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The self-consistent current theory for two-dimensional electron dynamics in strongly disordered
environments is extended by an approximative incorporation of Coulomb interaction effects. Quanti-
tative details of the theory are worked out for a Si(100) metal-oxide-semiconductor device at zero
temperature which is doped with Na ions. The results are compared with experiments on the non-

linear variation of the resistivity with impurity concentration, on the mobility suppression for low

electron concentration, on the metal-insulator phase-transition diagram, on the nonmonotonic varia-
tion of the dynamical conductivity with electron concentration, and with the results of laser-light ab-

sorption. Predictions are made about impurity-induced plasmon shifts and dampings, and on a
depletion-field-induced mobihty suppression which may lead to a metal-insulator transition. A
long-time anomaly for current relaxations is predicted to yield a singular non-Drudian current spec-
trum showing up as a conductivity peak at very low frequencies.

I. INTRODUCTION

In this paper some features of two-dimensional electron
dynamics caused by disorder will be discussed. As an ap-
plication, we have in mind the Si(100) metal-insulator-
semiconductor device, doped with Na+ ions. The qualita-
tive discussion holds for other systems as well. We will
restrict ourselves to low-temperature situations so that a
zero-temperature theory is adequate.

There is a large body of experimental and theoretical
work concerning the Si(100) metal-oxide-semiconductor
(MOS) system, which is reviewed in a recent article by
Ando, Fowler, and Stern. ' For the above-mentioned sys-
tem, the electron density n can be varied over several or-
ders of magnitude. Hence, that device provides an exam-
ple for a many-particle system, where the transition from
weak to strong coupling can be studied experimentally.
Surface imperfections always provide some disorder for
the electron motion and this is one cause for a finite parti-
cle mobility and for plasmon dumping. The disorder will
also lead to electron localization in Anderson's2 sense.
Therefore, the MOS system offers for study the disorder-
induced conductor-insulator transition, as was pointed out
by Mott. s This holds even more so, since by drifting Na+
ions to the interface, one has a means to vary disorder in a
controllable fashion. 's Many disorder-induced effects
have been reported which cannot be understood within the
established kinetic-equation approach (KEA) towards the
electron dynamics. Besides the existence of a mobility
edge, originally detected by the transition from activated
to metalhc conductivity due to a change of n, let us men-
tion the following: a nonlinear increase of the current re-
laxation rate arith the impurity density n&, a strong
suppression of the mobility below the KEA result at low
density n, pronounced deviations of the current spectra

from the Drude Lorentzians, and a nonmonotonic varia-
tion of the dynamical conductivity with electron density.

In order to treat the electron dynamics beyond the
KEA, the self-consistent current-relaxation theory shall
be developed. This approach, whose essence is a self-
consistent treatment of current relaxation and density
propagation, was proposed originally for the motion of
noninteracting electrons in random potentials; in particu-
lar, the evaluation of conductivities near the Anderson
transition was intended. 9 " This theory was applied for
a schematic model of two-dimensional electron systems in
order to analyze some experiments for Si-MOS sys-
tems. 'z 's In the present paper previous work will be ex-
tended to deal with charged impurities and to take the
electron-electron interaction into account. In this way a
self-consistent treatment of localization, dynamical
screening phenomena, and plasmon dynamics will be
achieved.

It was discovered that quantum interference effects
cause characteristic anomalies in the dynamics of two-
dimensional systems of noninteracting electrons. '5 For
example, there is a logarithmic increase of the resistivity,
of some percentage per decade, of decreasing temperature,
which was observed also for high-mobility Si-MOS de-
vices. ' The relevance of the interference effects for
strongly disordered MOS devices is not understood at
present and we are going to ignore them completely. It is
known how quantum interference effects can be incor-
porated into the present theory, such that the correct
asymptotic laws are obtained. ' In this paper we focus ex-
clusively on effects which are not related to singularities
possibly influenced by interference effects. In this case, it
is not known how the treatment of the backscattering
anomalies' can be incorporated into our approximation
scheme without rimning into the problem of double
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counting. Neither is it known how to incorporate inelas-

tic phonon processes into the formalism, and so only such
experiments, where the experimentalists either have car-
ried out the extrapolation to zero temperature or where
the temperature variations can be absorbed into the exper-
imental error bars, will be analyzed. %e will also ignore
the logarithmic interaction corrections present in weakly
disordered systems. ' Because of a lack of evidence to the
contrary, we adopt the view that the mentioned effects are
so small that they do not show up on the scales to be used
for our discussion of theoretical and experimental results.

The paper will be structured as follows. To make the
work self-contained, we report in Sec. II those specifica-
tions of the model and definitions of correlation functions
which will enter the calculations. In Sec. III the approxi-
mation scheme is developed. Self-consistency equations
are derived which yield as a solution the current and den-

sity correlation functions. The equations extend our pre-
vious work by using a realistic model for the electron
layer and for the random potential due to ion scatterers.
The singular Coulomb-interaction effects between the
electrons are incorporated within the random-phase ap-
proximation modified by a Hubbard approximation for
local-field corrections. In Sec. IV the results are shown in
detail. First, it is demonstrated (Sec. IVA) that the
lowest-order approximation of the present theory for the
mobility po extends the previous theory' by incorporation
of local-field corrections in the screening function. In
Sec. IV 8 mobility suppression as the precursor of locali-
zation is explained. The theory yields a conductor-
insulator transition due to disorder (Sec. IV C) which can
be viewed as an Anderson transition in a random potential
modified by screening. The anomalous polarization ef-
fects in two-dimensional systems imply an n; ccn /i law
for the critical impurity density for small electron densi-
ties. The superposition of ion scattering and surface
roughness scattering and the suppression of the mobility
for high electron densities is demonstrated in Sec. IVD.
A depletion-field-induced metal-insulator transition is dis-
cussed in Sec. IVE. Strong deviations of the relaxation
spectrum from a white-noise spectrum, discussed in Sec.
IVF, imply a strong deviation of the dynamical conduc-
tivity cr(co) versus the frequency co curve from the Drude
Lorentzian. The anomalies can be viewed as plasma-
wave-emission contributions to the conductivity. The

plasmons get a damping because of the electron impurity
scattering. The scattering rate depends on the screening
which in turn is ruled by the plasmon dynamics. In Sec.
IV 6 the corresponding results for the plasmon damping
and shifts are calculated, for long-wavelength plasmons
become overdamped due to disorder. As a result, there
appears an anomalous diffusion mode whose excitation
leads to a characteristic long-time tail anomaly for the
conductivity, which is calculated in Sec. IVH. Finally,
(Sec. IV I) a series of current spectra is presented in order
to show the change of the electron dynamics, from the
one typical for an almost free-electron gas, to one charac-
teristic of a Fermi glass. A conclusion is given in Sec. V.
We demonstrate that the theory to be exposed can give a
unified physical interpretation of an almost quantitative
explanation of a series of disorder testing experiments
done for Si(100) MOS systems.

II. THE MODEL

In this section the concepts to be used will be listed.
The free-electron eigenstates for the motion parallel to the
surface are Pi,(r,x) =P(x)exp(ik r). Here, and in the fol-
lowing, k, p, q labels two-dimensional wave vectors, r
denotes two-dimensional position vectors, and x denotes
the spacial direction perpendicular to the surface. A unit
area of the surface will be considered. a f and ai denote
fermion creation and annihilation operators for the men-
tioned states. The degeneracy index 0.=1,2, . . . , 2g„ is
introduced to label the two spin states and the g„valleys
in which the electron can be. An isotropic parabolic band
is assumed so that the electron energies are characterized
by the effective mass m: ez ——k /2m; units are chosen
such that 6=1. The density of states then is a constant

pF ——g„m jm so that the Fermi energy eF ——kz/2m and the
electron density n are related linearly: n =pFeF,' kz
denotes the Fermi momentum. The free-fermion-gas
Hamiltonian then reads Ho g& s~~——h, and for this

system all correlation functions can be calculated explicit-
ly. The dynamical susceptibility X(q,z) for the density
fluctuations of wave vector q,

p(q) = g lc —q/2, apk+q/2, a ~

reads"

Po(q, z)=(pF/2Q )I2Q +[Z —Q(Q —1)] [Z —Q(Q+1)]' —[Z+Q(Q —1)]' [Z+Q(Q+1)]' ] . (la)

