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Exciton trapping in molecular crystals by phonon emission at impurity sites
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A general operator of interaction among excitons, impurities, and phonons is derived for doped
molecular crystals. Using the first-order term of the operator, the rate of trapping of an exciton by
emitting a single phonon at impurity sites is calculated and found to be in good agreement with pre-
vious results. The interaction operator can be applied to study higher-order processes involving mu1-

tiphonons as well.

I. INTRODUCTION

The transport of charge carriers and excitation energy
has received much attention rectmtly. ' The mechanism
of exciton trapping at impurity and physical defect sites
leads to understanding of the quenching of fluorescence
and phosphorescence in crystals. Craig, Dissado, and
Walmsley discussed trapping and self-trapping of exci-
tons in molecular crystals. They calculated the trapped
lifetime and damping rate of excitons. The rate of trap-
ping of an excitation migrating in a quasi-one-dimen-
sional dilute system was also calculated. However, the
rate of trapping of an exciton at impurity sites has not
been calculated explicitly as a function of the trap depth
and phonon frequency in molecular crystals. The difficul-
ty in calculating the trapping rate of excitons is due main-

ly to the lack of a suitable Hamiltonian that accounts for
exciton, phonon, and impurity interaction. Also, for
rigorous calculations the exciton-phonon interaction
Hamiltonian in a diagonal form is necessary as it is recog-
nized in formulating the theory of self-trapping of exci-
tons in molecular crystals. However, until recently the
exciton-phonon interaction Hatniltonian was not diago-
nalized appropriately.

In this paper we present the calculation of the rate of
trapping of an exciton at impurity sites by emitting a pho-
non. An exciton moving in the crystal encounters an im-
purity site which has an excitation energy less than that of
its host. The exciton thus gets trapped at the impurity
site, and the excess energy excites a phonon. In general,
the number of phonons emitted after the exciton is
trapped would depend on the trap depth and temperature
of the crystal. Here, however, we consider shallow traps
in crystals at very low temperatures so that only a single
phonon is emitted. The theory can easily be extended to
the emission of several phonons, as will be demonstrated
elsewhere.

The Hamiltonian for the motion of an exciton in an im-
pure or doped crystal is first derived in order to obtain an
exciton-impurity-phonon interaction operator suitable for
the calculation. From the derived general interaction
operator we consider only the zeroth- and first-order
terms which are, respectively, independent and linearly
dependent on the lattice displacement vectors. However,
we present the derivation of the rate only due to the first-

order interaction here. The derivation of the rate of trap-
ping due to the zeroth-order interaction has born pub-
hshed elsewhere, therefore, we will present only the result
here. The rates are obtained as functions of the trap
depth and phonon frequency, and their orders of magni-
tude agree well with previous results.

II. INTERACTION OPERATOR
FOR EXCITON TRAPPING

The excitation Hamiltonian of a crystal with one im-

purity at site p can be written in the real crystal space as

H Ho +Hjmp

where

Ho —g h&+—g Dt BtB)+ g Mt ~tBl, m (+l) l, m (~l)

(2a)

(2b)

where && is the energy of excitation of an isolated host
molecule and &&s is that of an impurity. The summation
over 1 and m in (2a) runs over all the molecules in a crys-
tal. We define the trap depth as

Q =AF. —A,R+ g D — g Dt
m (+p) m (+l)

Here we consider those impurities for which b,R & &R so
that the trap depth 5& is negative. It is assumed that the
exciton transfer matrix element Mt does not change sig-
nificantl due to the substitution of an impurity.

The Hsmiltonian Ho is the well-known Frenkel exciton
Hamiltonian in a pure crystal and is translationally in-
variant. The excitation operator Bt in a pure crystal is
expanded in k space as

Bt =N '~ +exp( ik l)—Bi, (4)
k

N is the nutnber of unit cells and expansion (4) is valid for
crystals with one molecule per unit cell. For a vibrating
lattice of a pure crystal expansion (4) may also be assumed
to be valid if the lattice-displacement vectors are small.

33 2602 Q~ 1986 The American Physical Society



33 EXCITON TRAPPING IN MOLECULAR CRYSTALS BY. . . 2603

+ g Ace(q)(bqbq+ —,
' ),

q

(5)

This l~~s to the derivations "of the exciton-phonon in-
teraction, using (2a) and (4), for a pure crystal.

