at a temperature of 0.00. The box in-
dicates the positions of the periodic boundaries. The lower pic-
ture shows mode 8, with squared eigenfrequency 26.3, while the
upper picture corresponds to mode 60, with squared eigenfre-
quency 112.8.
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FIG. 5. Stereo plots showing the instantaneous atomic posi-
tions, with the eigenvectors superimposed, of three modes for
the glass at a reduced temperature of 0.034. The lower picture
shows mode 1, with squared eigenfrequency — 15.8, the middle
picture shows mode 100, with squared eigenfrequency 78.0, and
the upper picture shows mode 700, with squared eigenfrequency
1517.9.
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FIG. 6. Stereo plots showing the instantaneous atomic posi-
tions, with the eigenvectors superimposed, of three modes for
the fluid at a reduced temperature of 0.405. The lower picture
shows mode 1, with a squared eigenfrequency of —113.3, the
middle picture shows mode 100, with squared eigenfrequency
34.2, and the upper picture shows mode 700, with squared
eigenfrequency 2390.6.

and 6 do indeed resemble each other, and one recalls the
indication in our previous entropy study’® that the fluid
and glassy states are simply different ranges of one con-
tinuous phase field. These plotted eigenvector trends ap-
pear to endorse that finding.

It is interesting to note the qualitative similarity be-
tween our observed localized modes and those predicted
by Weisskopf.!® Although a full analysis demands a
quantitative criterion, whereby only those atoms displaced
through a distance in excess of some threshold are regard-
ed as participating in a mode, for example, it could loose-
ly be stated that approximately 10 to 20 atoms are in-
volved in the nonoscillatory mode corresponding to eigen-
vector number 1 in Fig. 6. Weisskopf arrived at a similar
number of atoms, through a calculation based on simple
assumptions and using thermodynamic data.

V. ENTROPY AND DIFFUSION COEFFICIENT

It is interesting to evaluate the new results presented in
Sec. III in the light of our earlier observation® that the
crystalline and glassy states, at the same density and (low)
temperature, have approximately the same entropy, and
our earlier suggestion®* that the excess entropy of the
liquid, compared with the crystal at the same density and
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FIG. 7. Diffusion coefficient, D, as a function of the excess
entropy of the glass fluid with respect to the crystal, AS, both in
the reduced units described in Sec. II.

temperature, must thus be due to the liquid’s fluidity rath-
er than its disorder. As a further check on this issue, we
monitored the mean-square atomic displacement as a
function of time, for each equilibrated state, and thereby
measured the diffusion coefficient. As can be seen from
the results shown in Fig. 7, in which the diffusion coeffi-
cient is plotted-against the excess entropy of the noncrys-
talline state over the crystalline state at the same tempera-
ture, diffusion becomes prominent around the temperature
at which the population of our new instability modes is
increasing sharply. This endorses the suggested link* be-
tween the fluid’s acquisition of entropy, compared with
the crystalline state, and the gradual replacement of vibra-
tional modes by diffusive modes. For convenience during
the discussion in Sec. VI, we reproduce here our earlier
suggestions for the assignments of the constant-volume
entropy difference between the different states.* They are
shown in Table II.

V1. DISCUSSION

The object of this study was to throw new light on the
nature of the various states of simple matter and their re-
lationships with one another. If it were possible to deter-
mine the precise shape of the potential-energy hypersur-
face for the different states, and to overcome the consider-
able difficulty of interpreting its 3 N-dimensional topolo-
gy, these inter-relationships would no doubt become more
transparent. Having access only to one-dimensional sec-
tions of the energy hypersurface, we obviously fall well
short of that ideal, and it is important to appreciate the
difficulties which arise from this limitation. The seem-
ingly simple change from single-well to double-well
behavior in some of the one-dimensional configuration
space sections could imply a dramatic rise in the complex-
ity of the constant-potential-energy hypersurfaces. The
principles can be appreciated by considering the energy
profiles of a two-dimensional subspace with a hat-shaped
energy function, with an annular minimum. The local
profiles along radial sections would have only one
minimum, but profiles along sections at right angles to a
radius might have one or two minima; the possibility of
the state point running around the ring-shaped valley in-
side the hat’s “brim” would not be apparent from one-
dimensional sections. By the same token, the occurrence
of double wells in our monitored sections could indicate
the existence both of labyrinthine (and multiply connect-
ed) constant-potential-energy hypersurfaces and diffusive
modes that do not involve potential-energy barriers.