Here, and in the following, z denotes the complex fre-
quency off the real axis and Z=z/4eF, Q =q/2k~. In
particular, we will need the wave-vector-dependent
compressibility g (q) =X(q,z =i0):

go(q) =p» [I—e(Q' —ll(Q' —1)'"/Q] . (lb)

Due to their charge e, the fermions will experience a
Coulomb interaction which can be described by the Ham-
iltonian

H, = —,
' g p+(q)U (q)p(q),

l

where

U(q) =(2me /eq)F(q) . (2a)

Here, F'= —,'(ei+ez) is the average dielectric constant of
the two media separated by the surface of electron
motion. F(q) is a form factor which can be expressed in
terms of Ei ez and f(x) (Ref. 19) (see also Ref. 1, Eq.
2.51). If q jb ~& 1, where 1jb is a characteristic thickness
parameter, one gets F(q) =-1. For q/b ~&1 the form fac-
tor tends to zero. In this paper no contribution to the
theory of electron-electron interaction is intended. Rath-
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g.(q) =go(q)/[1+u. rr(q)go(q}]

=pz(q/q, )+0(q ) . (2c)

The excitation spectrum described by Eq. (2b) consists of
two contributions. First, there is a continuous spectrum
due to particle hole excitations:

X,"(q,ru) =Xo'(q, ro)/
~

1 +,ur(rq) X(oq, e+i 0)
~

Xo'(q, co+i 0)+0 . (2d)

Here, and in the following, correlation functions F(z)
near the real frequency axis are written as F(c0+iO)
=F'(ru)+iF"(co}. Let us mention also that the spectral
function F"( )rodeterinines the general correlation func-
tion in terms of a spectral integral:

F(z)= f dent"(all[a(~ s)] . —

Second, for wave vectors q &q', where q' is of the order
2k~, the denominator in Eq. (2b) vanishes for some real
frequency co~(q). This implies a sharp resonance in

X,"(q,co) situated above the particle-hole continuum: the
well-known plasma resonance. For qu~ &&

~
z ~, Eq. (la)

yields the expansion Xo(q,z) = —nq2/(mz2), and thus the
small-q plasmon dispersion law is readily found as 3'2

co&(q) =[2ire n/(me)]q+0(q ) . (2e}

The deviations of the plasma dispersion from the asymp-
totic ai~ (x: V q law are influenced by the form factor F(q)
and the local-field corrections G(q). ' It is an important
feature of the two-dimensional electron dynamics as op-
posed to the three-dimensional one, that the long-
wavelength plasma frequency tends to zero.

We want to study the influence of disorder on the elec-
tron dynamics. The disorder shall be characterized by a
random potential, whose Fourier transform will be denot-
ed by U(q). The random-potential average is absorbed in
the system's chemical potential, so that &U(q)&d;, ——0.
The electron-disorder-interaction Ha~iltonian reads

er, we assume the system parameters to be chosen, such
that the random-phase approximation, complemented by
Hubbard's approximation for local-field corrections2'

G(q}=q/[2g. (q'+kF )'"1

is an appropriate treatment (see, e.g., Pines and Nozieres2
for a discussion}. The dynamical density susceptibility for
the interacting system then reads

X,(q,z) =Xo(q,z)/[1+ u,fr(q)XO(q, z)], (2b)

where the effective potential is given by udr(q)
=u(q)[1 —G(q)]. Since both G(q) and F(q) —1 vanish
for q~O, the long-wavelength compressibihty tends to
zero proportional to q, with a slope given in terms of p~
and the Thomas-Fermi seri+ning vector q, =2ne pF/e
(Ref. 20}

&'= g U(q)p*(q) . (3a)

=4 U'e(q. —q)/q' (3d)

For quantitative discussions we will restrict ourselves to
the Si(100) MOS system, since this device has been stud-
ied extensively before. In this case, ei ——11.5, eq ——3.9, so
that e 7.7 and m equal 0.19 electron masses; g„=2. As
iona, we consider Na+, so that e;= —e. Since, unfor-
tunately, nothing is known about short-range-order effects
of the ion layer, we assume complete randomness s (q) = 1.
We are interested in anomalies connected with plasmon
excitations and localization in Coulomb fields. To study
these effects one often uses the mathematical model of a
truly two-dimensional system without additional disorder:
F=F;=1, Ue ——0. This model is specified by the only
two experimental parameters n and n; If one wa.nts to
compare the results for this model with experiment, one
has to use ni as a fit parameter. The fitted n; should be
smaller than the experimental value since the form factors
will effectively weaken the interaction effects. One should
also either eliminate the effects of defect scattering,
caused, for example, by surface roughness, from the data,
or use the model only under such circumstances where ion
scattering dominates over defect scattering.

To analyze the results for a more realistic model, the
simplified form factors, as they follow from the variation-
al function

g(x) =(b /2)x exp( bx)—
of Ref. 25, shall be used. For the sake of completeness let
us quote the results' explicitly. The one entering udr(q)
reads {seealso Ref. 1, Eqs. 2.52, 3.30, and 3.31)

The random potential we assume to consist of two un-
correlated parts: U;(q), due to ions drifted to the elec-
trons, and Ue(q}, due to defects such as, e.g., surface
roughness. So one writes

& I U(q}I'&d.= & I
U (q}l'&a.+ & I Ue(q)l'&a. .

If the ions with charge e; are distributed with density n;
and static structure factor

s(q)= gexp[iq(r, —rs)]
ob dis

where r„rs are the ion positives, one gets

& ) U, (q) )'&,,=n, [2~e;/(eq}]'s(q}~r, (q) ~'.
Here again F;(q) is a form factor expressible in terms of
ei, ez, tP(x), and the distance z, between the ion layer and
the electron layer. 's Actually, Fi(q) should also contain
the effects of lattice distortions created by the ions.
Again one gets F~(q~O)=1 and FI(q~ao)=0. The de-
fect potential shall be parametrized by a strength factor U
and a spatial extension parameter Lo ——2n /qo..

3' 3

(4a)
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F;(q)=1 exp(qz; ) 1+

So this more realistic model is specified by the one addi-
tional parameter Nd ~. If the surface roughness is the
origin of defect scattering, one can follow Andoz6 and
write

(5)

where y depends on Nq, ~~ and n according to
y =(4~e /e)(Nd, &i+ —,

' n). b, is a length parameter of the
order of some angstroms independent of n and Nd ~

and
so is I.o (which correspands to nA in Ref. 1, Eqs. 4.56
and 4.57).

The dynamical properties to be calculated shall be
phrased in terms of Kubo functions or propagatorsz7:
4&ii(z)=(A

~
(W —z) ' ~8}. The Liouvillian is defined

by WA =[0,A] and the scalar product is given by
disorder-averaged thermodynamic compressibilities at
zero temperature:

(A (B) (Jl 1=A([(A'8((A)) —(A')(B ]))I

~ tX} o

The spectral function of C)(z) is trivially related to the one
for the impurity-averaged susceptibility if to~0;
@qg(to)=(((A';8))„")d;,/t0. If the A or 8 are ergodic
variables, one can prove @zan(z) = [((A ',8 )),—(A ~B)]lz. However, if A and 8 exhibit nonergodic
motion, the Kubo function has a characteristic zero-
frequency pole z@z~(z)~—f, z~O. The residue f quan-
tifies the difference between the thermodynamic suscepti-
bility and the static limit of the dynamical susceptibility:
(&A',8)&. ..+f=(A ~8).

The density propagator 4(q, z), i.e., the Kubo function
formed with A =8 =p(q), will be used to study the shift
and braadening of plasmon excitations in the system due
to disorder. The propagator for the undisturbed system,
4, (q,z},will enter the following calculation [it is given by
the susceptibilities defined in Eqs. (2b) and (2c)]:

C, (q,z) =[X,(q,z) —g, (q)]/z .

Applying the reduction formalism of Zwanzig and
Mori, one can write for the propagator

4(q,z) = —g(q)/[z+q E(q,z)/g(q)] .

Here, g(q}=(p(q)
~ p(q)) is the static density compressi-

bility of the system. The continuity equation
Wp(q) = —qj(q) was used, which connects density
changes with the longitudinal current density j(q}. Then

&(q,z)=(j(q) ( (Q~Q —z) '
~
j(q))

with
Q" ="—p(p I A)/g(q) .