For the derivation of the exciton-impurity-phonon in-

teraction from H; ~ (2b) we assume that expansion (4} is
valid for Bz and B& as well. This assumes that the im-
purity molecule sits in the same position as a host mole-
cule, and no spatial symmetry is destroyed. '2 This as-
sumption may be quite acceptable, particularly for isoto-
pic impurities when the impurity concentration is not too
high. In view of this the Hiuniltonian (1) for a crystal
with lattice vibration will have Ho and H~~ as

Ho ——Q E (k)BgBg+N '~2 Q S(k,q)Bi,+Pi, (b @+ bq )
k k, q

R,=N-'"g
2Ico(q)

derived from (2a); instead it is simply added to (5). Al-

though we have subjected Ho and H; ~ to similar as-
sumptions and approximations, there is one significant
difference which may be noted in (5) and (6): In (5), as a
result of the translational symmetry, the exciton and pho-
non wave vectors are conserved; i.e., in each term of (5)
the sum of the wave vectors of the particles (exciton and
phonon) created is equal to that of the particles annihilat-
ed. However, this is not true for H;m~ in (6). In this
sense the translational symmetry is destroyed in the region
where there is an impurity in the crystal. This distinction
between Ho [Eq. (5)) and H; ~ [Eq. (6)] will be main-
tained throughout in the following.

In deriving (5) the lattice-displacement vector R is ex-
panded in the reciprocal-lattice space9 as

' 1/2

e(q)exp(iq /)(b ~+b~),

H; =d~N ' g BitBq exp[i(k' —lr. ) (p+R~)], (6)
(7)

where R& represents the lattice displacement vector of the
impurity from its equihbrium position p. It is to be noted
that in (5) the last term of the phonon Hamiltonian is not

I

where / is the mass coefficient of hosts. In (5) and (7) the
phonon branch index is dropped. Assuming that R in (6)
can also be expanded like Rr (7) we can write

H; ~=h~N 'QBqBqexp[i(k' k) p—]exp i g(k' —k) e(q)Z(q, p)(b ~+b~)
k, |(." q

(8)

The form of Z(q, p) is obvious from (7).

H~~ [Eq. (8)] is an operator representing the interac-
tion between a localized excitation at p [one can use (4) to
write BP& in (8)] and phonons localized at p as well.
The meaning of a localized phonon is used only in the
sense of expansion (7), where the right-hand side is associ-
ated with a particular lattice-displaceinent vector of the
molecule at /. It does not, however, refer to the in-
tramolecular vibrations. As the phonon operators
(b z+b~) appear in the exponential function, one can
use (8) for multiple phonon proceises of any order. Here,
however, we will consider up to the first order only. For
deriving the interaction up to the first order one expands
(8) in a Taylor series about the lattice equilibrium. In do-
ing so one must calculate the derivative of (6) with respect
to the lattice-displacement vectors at the lattice equilibri-
um. The derivative of b& will be negligibly small because
AR and &A~ [Eq. (3)] are constants. Although Dr I [Eq.
(3}]depends on lattice-displacement vectors, the derivative
of the difference g' (Dz —DI } will be negligible.
Hence, we can safely assume in (6) that Mz/BR~=0, and
then the Taylor series expansion of (6) will be equivalent
to expanding the second exponential function of (8) into
its series. The first two terms of the series are obtained as

H'; '~=A,~N
' +B&Bqexp[i(k' —k) p]

|}:,k.'

H'" =ih~N ' g (k' —k) e(q)Z(q, p)exp[i(k' —k) p]
lr„k', q

XBgBg (b q+bq) . (10)

H; z represents the zeroth-order interaction among exci-Io)

tons, impurities and phonons, and H;"'~ is that of the first
order. We will use (9) and (10) to calculate the rate of
trapping of an exciton at an impurity in the crystal. It is
to be noted that the interaction operators (9}and (10) are
different from what has been used earlier.