The latter suggestion is not in accord with the situation
envisaged by Stillinger, DiMarzio, and Kornegay'! and re-
cently advocated by Stillinger and Weber.*” In the form-
er paper it was suggested that the salient feature of the en-
ergy hypersurface is its individual pockets interconnected
by deep and narrow channels, and the latter work is also
interpreted in terms of energy barriers between short-lived
but mechanically stable packings of particles. If that were
indeed the situation in a liquid, it would make that state
not unlike a crystal gradually creeping due to the motion
of vacancies. During the jump of a vacancy,'? one atom
moves through a distance equal to that between adjacent
atoms, while several of the adjacent atoms move through
distances that are a few percent of this. Such motions do
not, of course, lead to the collapse of the crystal’s struc-

TABLE II. Relative entropies for the isochoric changes of state of simple substances, in the reduced
units employed in this paper. The asterisk denotes the fact that short-wavelength transverse waves are
present in the liquid. Their extent varies with element and this will probably influence the value of the

liquid entropy.
Isochoric
Number of degrees of freedom per atom entropy
Longitudinal Transverse relative to
State oscillatory oscillatory Diffusive crystal
Ideal gas 0 3 1.0
Liquid* 1 2* ~0.63
Glass 1 0 0
Crystal 1 0 0
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ture. The energy hypersurface for a crystal with vacan-
cies must be quite similar to the picture presented by Stil-
linger, DiMarzio, and Kornegay,'! and the energy barrier
for a vacancy jump has been measured for numerous sub-
stances. !

Stillinger and Weber® also report a mean energy barrier,
having a height of 2.16 (in the same reduced units as those
employed in this paper), for a system of 32 particles. It is
important to note that this result was obtained by a quite
different method than the one we have employed. Their
steepest-descent approach is equivalent to an ultrarapid
quench, and it is not surprising that this finds local mini-
ma of the system. The present study, on the other hand,
reveals the probability that there are curved valleys which
circumvent the barriers. Typical differences between the
two wells and the intervening maximum in the one-
dimensional sections shown in Fig. 3 lie in a range which
is a factor of nearly 50 below Stillinger and Weber’s 2.16.
The latter value might, however, deviate significantly
from the barrier height characteristic for an infinite sys-
tem.

An outstanding question regarding the glassy state is
whether or not the change from glass to liquid should be
regarded as a phase transition. Several aspects of both
previously-reported work and the present studies indicate
that the change is continuous. The entropy difference be-
tween the noncrystalline and crystalline states, at constant
volume, is a smoothly increasing function of tempera-
ture,” with no indication whatsoever of a sudden change
of regime. (Figure 8 shows our earlier data for a 336-
particle Lennard-Jones system, and is reproduced here for
the reader’s convenience. We have yet to calculate the
analogous data for the 240-particle system, but believe
that it would resemble that shown in the figure.) Then
again, the spatial extents of the eigenvectors for the dif-
ferent regions of the eigenvalue spectrum are similar in
the glass and the liquid, as is apparent from a comparison
of Figs. 5 and 6; this suggests an essential similarity be-
tween the two states. The approximate equality between
the entropies of the glass and crystal, reported earlier,’ in-
dicates that for both these states the state point is con-
fined to a local potential-energy valley in configuration
space. This view receives support from the similarity of
the one-dimensional sections for these two states, as
shown in Figs. 1 and 2. Our “hat” analogy is thus seen to
be too symmetrical; the disorder of the glass probably im-
plies that the hat is deformed, so as to break up the single
valley into kidney-shaped depressions. The extension to
many dimensions is, of course, difficult to envisage. At
the lowest temperature, in the glass, the state point is con-
fined to a local valley, but it might be able to gain access
to an adjacent valley by traversing a relatively low energy
barrier. This idea underlies the explanation of the linear
temperature dependence of the specific heat of glasses at
low temperature, as proposed by Anderson, Halperin, and
Varma,'® and by Philips."* With increasing temperature
more and more valleys can be sampled, but this trend is
gradual; the change is one of degree rather than type. It
remains a moot point as to whether the change can be
thought of in terms of the excitation of one two-level sys-
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FIG. 8. Entropy of the crystalline and noncrystalline states,
for a 336-particle Lennard-Jones system, relative to the crystal
value at the reduced temperature of 0.017. The inset shows the
two-phase region with an expanded ordinate axis. The entropy
difference between the glass and the crystal, at the same density,
decreases to zero (+0.05 kp per atom) as zero temperature is ap-
proached.

tem provoking accesss to further two-level systems as re-
cently invoked by Varma, Dynes, and Banavar.'

The reasonably well-defined knee in the curve of Fig. 7
is intriguing. Although our strongest inclination is to em-
phasize that this might be fortuitous, it must be admitted
that it occurs at a rather suggestive value of entropy,
namely, around 0.3. This is just about half of the value
0.63 which we have attributed to disappearance of two of
the three vibrational modes, namely, the two transverse
modes, on passing from the glass to the liquid (see Table
II and the discussion in Sec. V). If the approximate value
of 0.3 has any significance, it could be interpreted as indi-
cating that just one transverse mode, on average, disap-
pears as the glass starts to pass into the liquid state. But
it might be preferable to conclude that this applies more
generally to N of the 3N total modes, and it could be re-
lated to the change of regime from confinement of the
state point to an isolated hyperspace well to access to many
such wells.

As noted in Sec. III, the one-dimensional sections for
the crystal were only single-welled, for all temperatures up
to the previously reported breakdown.>> In this case, the
state point is always confined to a single closed region of
hyperspace, and this is consistent with the conclusion that
the crystalline state is invulnerable to thermal disturbance
up to and beyond the melting point; that there is indeed
nothing which could justifiably be referred to as premelt-
ing, either defect mediated or otherwise. A preliminary
announcement of our findings can be found in Ref. 16.
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