The parameter for the inverse thickness is given by
b =48~mie n'/ei, where the mass for perpendicular
motion mz is 0.916 times the electron mass and n' is
composed of electron density and depletion-layer density
nd, ~&.. n'=Nd~i+ —,", n. The form factor entering U~(q)
reads

3,

E(z)= (—n lm)/[z+M(z)] . (8a)

Here the identity (j ~
j)=((

~
j(q),p(q) ~ })d;,——nlm, ex-

pressing the f-sum rule, was used. The kernel M(z) is the
correlation function of the fluctuating forces
F(t)=F(t, q~O),

F(q, t}=exp(iW't)Wj(q);

W'=Q'WQ' with Q' projecting perpendicular to j(q):
M(z}=(+im/n) j dt 8(+t)exp(izt)(F(t)

~

F(t =0)),

Imz(0 . (8b)

If there is no disorder, the particle momentum is con-
served: Wj =0; in this case, M(z) =0. Hence, a nonzero
M(z} is caused by disorder and it describes the relaxation
towards zero of induced currents due to momentum
transfer of impurities and defects to the electron system.

If M(z)=+i/r for &mz~&0, Eq. (8a) is the Drude formu-

la. Hence, the absarptive part of the current relaxation
kerxiel M(z), the current relaxation spetrum M"(co), gen-
eralizes Drude's current relaxation rate 1/r to a
frequency-dependent function. If the relaxation spectrum
varies with frequency, causality requires the reactive part
M'(eo) ta be nonzero. Let us note alsa, that the zero-
frequency relaxation spectrum is, up to a trivial factor,
identical with the inverse mobility

I/p = (m /e)M" (a) =0) . (8c)

III. SELF-CONSISTENT CURRENT
RELAXATION THEORY

In this section the approximation scheme, to be used for
an evaluation of the current relaxation kernel M(z) and
the density propagator 4(q,z), shall be formulated. The
fluctuating force is found to consist of products of
random-potential gradients and density fluctuations

F(q)= g(q —k)U(q —k)p(k)/m .

A lowest-order factorization approximation will be ap-
plied in Eq. (8b): averages of products of U and p are ap-
proximated by products of averages of random-potential
fluctuations and on averages of density fluctuations '

M(z)= g (
~
qU(q)

~
}4(q,z)/nm .

q

This formula can be rephrased in several ways. Accord-
ing to the golden rule, the decay rate M"(co) of the
momentum is given by the square of the relevant coupling

In the long-wavelength limit, JC(q~O, z)=K(z) is the
velocity correlation function. Its absorptive part denotes,
up to a factor e, the dynamical conductivityz7

cr(co) =e K"(co) .

Of particular interest will be the dc conductivity
cr =o(co=0) or, equivalently, the mobility p =a/(ne).

Applying the danzig-Mori reduction on the velocity
correlation function, one arrives at the representation



33 LOCALIZATION AND SCREENING ANOMALIES IN T%0-. . . 2499

matrix element qU(q) times the density of states 4"(q,co)
for the decay process. The q sum over all decay processes
has to be carried out and the spectral representation for
M(z) and 4(q, z) transfers the formula

M"(co)= g ( i qU(q) i )4"(q,co)/nm

tion 4h(q, z) as the solution of the equation

[z5~ —~(q)i@'i" (q z}=—5. (10b)

one can rewrite Eq. (10a} in the form of a matrix Dyson
equation

4„~(q,z)=4" (q,z)+4" (q,z)m„(q,z)4, (q,z) . (10c)

The corresponding correlation functions and susceptibili-
ties will be denoted by

4i,~(q,z)=(fi, (q) i (~—z) '
~fi, (q))

gi,s(q)=(fi, (q)
~
f~(q)} .

It is convenient to orthonormalize the variables by intro-
ducing A„(q}=g„ai,fi, (q) such that (A„ i

A )=5
The general Mori equation for

4„(q,z)=(A„
i (W —z) '

i
A )

then reiids (see Ref. 29 or the book by Forster for de-
tails)

[z5„i co~(q)+m~(q—,z)]@i (q,z) = —5 (10a)

H, =(A„(W ( A )=&([A„',A ]& &
.„ th

m~(q, z) are the us~~i memory keauels, and the summa-
tion convention is used. If one defines a reference func-

I

into the corresponding one for the z-dependent quantities.
Equation (9}can also be viewed as a simplified versian of
a made coupling approximation, originally introduced by
Kawasaki'' in a different context. The current mode j is
not conserved because it can decay into other modes of
the system. The simplest decay modes in our system are
pair modes consisting of density fluctuations with
momentuiii q,p(q) and random-potential fluctuations af
momentum —q, U(q}'. The latter may be viewed as stat-
ic phonons. Formula (9) can also be viewed as an analo-
gue of the self-consistent Born a roximatian studied
usually far the electron propagators. It shares the virtue
of this approximation in not being a weak coupling ap-
proach. It also shares the defects of that approach by not
being able to handle impurity bands. The binding of elec-
trons at the impurities, a phenomenon which one expects
to occur for ni~O and U~O for our model, cimnot be
treated by a simple factorization procedure. Therefore,
we have to assume disorder to be such that impurity
bands are absent or that the Fermi energy is so far above
the impurity bands that the latter can be ignored. The
precise range of validity of Eq. (9) is unknown at present.
In formula (9), interaction effects and screcaung phenome-
na are hidden in 4(q,z) (Ref. 33), as will be seen in Sec.
IV A.

To discuss approximations for the density propagator,
we want to consider all correlation functions formed with
the phase-space densities

fi (q) = gui -q/2, c/i+q/z, a

The density is the distinguished variable of our discussion
and so let us choose Ao ——p(q)/v'g(q), such that
400(q,z)=4(q, z)/g(q). The fundamental particle con-
servation law is reflected in the present approach by

Wp(q)= g (k q/m)fi, (q)

so that the fluctuating forces on A 0 vanish:
mo, ——m~ ——0. To get some understanding of the solu-
tion of Eqs. (10), the collision-rate approximation of the
kinetic gas theory will be imitated. We replace the ma-
trix m„by a diagonal one, but observe the mentioned con-
servation law:

m„(q,z) =5„(1—5 0)(1—5go)m(q, z) .

We approximate further by ignoring the wave-vector
dependence of the kernel: m (q,z}=M(z). Then ane finds

@~(q»= @~(q.k) —M(»[1+M«)'C(q4)l '

X4"„0(q,g)40 (q, g),

where g=z+M(z). So the phase-space correlation func-
tions are expressed in terms of the one unknown kernel
M(z) and the reference functions 4„" (q, g). To discuss
the latter let us rewrite Eq. (10b) far the susceptibilities
X~~

——z~+gi, &
formed with the Wigner functions fi, (q):

zg, (qz) N~(g i)tXgy(qz)= Nkp. (12a)

One flnds also coi =5i,~(ni, +q/z —ni, q/z) with the occu-
patian numbers

ni, g((a——~h, ) )d;, .

So the reference functian is determined in a complicated
manner in terms of ni, and gi,~(q); both set of functions
are influenced by disorder as well as by electron-electron
interactions. Within the random-phase approximation,
interaction effects on ni, are ignored, except for rigid-
band shifts. In the same spirit we shall ignore the effects
of disorder and write ni, ——e(sz —si, ). Similarly, the
compressibilities shall be replaced by the random-phase-
approximation result

giq =NyS'a(q) —U.ir(e)gi'(q)g', (q)[1+g'(q)U.ff(e) l ',
where

gg(q)=(ni, q/z
—ni, ~q/i)/(q k/m) .