III. EXCITON TRAPPING

Consider that an exciton is created initially by an in-
cident photon in the pure crystal region. Therefore, ini-
tially the energy operator of the crystal can be expressed

by the Hamiltonian Ho as in Eq. (5). However, it is
worth writing the Hamiltonian (5} in its diagonal
form. " For the 0-0 phonon transition the diagonalized
Hamiltonian representing the energy operator of a com-
posite exciton-phonon state is obtained as

H~ QAp(K)A irA ir, ——
K

with Q(K) being the energy eigenvalue of the composite
exciton-phonon state. The eigenvalue equation of the ini-
tial state can be written as

(12)
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4(K)=E(K)+ Eo[E(K)—Eo]

' 1/2
E{K)

2 0 (14)

where t =Iu2, and u is the velocity of sound in the crystal.
Eo is the energy of the center and 28 the bandwidth of
the unperturbed exciton band.

In the trapped situation we assume that the impurity p
is excited and one extra phonon is created in the lattice.
The eigenvector of such a state can be written as

~
p;n ) =GqBPq

~

0;n )5q K, (15)

where 5q x conserves the momentum of the system before
and after the trapping, and Gq

——(1+nq) '/2 is the nor-

where

i K;n ) =A xt
i O,„ph), (13)

and
~
K;n) is the eigenvector of the initial state. Equa-

tions (12) and (13) imply that instead of exciting an exci-
ton in the pure crystal region we create a composite
exciton-phonon state with energy eigenvalue Q(K). We
consider the trapping phenomena at very low temperature
assuming nq =n

q =0. For acoustic phonons, by setting
the initial phonon energy g Aco(q)(nq+ —,

'
)=0, we get'

malization constant of the eigenvector (15). The energy
eigenvalue of (15) is obtained from

H& i pn) =Wp i pn),
where HP is assumed to be

Hp ——EpSPp+ g fioi(q)(bqbq+ —,
' ),

e

(16)

(17)

E=bF+ g D
gg (~p)

(18)

IV. TIMPPING RATE

For calculating the trapping rate we need to calculate
the transition matrix element (p, n

~

H 'P
~

K;n ), J=O or
1. Using (9), (13), and (15) the transition matrix element

(p;n
~
HI~'~

~
K;n ) is already calculated. The transition

matrix element (p;n ~H' P ~
K;n) is obtained using (10),

(13),and (15) as

represents the excitation energy of the impurity molecule
in the crystal. In writing (18) we assume that the excita-
tion transfer matrix element MP~ is negligible. From
(15)—(18) we obtain WP as

8'P =EP+ Q %co(q)(nq+Sq K+ —,
'

) . (19)

(p;n ~H;"'p
~
K.;n) =apN-2g

2Ip c0 —q

' 1/2

i (K—k) e( q—)exp[i (K q—) p]Co(KO;n, )(1+nq)5q x, (20)

where k sums over the exciton wave vectors in the whole k space. Considering that a longitudinal phonon is emitted
after the trapping of the composite exciton-phonon state, (23) can be written as

' 1/2

(p;n ~H p~K;n)=ihpN
2Ip c0 —q

~
K

~
Co(K,O;n)(1+nq }5q x . (21)

From the conservation of energy before and after the
trapping we get from (14) and (19)

' 1/2

fic0(K}=h +
ZIu'

(22)

c0~ is the Debye cutoff frequency. Using (21}—(24} we
find the rate of transition (R) per second as

6nh C 3& &' I'( —')
g P P g3 P 4

~,u'(~&)' ' 4~Z~Iu2r(-,' )

where it is assumed that dP
——E(K)—E . In arriving at

(22) the initial phonon energy in (19) is set to zero.
The rate of transition (R) can be calculated using (21)

and (22) in (23):

I'( —,
'

)

2Iu I ( —')
(25)

R = g i (p;n iH~p [ K;n) i2p(fic0(K)), {23)

a&here C& is the impurity concentration, us~~~By used in
the form of a ratio of the impurity and host concentra-
tions. ' At low temperature we consider the contribu-
tion of acoustic phonons to be dominant, and hence the
Debye model density of phonon states p(fico) is used:

The transition rate R in (25) is derived correctly; how-
ever, a simpler solution can be obtained. Instead of using
the energy conservation (22) we can use, as a good approx-
imation, Aco=h&. This means that the trap depth is equal
to the energy of the emitted phonon. One then obtains

6rrhpCpR= (26}
fiIpu (AcoD)

p(fico) =6N(M) (fico') (24) In actual calculations of the rate from (25) or (26) it is
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TABLE 1. The rate of trapping calculated in naphthalane mixed crystals (Ref. 14} using (=1.283 g/cm3, 0=4.74X10 s2 cm3,

fico~ ——90 cm ', 8=100 cm ', and the impurity concentration C~ =0.5.