Hence, Eq. (12a) reduces to

( +q.k/m)X~(q, z) —(ni, +q/z —ni, q/2)U, ir(q) QX~(q,z) = —(n&+q/, —n„»)5„. (12b)
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4»(q, z) = [g (q)+z4(q, z)](m /n) .
2

(14b)

These formulas express the known fact that the random-

phase approximation preserves the exact relations between
longitudinal currents and density derivatives. Using these
properties, one verifies that also the solutions of Eq. (11)
obey Eqs. (14}. Thus, the truncation of the matrix m„by
the one-kernel matrix preserves the exact relations be-

tween 400, 40i, and 4ii also. From Eqs. (la), (21), and

(6), one derives the expansion

g, (q)/4, (q,g)= —g[ 1 —tnq /[mg, (q)g ]I

+O((qUp/g) )] .
Substitution of this result into Eq. (13) yields the Green-
Kubo formula of the present theory: up to terms of order

O(quz/g) q K(z)/g(q) in the denominator of 4(q,z), one
gets

4(q,z) = —g, (q)/[z +q'K (z)/g, (q)] . (15a)

Here, K(z)= (/mn)/g—. Substitution of this result into
Eq. (14b) leads to the long-wavelength expansion for the
longitudinal current correlation function

q z)=(j(q)
I
(~ z) '

I
j(q))=(n/m)@&i(q z) .

Thus, we have

4L (q,z) =zK(z)/[z+q K(z)/g, (q)] . (151)

Since q /g, (q) vanishes in the long-wavelength limit, Eq.
(2c), K(z) =@L,(q=0,z). Thus, K(z) is indeed the veloci-
ty correlation function introduced before in connection
with Eq. (7}. Comparing the present representation of

This separable integral equations is the random-phase ap-

proximation for the phase-space susceptibilities and so
our reference functions are approximated by the random-

phase approximation for the interacting system, men-

tioned in connection with Eqs. (2). In particular, the den-

sity propagator is derived from Eq. (11)as@()4[quiz +M(z)](13)
I 1+M(z)4'[q, z +M(z)]/g'(q) J

Quite a few approximations were used to derive this ex-

plicit expression of 4(q,z) in terms of the not yet speci-

fied kernel M(z). The derivation was done with the
motivation of carrying out in each step the simplest mean-

ingful approximation. At present, no means are known

by which one may judge the range of validity of the ap-
proach. But it is again evident that anomalies in the den-

sity of states are ignored. Neither impurity band effects
nor band tail effo:ts can be studied. Equation (13}differs
from the one used originally for a noninteracting electron

gas " in the sense that 4' and g' are not free-gas func-
tions, but rather the functions of the system with interac-
tion.

Let us consider the normalized longitudinal current

A& j(q)——/V'n m. For the reference functions, one veri-

fies by an explicit check

@Oi(q,z) =—[g(q)+z4(q, z)]/[g(q)nlm]'+, (14a}
q

K(z) with the formula (Sa}, one identifies M with the
current-relaxation kernel M:

M(z) =M(z) . (16)

and Eq. (13) yields the compressibility sum rule

AC" q, co =m.g, q

and the f-sum rule for the density spectrum

f deco 4"(q,co)=n(nq /m) .

(171)

(17c)

The Ward identities, i.e., the connections between 40 and
which follow from the continuity equation, are ful-

filled also; Eqs. (14) are special cases.
The mode coupling equation (9), together with the sum

rule (17b), leads to a sum rule for the current-relaxation
spectram

f dcoM (co) =o'co f (18a)

where

co i= g (
~
qU(q)

~ )g, (q)/nm . (181}

On the other hand, the exact Mori representation
(81) yields on the right-hand side of Eq. (1Sa) the fre-

Remembering from the preceding section that
(

~
U(q)

~
) is given by our model of disorder and that

the reference functions of the system without disorder, 4,
and g„are given as well, one concludes that Eqs. (9), (13),
and (16) are closed nonlinear equations in order to deter-
mine M(z), K(z), and 4(q, z). These equations can be
solved by iteration, as was done before for the case of
noninteracting electrons. "' In the following section the
results will be discussed in detail. The approximation
scheme formulates a self-consistency problem. The
current-relaxation rate depends on the density excitation
spectrum. Obviously, the transfer rate of recoil from the
disorder to the electrons has to depend on the dynamical
properties of the electron system. Equation (9}formulates
this fact approximately. On the other hand, the current-
relaxation rate rules the current propagation, Eq. (8a), and
via the continuity equation the latter rules the density
propagation. For long wavelength, this connection be-
tween K(z) and 4(q,z) is given by Eq. (15a), and for gen-
eral q, the connection is formulated approximately by
Eqs. (13) and (16). Current relaxations and density propa-
gations have to be evaluated simultaneously.

Let us note some general properties of the approxima-
tion scheme. If M(z) is analytic for Imz~0 and if it has
a spectral representation with M"(ro)=M"( —co) &0, the
same holds for K(z) in Eq. (8a) and 4(q,z) in Eq. (13).
The latter statement holds under the assumption that
4, (q,z} is a correlation function with the standard prop-
erties. Conversely, any 4(q, z) which exhibits a spectral
representation with a non-negative spectral function yields
an M(z) from Eq. (9) with the same properties. No
matter how M(z} is chosen otherwise, provided it is ana-
lytic for Imz&0 and M(z)/z~0 for z~ ~, Eqs. (7} and
(8a) yield the sum rule for the conductivity

mar co =me n m, (17a)
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quency rut ——(F
~
Fjm/n. One gets (F

~
F)=(&j

~
F)

=(([j',g) &d;., i.e.,

aPi ——gq ((U(q)'p(q)) )d;,/2nm .

If it were possible to evaluate the characteristic frequency
rot for the disordered system, or to get a reliable approxi-
mation for it, the deviation between coi and roi could be
used as a means to quantify the error of Eq. (9).

IV. DISCUSSIGN

I/r= g q'&
I U»(q} I'&co(q ra=0)/2mn, (20a)

where

U„(q)= U(q)/[1+g, (q)vier(q)) . (20b)

The free-gas zero-frequency density spectrum follows
from Eqs. (1) and (6) to

4o'(q, r0=0) =pF(quF) '[1—(q/2k+)2] '~ e(2kF —q) .

(20c)

Since this expression can be written also in the form

A. Nearly-free-electron-gas mobiTity

The lowest-order approximation for the current-
relaxation spectra is obtained if in Eq. (9) the density
spectrum of the Fermi liquid without disorder is substi-
tuted:

Mc'(ro)= gq (
~
U(q)

~
)4,"(q,co)/2mn . (19)

For the zero-frequency rate 1/r=Mo'(r0=0), one finds
with Eqs. (6) and (2d)

tions (20) adopt the Mott-Jones formulas to two-
dimensional systems and generalize the latter by using a
general q&eptnident screetitng function instead of the
Thomas-Fez~i asymptote. Results equivalent to Eq. (20)
have betm obtained originally for three-dimensional sys-
tems. Departures from the Mott-Jones formula due to
local-field effects have been discussed in Ref. 38.

If the q dependence of U» could be neglected, i.e., if
the scatterers could be considered as short ranged, I/r
would be independent of n F.or the two-dimensional
model of ion scatterers the q dependence of U»(q) can
be ignored essentially for q smaller than the screening
vector q„Eq. (2c). So for (=2k~/q, &&1, i.e., for
n «2.8X10' cm, 1/r decreases only weakly with in-
creasing n. The form factors of the layer lead, however,
to an appreciable suppression of the relaxation rate if
n & 10" cm . Local-field corrections are irrelevant for
densities exceeding 10's cm z. For smaller n the local-
field corrections suppress the screening effects and hence
they increase the relaxation rate. Local-field corrections
decrease the mobility by a factor of 1.6 and 1.2 for
n =10" cm and n =10's cm z, respectively (for the
realistic form factors}. These results are in qualitative
agrtement with previous results, see Fig. 62 of Ref. 1.

For the density range 10'2&n cm2&10' the theory
predicts an almost linear increase of the mobility

po ——erlm with electron concentration. This result is in
agreement with experimental findings of Ref. 5, as shown
in Fig. 1. The quoted data were obtained by extrapolating
the experimental values to nt~0 The .figure also shows
the effect of taking the depletion density into account and
demonstrates an assumed distance zt between ions and in-
terface of 2 A, which is about 10%%uo of the Bohr radius.
Choosing z;+0 has only a small effect on the results for
low density but a large effect for high density because
then the wave function is very locaHzed in the x direction.

4o'(k2 —ki, co=0)=tr +5(sF—eg, )5(si,,—eg, ),
k)

formula (20a} is equivalent to

I/r=2n g ( ) U»(k2 —ki) ) }(1—kik2/kg~)
k2, k)

X5(eg, —el,,)5(sp —el, , )/pp .

(21a)

(21b)

I I*-0

This is the known result for Drude's current relaxation
rate as it follows from the kinetic-equation approach.
The scattering rate is evaluated in Born approximation,
but the disorder electron interaction is screened by the full
wave-vector-dependent dielectric function of the Fermi
liquid, Eq. (20b). Matthiesen s rule for the superposition
of ion and roughness scattering holds in this approxima-
tion, Eq. (3b). The result (21b) and (20b) modifies those
formulas, which have been discussed extensively in the
literature (see Ref. 1) by the incorporation of local-field
corrections. Scattering physics ts rediscovered from Eq.
(9), if the density spectrum can be written as superposition
of particle- (i.e., outgoing electrons) hole (i.e., ingoing elec-
trons) excitations, Eq. (21a). Screening is obtained, since
Coulomb interaction suppresses the free spectrum by the
square of the scretuung factor, Eqs. (M) and (20b). Equa-

5
I

n(10 em)

FIG. 1. Kinetic-equation result for the mobility normalized

by the inverse of the impurity concentration n; versus electron
concentration n. The experimental results (dots) (Ref. 5) refer to
a depletion density iV'd ~=3.6X10" cm 2. Solid curve:
Xd ~

——Nd ~, s;=0 A; dotted curve: Nd ~
——0, z;=0 A; dashed

curve: Xd ~
——N~b z;=2 A; dashed-dotted curve: Xd ~

——0,
z; =2 A. 6&0 and 1/b&0 in a11 cases.



2502 A. GOLD AND %". GOTZE 33

B. Mobility suppression

The zero-frequency density spectrum for the Fermi
liquid without disorder vanishes in the long-vravelength
limit because of the long-ranged Coulomb interaction.
From Eqs. (2c), (2d), (6), and (20c), one gets

3000-

4,"(q~O, co=0)=pF(q/q, u~) . (22a)

The excitation spectrum of the disordered system, on the
other hand, approaches a nonzero constant, given by the
inverse mobility 1/p=n/[eE"(co=0)]. From Eqs. (2c)
and (15a), one finds

~ 2000-

E

4"(q~0, co=0)=pF(epzl(nq, ))lp . (22b)

Notice that these two results are essentially exact ones;
our approximation concerns the numerical values of pF,
q„and p only. So there is a large low-frequency long-
wavelength enhancement E of the density spectrum;

E=4"(q-+0, co=0)/4,"(q~O, co=0) .

It expresses the fact, that in disordered systems, particles
move much slower on the average than in a zero-
temperature Fermi liquid. Consequently, small momen-
tum recoil processes are much more efficient than es-
timated in the lowest-order approximation and therefore
one finds

~ ~

I ~ ~

to" 2
n(cm )

I

ia13

FIG. 3. Mobility p versus electron density n for
Xd ~

——3.6X10" cm and n; =10' cm (Ref. 4). Solid curve
is the present theory with z; =0 A and the dotted curve is the ki-
netic equation-result for the mobility po.

M"(co=0) & 1/r . (22c)

The range in q space, where Eq. (22b) is valid, shrinks if
the disorder becomes small. Hence, the relaxation
enhancement is larger, the larger the disorder. ' This
fact is demonstrated as upward bending of a
I/p = (ni /e)M" (co =0) versus n; curve, as shown in Fig.
2(a), in comparison with some experiments. If one wants
to present the suppression effect more clearly as opposed
to the variations of p,u, one can plot p, /pp=cT/0pversus'
the experimental parameter. In Fig. 3(b) this is shown for
the same quantities as exhibited in Fig. 2(a).

I.et us contemplate the mobility suppression for fixed
n; If pu .decreases with decreasing n becau—se of the in-

creasing importance of backward scattering event=also
the enhancement E =(euFpz)/(qnp) will increase. So the
deviation from linearity in Fig. 2(a) or the slope in Fig.

2(b) will become larger if n decreases, as shown by the
dashed-dotted curves. Even if pu does not depend on n

strongly, p, will strongly suppressed with de:reasing n,
since the factor u~pF/n ~1/~n in E increases. This is
shown in Fig. 3 in comparison with data of Ref. 4. The
mobility suppression shows up in a cr versus n plot, such
that the curves extrapolate to zero at a value n~n'&0,
Fig. 4.

It should be reemphasized that in Figs. 2, 3, and 4 the
data are interpreted as a result of recoil enhancement due
to disorder. The influence of disorder on the density of
states pF or on the compressibility g(q) are neglected.
The latter effects have been recently studied within the
self-consistent Born approximation for point scatterers,

3
E
LII

Cl

a)
Il

) 4

2
n;(lO cm )

2 3 4

-0
C)

—5 C

C:
$0—

3
20-

FIG. 2. (a) Inverse mobility 1/p and (b) mobility normalized

by the inverse scatterer density n; as a function of n~ for
Nd ~

——3.6X10"cm . Dots are experimental results of Ref. 5

for n =2X10"cm . Solid and dashed curves are the present
theory with z&

——2 A and z; =0, respectively. The dashed-dotted
curve is the result for z~

——2 A and n = 1 & 10"cm

I
n {e" m-c')

FIG. 4. Static conductivity versus density for n; =1.4X10"
cm and n; =3.4X10" cm according to the present theory.
Solid curves are experimental results of Gold, Gotze, Mazure,
and Koch (Ref. 52) measured at co =0.001 cm
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adapting to the two-dimensional systems earlier calcula-
tions by de Gennes for bulk material. For ion scatterers
a corresponding evaluation would require the solution of
complicated integral equations. If the results were avail-
able, they could be incorporated in the present theory by
modifying the reference functions 4",g" in Eq. (10b).
One effect of this modification would be the change of the
screening in Eq. (20b). Das Sharma ' argued ro:ently that
disorder makes scre1ming less efficient and this yields also
an increase of the 1/I4 versus ni curve, in agreement with
the data shown in Fig. 2(a). In Ref. 41 no comparison
was made with our previous work on mobility suppres-
sion"' and we cannot discuss the work of Ref. 41 be-
cause no equation has yet been published.

C. Mobility edge

The self-consistency equations lead to a positive feed-
back between mobility suppression and enhancement of
the recoil spectrum 4"(q, co=0). This is easily under-
stood if one imagines an iterative solution of Eq. (9). In
the preceding section it was shawn that from 1/po &0 one
gets

41'(q-+0, co=0) »40'(q~0, co=0)=4,"(q~0, e3=0)

and hence pi &po. From here, Eq. (22b) yields

4z'(q ~0, co =0)=[pze/(nq, )]/I41 & 41'(q-+0, e3 =0) .

This leads to 1/p, 2 & 1/p, i, etc. The iteration stabilizes be-
cause of the large q contributions to the decay integral,
Eq. (9), where the asymptotic expansions (22a) and (22b)
are invalid. This, however, holds only if the disorder is
not too large. There is a critical value for the disorder
where M"(co =0) diverges; at this critical value the mobil-
ity continuously approaches zero, as shown by the curves
in Figs. (2b), 3, and 4. If the disorder exceeds the critical
value, the relaxation kernel exhibits a zero-frequency
pole: M(z)= —s/z, s &0. Hence, the polarizability X(z)
=e2K(z)/z, the response function for the dipole moment
induced by an homogeneous field, 2 assumes a finite static
value X=X(z =iO):

A depends on all the parameters of our model like, e.g., n,
ni, and N~i. The condition A =1 defines the hypersur-
face in the parameter space separating the conductor from
the insulator. All the preceding statements hold in com-
plete correspondence and can be shown in detail, in com-
plete analogy to the corresponding ones discussed before
for noninteracting particles moving in a random poten-
tig 9, 10

In Fig. 5 the phase-separation hne in a inn; versus inn
plat is shown for varius model assumptions (roughness
scattering ignored). One should notice the obvious prop-
erties, that incorporation of the form factors, 1/5+0, and
the introduction of a separation between impurities and
electrons, A+0, favors the conductar. Inclusion of local-
field corrections favors localization. For the range of ex-
perimental interest, 10"& ni cm &10', the effects of F,
E~, and 6 on the transition point can be incorporated in
renormalizing ni to some effective value n Th.e
power-law relation between ni and n, demonstrated ap-
praximately in the diagram, can be understood if one
evaluates A in the limit /=2k+/q, «&1 for the model
without form factors. One finds

ni' n[n'—/—2e/(e m)] / no, g'«1 . (25)