C&oHs

2a-CgHsDs
cNHs

CuHs

Impurity

CwDs
Cloos
2a-C)oH2Ds
4a-CgKsDs

Trap depth
(cm ')

50
30
18
8

Mp ——Ip/I

1.06
1.04
1.04
1.03

Rate [Eq. (25}]
(sec ')

8.3X 10"
7.4y10'
2.3X 10"
5X10'

Rate [Eq. (26)]
(sec ')

1.4~10"
1 ~ 1~10"
8.6~10'
3.1X10'

Rate Ro [Eq. (28)]
(sec ')

7.6g10"
5.9~10"
4.6~ 10"
4X10'

convenient to use I=gQ and I» M»——(Q, where g is the
mass density of the crystal, Q is the volume of an unit
cell, and M» =I»/I.

The transition rate Ro calculated from the zeroth-order
interaction (9) is obtained, using %co=5», as

6srb»E (0)C»
Ro —— (27)

srsB (AcoD)

where E{0}is the energy of the unperturbed exciton state
at wave vector k=0. Since E(0) is measured from the
center of the unperturbed exciton band, one may expect
that E(0)-

~
B

~
. Using this in (27) we obtain

6n h»C»
28

ssiB (%con

In Table I we have shown R calculated from (25) and
(26), and Ro from (28} for naphthalene crystals doped
with four impurities, with /L» =50, 30, 18, and 8 cm
We have used B=100 cm ' and %con-90 cm ' in the
calculations. The transition rates R and Ro are found to
be of the same order of magnitude and in the range of
10 —10' sec '. Any desired value of C» can be used.
Here, however, we have used C» =0.5.

V. DISCUSSION

A simple approach to study the trapping of an exciton
in a doped or impure molecular crystal is presented. The
results are quite general and can be applied to any crystal.
Results are obtained using a new but rigorously derived
interaction operator (8) of the exciton, impurity, and lat-
tice vibrations. It is obvious from the interaction opera-
tor, as stated earlier, that such an operator can be applied
for multiphonon processes as well. Here, however, we
have presented the calculation and derivation of the trap-
ping rate only from the first-order interaction operator.
Also, we have presented results from the zeroth-order in-
teraction operator. The first-order interaction (10) is
linear in the lattice-displacement vectors, as is the
exciton-phonon interaction Hamiltonian in (5}. The
eigenvector (13) of the composite exciton-phonon state
used as the initial state of the crystal is also linear in pho-
non creation and annihilation operators. It is therefore
quite consistent to consider only the zeroth- and first-
order interaction operator (10} for the present calcula-
tions. Furthermore, it is well established that the traps
play an active role at low temperatures @which is the case
considered here too. Unless the traps are very deep one

may not expect the emission of more than ane phonon
after the excitation is trapped in the crystal. It may also
be expected that only the low-energy phonons can be emit-
ted from shallow traps in the crystal at low temperatures.
The present theory considers therefore only the emission
of acoustic phonons in the crystal although it can easily
be extended for optical phonons as well.

Rates R [Eqs. (25) and (26)] and Ro [Eq. (27)] are cal-
culated from the first-order [Eq. (10)] and zeroth-order
[Eq. {9)] exciton-phonon-impurity interactian operators,
respectively. The zeroth or-der interaction operator
represents interaction between excitons and impurity mol-
ecules in a crystal lattice at equilibrium, and the first-
order interaction represents that in a vibrating lattice.
Therefore, Ro contributes to the rate of trapping of an ex-
citon at the impurity site when no phonons are involved in
the interaction operator and the trapping occurs mainly
due to the energy difference between the excited states of
host and impurity molecules. The rate R, however, con-
tributes to the rate of trapping when the interaction opera-
tor also involves phonons. Both rates obtained here are of
the same order of magnitude for naphthaleme crystals,
and they would probably be obtained so from the present
theory for most crystals because of the assumption that
the lattice-displacement vectors are small and the transla-
tional symmetry is retained in a vibrating lattice. The
rate Ro using the zeroth-order interaction was not calcu-
lated before.