Here, no is a constant absorbing the effects of 6+0,
zi&0, and 1/5+0. The strange exponent —', of n, enter-

ing the transi, tion criterion, reflects the singular space
dependence of the screening clouds, surrounding the im-
purities. In Fig. 6 the critical impurity density as ob-

tained from the present theory, the solid curve in Fig. 5, is
compared with the asymptotic law given by Eq. (25) and

)pa

[ni/(ng2/3g )][1 (2g )
—1]-4/3[~/(12~$)24/3] .

the second bracket accounts for the local-field corrections.
Hence, the critical impurity density is given as

X=e n ( /sm) . (23a)

So for strong disorder the system is an insulator. Ap-
proaching the critical disorder from the insulator side, X
diverges. Connected with the pole of the relaxation kernel
in the insulator is a correspanding one for the density
propagator. From Eq. (15a), one gets

4(q, z =0)= g, (q)/[1+[nq2/msg, (q)]I . (23b)
—1

g12

Hence, density fluctuations, once created, do not vanish
for large times 4"(q, co~0) cc 5(co). The electrons are lo-
calized in the insulator. The condition for the conductor-
insulator transition can be formulated in terms of the di-
mensionless coupling constant of the theory

(24)

If A & 1, the system is a conductor, i.e., 1M & 0, 1/X =0. If
A & 1, the system is an insulator, i.e., I4=0 and 1/X&0.

g10,
gS

FIG. 5. Conductor-insulator transition lines for Nd ~
——0.

Solid and dashed-dotted curves are for l/b+0 and 6+0,0 =0,
respectively. Dashed and dotted curves for j jb =0 and
6&0,6 =0, respectively (aO curves are for zf ——0}.
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the effect for a p, versus n plot in comparison with some
data. System parameters were chosen close to the ones
used in Ref. 43, where data of Kawaji have been analyzed.
Matsumoto and Uemura reported that the data ~ere in-
compatible with the assumption of a summation of ion
scattering rate and roughness scattering rate, and there-
fore a third relaxation mechanism was introduced to ac-
count for the experiment. It was also argued that
scattering by bulk impurities was necessary to account for
the data in the low-n region. Most interesting is the
strong suppression of p for n ~2X10" cm where no
experiments are available.

' ~

I

~ n(10"cm ~} +
FIG, 6. Critical impurity density n; as a function of electron

density n for n&~}——0 (Ref. 42). The solid curve is the result of
the present theory with z; =0. The dotted curve is for z; =5 A
and the dashed curve is the asymptotic law according to Eq.
(25).

with experimental results obtained by Mazure and Koch
for an accumulation layer. The experimental error bars
also account for the rounding of the transition due to
nonzero temperature effects.

D. Roughness scattering

The reasoning concerning the mobility suppression due
to self-consistency effects obviously holds also for rough-
ness scattering. Studies of the results for a model speci-
fied by Eq. (3d) were presented earlier. '

With increasing density, the mobility first increases due
to scrtx:ning effects but later decreases due to surface
roughness scattering (see Ref. 1). Figure 7 demonstrates

E. Depletion field effects

The extent of the wave functions perpendicular to the
interface can be decreased by increasing the depletion
field. Then, the electrons are pushed to the interface and
are affected more strongly by the impurity potential than
before. So for fixed n; the metallic regime shrinks and
for Ne i~no we get the results for F=F;=1. In Fig. 8
the static conductivity is shown as a function of Ne,» for
various electron densities and fixed n; Th.e parameters
should be realizable in experiment. The theory predicts a
metal-insulator transition for n =3 X 10" cm and
&;=3X&0" cm at Eq~~ ——3X10"cm

F. Plasmon excitation anomalies

Let us consider the dynamical conductivity normalized
by its dc value, o =a(ci)/o, as a function of the normal-
ized frequency co=ci[crni/(ne )]. If Drude's theory were
valid, i.e., if the current relaxation kernel would be
frequency independent, Eqs. (7) and (8a) would yield
o

&

——cr D1/( I+co ) So the. kinetic-equation approach
predicts all normahzed conductivity curves to be a stan-
dard Lorentzian, no matter what the dynamics of the elec-

~ ~ ~ ~ 0 ~ '~
~ ~ ~ ~

~ ~ ~ ~ ~ ~

CD

lh

E

C)
1

C)
II

)Oil
i I

)o)2

n (CFA I

)O13

10

ND~)(10" cm }

20

FIG. 7. Mobility versus density measured by Kawaji (Ref.
43) (dots). Dashed curve is the theoretical result of Ref. 43 for
three scattering mechanisms. The solid curve is the present
theory using impurity scattering and surface roughness scatter-
ing. The dotted curve is our zero-order result (n;=0.5&(10"
cm, XD ——3.6&10"cm, 5=2.8 A, A=13 A).

FIG. 8. Conductivity versus depletion density for
n; =3&10"cm . The solid, dashed, and dotted lines are for
n =5&10" cm, n=4)&10" cm, and n =3&10" cm
respectively. Lower curves and right scales are dc values; upper
curves and left scales are dynamic conductivities for co=141.5
cm
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tron system is like. Deviations of the true dynamics from

the one anticipated within the kinetic-equation approach
can be seen if one compares a cr versus p3 plot with the
sian~~fd Lorentzian. One gets

cr(co}=M"(co)/f [c0+M'(co)] +[M "(c0)] J .

Within the present theory the dynamical anomalies are
discussed more adequately as deviations of the normalized

relaxation spectrum,

M "(co)=M"(co)crm/(ne 2) =M"(c0}/M"(co=0),
from unity. Frequency dependencies of M"(co) cause
M'(co)+0 via a Kramers-Kronig relation, and this reac-
tive part of the kernel also enters the dynamical conduc-

tivity for co+0.
The lowest-order result for the relaxation spectrum

Mc'(co), Eq. (19), exhibits a strong frequency dependence,
since the Coulomb interactions imply a strong frequency
dependence of the density of states for density excitations

g 4,"(q,co) I.e.t us rewrite the result with the aid of Eq.
(20) in the form

Mo'(c0)= gq ( i U~(q) i
)R(q,c0)40'(q, c0)/2nm

q

+ gq (
~
U(q)

~

i)r(q)m5(c0 —co~(q))/2nm .

(27)

Here, the strength factor for the plasmon excitation is

given by

r ( q) = 1/[v, ff(q) co~ (q)5Xo(q, cd, (q) ) /5co]

R(q ~)=
I [i+go(q)c.~(q)]/[I+~o(q ~+i 0)"ff(q)] I

'
~

For the model F=F;=1, n =5X10" cm
n&' ——1.2X 10" cm, the various contributions to
Mo'(c0) are shown in Fig. 9. There is some frequency

variation of Mo'(co) due to the frequency dependence of
cubi'i'(q, co). This part refiects phase-space variations of the
two-dimensional particle-hole excitations, and it is ob-
tained by dropping the plasmon contribution in Eq. (27)
and putting R (q,co)—=R(q, co=0)=1; it is shown by the
dotted curve. This is the only contribution which occurs
also for the model of noninteracting electrons moving in a
screened random potential U~(q), Eq. (20b). If R+1 is
observed, the dashed-dotted curve in Fig. 9 is found and
Mc'(c0) rises with increasing c0 in the frequency domain of
interest. Incorporation of R is equivalent to including the
frequency dependence of the screening function. With in-
creasing co, screening becomes less efficient, leiiding to an
enhancement of the relaxation rate. If the plasmon con-
tribution is added, the dashed curve in Fig. 9 is obtained.
For small co, only small-q contributions enter and so
long-wavelength expansions can be used to derive, as a
plasmon excitation contribution

hl {meV)
20 40 60

Mo'~(co~0) =a~(co/er)'[en;/(Sng„)](kz/q, ) . (28)

Hence, current relaxation due to plasmon excitation leads
to a considerable increase of Mo'(co) with increasing fre-

quency; the relaxation spectrum acquires a pronounced
peak. Even if the electron impurity interaction effect is so
large as to yield an almost 50% reduction of p as com-
pared to po, the effect still survives, as shown by the solid
curve in Fig. 9. In Fig. 10 the influence of various model
parameters on the relaxation spectrum is displayed. No-
tice that the introduction of form factors, 1/b+0„ leads
to a strong suppression of the large frequency relaxation
rate in comparison with the one for a model with
I" =Fr ——1

The strong variations of the relaxation spectrum lead to
the following anomalies of the conductivity. For large
frequencies, an enhancement of the spectrum is predicted:

20
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FIG. 9. Normalized relaxation spectrum M" as a function of
normalized frequency, see text.

FIG. 10. Normalized relaxation spectrum as a function of
the normalized frequency for n =5)&10" cm and n& chosen
to give the same dc value. Sohd and dashed-dotted curves are
for 1/b&0 and 6&0, 6 =0 {n;=2.25X 10" cm
n; =3.15X10"cm 2}, respectively. Dashed and dotted curves
are for 1/b =0 and 6&0, 6 =0 ('n; = 1.2)& 10" cm
n; =1.75X10"cm ), respectively. All curves are for Nd ~

——0.
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o(co)=M "(co)/co', co» ~M(co)
~

. (29a)

The f-sum rule requires a corresponding small frequency
suppression of the current spectruzn below the Drude
curve:

0 4 8
lCil .

' ". ilh. () lb)
/

4 8
t

&/b y0

cr(co) = 1 —[M "(co)—1]—[co+M '(co)], co «M(co) .

(29b)

Notice that the suppression is also determined by the reac-

tive part M'(co). The tail enhancement due to plasmon
emission was discussed originally for bulk metals for an
approximation corresponding to M =MD. '0 In bulk ma-
terials it is necessary for co to exceed co&

——(Annie /m)'
where ns is the electron number per volume. This fre-
quency is rather large and sa the anomalies show up only
far out in the Drude tail. In two-dimensional systems the
anomaly already sets in at low frequencies and so the
whole effect is more important, as was pointed out by
Tzoar, Platzman, and Simons in a discussion of plasmon
damping for electron layers; these authars examined a
formula equivalent to Eq. (29a) with M —=Mo.

A side remark might be helpful. The kinetic-equation
approach, or better, the extension of the random-phase ap-
proximation by inclusion of a Drude damping is obtained

by writing M(z)=iM"(0) in Eq. (13). Such an approxi-
matian was analyzed s for bulk systems. When the Mer-
min s formula for the density propagator is used in the
calculation of the relaxation kernel in Eq. (9), one gets a
first nonlinear correction to the lowest-order approxima-
tian of our theory.

Equatian (29a) can be written as o(co) =ona, where

cd = [e'I(mco)'](n Ipo)

is the conductivity predicted by the Drude law, while
a=M"(co)/Mo'(0) is the enhancement factor due to
plasmon excitations. on is a monotonically increasing
function of n if we are sufficiently above the canductor-
insulator transition; for large n there is a tendency for oD
to become n independent (Fig. 3). With increasing n the
plasmon frequency increases; c(oq) ~ & q nfor q~0.
This stiffening of the modes decreases the excitation
phase space; Mo'~(co) ~co /n in Eq. (28). Hence, cz will
decrease with increasing n till the whole enhancement gets
lost, for sufficiently large n. The decrease of cz can over-
compensate for the increase of cd, so that the o(co) versus
n curve for co+0 exhibits a maximum, Fig. 11. Thus, the
nonmonotonic cr(co) versus n behavior is explained by the
present theory. The measurement of cz is a rather direct
detection af the plasmon density of states. We mention
that finite-thickness effects of the electron layer increases
the peak structure (see Fig. 11). For I/b =0, the self-
consistent calculation of M(co) is ne:e&sary to account for
the experiments reported by Gold, Gotze, Mazure, and
K.och. '~

G. Plasmon damping and plasmon shifts

In the long-wavelength limit, the Green-Kubo identity
(15a) is the most convenient formula for a qualitative
study of the damping and shift of the plasmon resonance.
Using Eq. (8a), the normalized spectral function reads

12-

-2 'x

Cl 10—

3 O.S

~ ~

ej

-O.S 3

0

n{10 cm )

I

8

FIG. 11. M', M", and 0' as a function of electron concentra-
tion n for E~~ ——0, e= 141.6 cm '. The sohd curves are due to
the present theory, the dashed curves are obtained by using the
Mermin formula (Ref. 45) in Eq. (9), and the dotted curves are
the frequency-dependent zero-order results. (a) 1/b =0,
n~ 1 2)(10» cm-2. (b) 1/b&0, n; =2.25)(10» cm —z

I D ———,'M"(co=0)=e/(2m@) . (31)

Connected with the damping is a downward shift of the
resonance, which, however, is a quadratic effect in the

4"(q,co) Ig, (q) =cop(q)M "(co)/{[ co co~(q)i+coM'—(co))z

+co [M"(co)] ) . (30)

Here, co&(q)=[nq /mg, (q)]'~ is the plasmon dispersion,
Eq. (2e), of the system without disorder. Formula (30) is
the characteristic absorption of an oscillator coupled to
other degrees of freedom, whose reaction on the oscillator
is described by the polarization operator M (z). If co~(q) is
not too small, i.e., for a q larger than some characteristic
q', 4"(q,co) will exhibit a nonzero frequency peak at Q(q)
of a characteristic half-width at half height I'(q). Q(q) is
the true plasmon dispersion of the system and I'(q) is the
plasmon damping. For q &q' propagating modes do not
exist, the oscillations are aver amped; 4"(q,co) exhibits a
maximum at zero frequency.

Within Drude's theory M(co+ iO) =iM"(co=0) and Eq.
(30) describe an oscillator with constant friction. There-
fore, one expects a q-independent damping given by the
mobility
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d~mping constant:

Q (q)=ai (q}[1—21'/ai,'(q)j'" .

The resonance disappears for qn ——(2m/q, ep)I n2 .The
above results have been discussed recently. The Drude
results are wrong, even in the limit u —+0, q~O. For
small frequencies one can write

~ ~ ~
~ ~

4

0.9 —.' ~
~ ~ 0 0 ~ ~ ~ ~

M'(co) =ye+0(co ),
and so one finds

Q(q) =nil(q)/V'(1+y),

r =I,/(1+y),

(32a)

(32b)

(32c)

q'=q8 /(1+y}. (32d}

These formulas hold as long «s M"(co) does not vary ap-
preciably with frequency on the scale I, Q(q). The
plasmon emission anomaly for large frequencies causes a
normal dispersion for M'(co) at low frequencies and this
leads to a y ~0, see Fig. 11. Hence there is a plasmon
softening, Q(q)/co~(q) & 1, which is a hnear effect in I"D.
It is connected with a sharpening of the resonance,
I' & I n, and a corresponding shrinking of the regime for
overdamping, q' ~ q~.

If the plasmons are well defined, co~ ppM"(co), an ex-
pansion of the denominator around Q(q) brings out

I

0.5
l

q/kF 15

FIG. 12. Plasma resonance 0 relative to the Fermi-liquid
value co~ (determined numerically} and plasma damping I' for
n =5X10"cm, n& ——2.25X10" cm, N~~ ——0, and 1/6+0
versus wave vector q in units of k~. The dashed curves are the
kinetic-equation results, and for the dotted curve, see text.

Q(q) =nil(q) —Q(q)M'(Q(q)) (33a)

}0 tLi(meV) 20

1(q)= —,'M"(Q(q)) 1+ M'(Q(q) )
l

2Q q

0.4—

0.2—

+ BM'(Q(q) )

(33b)

The resonance structure of M"(ui) implies that M'(ui)
changes sign, Fig. 11. Hence, for larger ai, the disorder
causes an increase of the resonance Q(q) & co&(q). Before
entering this regime, the damping increases considerably
above I D. To discuss the large frequency plasmon prop-
erties correctly, Eq. (3a) cannot be used and we will apply
our approximation (13). In Fig. 12 plasmon shifts and
broadening, as obtained from our theory, are shown; the
results of the Mei~in4' formula are shown as dashed
curves. The dotted curve in Fig. 12 represents

Q/co~=[1 —(M") /4co )'

0
e 04-

0.2-
IIO'

()Ol

0.4—3
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II 02
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n; =%'IO"cm

A) =7@10 CN

In Fig. 13 a representative set of density spectra is exhibit-
ed in order to elucidate the influence of disorder on the
dynamical structure factor of MOS systems. Figure 14
exhibits the impurity density dependence of the plasmon
frequency renormalization together with M"(co) at the
plasmon frequency. The dotted curve refers to the same
as in Fig. 12 and to Mo'(0)/co&, respectively.