Craig, Dissado, and Walmsley have calculated the
trapping rates as a function of the exciton-phonan cou-
pling but not explicitly as a function of the trap depth.
However, the present results show that the trapping rates
depend not only on the exciton-phonon coupling but alsa
on the trap depth. Intuitively one expects the trap depth
to play a role in the trapping process. The difference in
approaches is mainly due to the difference in the exciton,
impurity, and phonon interaction operators (9) or (10),
and that used in Ref. 5. Craig, Dissado, and Walmsley
considered only the first-order interaction but in a dif-
ferent form which gives the rate of trapping as indepen-
dent of the trap depth. In the present trapping rates (25)
and (26) the exciton-phonon coupling is present through
the velocity of sound for acoustic phonons as well as the
Debye cutoff frequency. For C» =10,as used in Ref. 5,
and d» ——50 cm ', we get from Eqs. (25) or (26) and (27)
E.—10 —10 sec ', which is in agremnent with the result
estimated by Craig, Dissado, and Walmsley for lightly
doped crystals.

Recently Argy'»s and Kopelman' discussed the
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dynamics of the excitation energy in mixed orgamc solids
where they have shown the time dependence of the rate of
trapping. Present results are derived for crystals at rather
low impurity concentrations' and the rates are calculated
in units of sec ' whereas Argyrakis and Kopelman'i
have studied the rate in nsec '. However, as our results
are calculated using the golden rule (23) they represent
only an average rate over a time of a second. Argyrakis
and Kopelman' have studied the time dependence of the
rate constant over a time span 0—100 nsec ' and at trap
concentrations 10 —10 in a ternary solid of na-

phthalane. They have found a rate of 0.02, in a time of a
nanosecond which is 2X 10 sec ' from the direct conver-
sion of nanoseconds into 10 sec, and after 100 nsec they
have found a rate of 0.01 which is likewise equal to 10'
sec '. Thus the average rate in a time of 0—100 nsec
varies between 10 and 10 sec ', which is of about the
same order of magnitude as the rates given in Table I pro-
vided we use the trap concentrations as 10 —10 '. The
present results are therefore in agreement with those
found by Argyrakis and Kopelman as well.

The trapping rates obtained here are derived for crystals
with one molecule per unit cell. The theory can easily be
extended to multiple molecules per unit cell as well. How-
ever, it may be expected that the molecular multiplicity
would affect the results only by a factor which would
probably not change the order of magnitude of the rate.

From (26) and (28) it is seen that rate of trapping de-
pends on the trap depth as hy, and hence it is very sensi-
tive to hz. It is only due to the approximation fm=hz
otherwise, as it can be seen from the Table I, that the rate
calculated using (25) is not so sensitive to b~. Moreover,

one has to be careful in varying hy because the results are
obtained for processes emitting only a single low-energy
acoustic phonon at very low temperature. For deep traps
involving large hz and multiple phonons, the results are
expected to be considerably different.

Rates of trapping Ro and R are calculated here consid-
ering a situation when a moving exciton encounters an
impurity site and becomes trapped there. Therefore, this
mechanism of trapping excludes the contribution to the
trapping rates from the possibility of exciton hopping to-
wards the impurity. Inclusion of such a possibility is ex-
pected to increase the trapping rates of both Ro and R,
and the increase may be expected to be proportional to the
hopping velocity.

In deriving the zeroth- and first-order interaction
operator (9) and (10) we have terminated the exponential
series in (8) at the first-order term. Instead, if one first
uses

exp(bz+bz) =exp(b&)exp(bs)exp( ——,[bs,bz]),
and then expands the exponential factor in (8) up to the
first-order tex~s, one gets an exponential factor indepen-
dent of the phonon operators in (9) and (10). This factor
is similar to the Debye-Wailer factor, and it tends to
reduce the transition rate of exciton trapping in molecular
crystals by 1—2 orders of magnitude. This has recently
been discussed by Singh. 's
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