There are experiments showing our effect quahtative-

100 ~ (cm-1) 200

FIG. 13. Density spectrum normalized to the compressibility
as a function of frequency for q =kg, yg =5X10ii cm-2, and for
various impurity densities nf (X~~——0, 1/b&0).
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~ y y ~ 0
~%gg

The self-consistency yields an enhancement of a with de-

creasing 0. Consequently, the current decay into
anomalous diffusion modes or, equivalently, into over-
damped plasmons, leads to a decrease of the relaxation
spectrum M"(co) with increasing co. This effect is oppo-
site in its trend to the anomaly due to decay into well-
defined plasmons, which is discussed in Sec. IVF. For
small enough frequencies the singularity M, (co) always
dominates. The reactive part, corresponding to Eq. (36a),
reads M,'(co)=aco ~co ~. Substitution of M, (z) into Eqs.
(7) and (ga) yields a corresponding singularity for the
dynamical conductivity at very low frequencies

~ ~ cr(co) =o[1—(amp, /e)co ln
~

co
~

+0(co )] . (36b)

0 2 4

n; (1011cm ]

FIG. 14. Plasma frequency Q and I"(0) versus impurity
density. Solid curves are for n=5X10" cm ' and q =kF and

dashed curves are for n =10'2 cm and q = 4 kp. For the dot-

ted curves, see text. ( Nq~~ ——0, 1/&+0.)

ly. ' A quantitative comparison between theory and ex-
periment is not possible, since the mentioned work does
not deal with specified Na+ contamination.

H. A very-low-frequency singularity

If frequencies and wave vectors are so small that
M"(co) can be considered as co independent and

~

coM"(co)
~

and coz are small compared to M"(0), Eq.
(30) reads

@"(
q, co)lg, ( q)

=[co «)'/21 D]/I~'+[co (q)'/21 n]'] (34}

So the density spectrum is a central Lorentzian whose
width coH is given by the mobility p, , Eq. (31),

(35)

As a result of the mode coupling equation (9) and the
Green-Kubo formula (15a), we arrive at the following pre-
dictions. Opposite of the outcome of the Drude law, the
low-frequency conductivity will rise with increasing fre-
quency. cr(co) will show a maximum at some frequency
co~+0 before it dcereases. [o(co)—cr]/co should not ap-
proach a constant for co~0, as implied by the Drude law,
but it should diverge logarithmically. The strong plasmon
excitation anomaly, explained in Sec. IVE, restricts the
frequency range of the asymptotic formula (36b) to a very
narrow one. But Fig. 15 demonstrates that an experimen-
tal verification should be possible with MOS devices. A
side remark might be in order. The Drude theory predicts
currents to decay exponentially in time j(t)/j (t =0)
=K(t)IK(t =0)=exp( tie), —where K(t) is the Laplace
back transform of K(z}. The formula (36b) implies in-
stead

K(t}= (2amcrIt, —/e )I
~

t
~

+0(1/~ t
~

) . (36c)

So for long times the currents decay only algebraically
and, actually, they have the opposite direction from that
at time zero. The singularity discussed above is yet anoth-
er example of a long-time anomaly due to coupling of an
observable to a hydrodynamic mode (see Ref. 50 for a re-
view).

Let us remember that for noninteracting particles
the Green-Kubo formula yields for the normalized
low-frequency long-wavelength density spectrum
Dq /[co +(Dq ) ], with D denoting the diffusivity
D ~p. So the excitation, discussed in Sec. IVF as over-
damped plasmon, can also be described as diffusion mode.
But there is a wave-vector-dependent diffusivity
D(q) =(q, Iq)(e~ple), which diverges for q —+0. The
strong singularity exhibited by @"(q,co) for co~0 and
q~O leads to a singular low-frequency contribution to
the relaxation kernel. This singularity, obtained frotn the
q —+0 contribution to Eq. (9}reads for co~0

1.0

.9 I ~
20 IO

M,"(co)=aco ln
i

co i,
where in leading order in n; one finds

a =[n;/(4ng„)](m/q, }[g„e /(ncr}]

FIG. 15. Normalized conductivity as a function of frequency
for n 2 5 / 10 CIQ $ nt 2 25 / 10 cm y Nyet op and
1/b&0. The dashed curve is the Drude result.
(~,=2.86X 1O-'yn. )
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I. Current spectra

The relaxation enhancenient due to the slowing down of
the particle motion is disordered environments, discussed
in Sec. IVB, is most pronounced for small co. If co is
comparable or even larger than

t
M(co) t, the recoil spec-

trum 4"(q,co} is close to the one for the system without
disorder 4,"(q,co). Actually, 4"(q,co) even falls below
4,"(q,co), a trend required also by the sum rules (17b) and
(17c). Thus, the feedback between current relaxation and
recoil enhancement leads to a peak of M"(u), centered
around co =0. The singularity, discussed in Sec. IV H, was
the beginning of this phenomenon well into the conductor
phase. The conductor-insulator transition is characterized
by the peak height as diverging. Figure 16 exhibits the
quantitative details for an accumulation layer Le.t us em-
phasize that the plasmon excitation anomaly, explained in
Sec. IVF, works against the appearance of the low-
frequency peak in M"(ai). It shrinks the frequency range
where the peak dominates, and that is the reason why it is
not visible for n & 3 X 10"cm on the scales used in Fig.
16. The strong positive reactive part M'(co), caused for
small frequencies by the plasmon emission, cannot be
overcompensated for by the negative contribution due to
the localization precursor, unless one is rather close to the
Anderson transition. The plasmon emission anomaly
causes a kink in the M' versus co curve near the critical
point, as shown for n =2.5X10"cm in Fig. 16. In the
Fermi-glass phase the relaxation spectrum exhibits a
quasigap at low frequencies and the low-frequency part of
M'(co) is dominated by the non-ergodicity resonance, as
shown by the dashed curves in the figure. Notice that for
the insulator a considerable fraction of the M"-sum rule,
Eq. (18a), is exhausted by the static contribution
M"(co~0)=ns5(co), which is not shown in Fig. 16.

The localization precursors show up as minima cen-
tered around co=0 in the current spectra cr(co). These
minima are suppressed considerably as compared to the
ones predicted originally for noninteracting electrons"'3
because of the plasmon emission anomalies. Therefore,
the maximum at co &0, which the conductivity o versus
co plot exhibits in any case, shows up on the scales used in
Fig. 17 only for n &3.0X10" cm i. The glass spectra
show a quwigap at low frequencies. cr(ai) for n ~n,
(=2.3X10" cm in Fig. 16) describes the averaged
spectrum for localized particles. A particle in its trap will
have a discrete spectruin, but since different particles have
different traps and thus different spectra, o(co) shows a
continuous distribution. In the glass o(co) refiects inho-
mogeneous line broadening of localized anharmonic oscil-
lations. The low-frequency conductivity 0(co) near the
transition point can be evaluated analytically and is given
by a dynamical scaling law. ' But the various scaling
laws do not show up on the scales disp1ayed here and they
are irrelevant for discussion of the experiments analyzed
in this paper. Therefore, we will not dwell on these prop-
erties.

o(co}was reported by Gold, Gotze, Mazure, and Koch46
for accumulation layers for five frequencies in the far in-
frared by absorption of laser radiation. From the data of
a'(co) versus n (Ref. 46), one can extract the five experi-
mental points displayed for each spectrum in Fig. 17.
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FIG. 16. Relaxation kernel M' and M" as a function of fre-
quency for n~ 2 6&1011 cm-2 and various densities n The
critical density is n; =2.3X10"cm 2. The dashed curves refer
to the insulator (Nd ~

——0, 1/5+0).
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FIG. 17. Conductivity versus frequency for the same param-
eters as in Fig. 18. The bars are experimental results of Mazure
and Koch (Ref. 42).
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FIG. 18. Conductivity versus density for co=0.001 cm
co=84.2 cm ' as dotted lines for n;=2. 1X10"cm ', Nd~~ ——0
and 1/6+0. The solid curves are experimental results of Gold,
Gotze, Mazure, and Koch (Ref. 52) for n "P={2.2+0.3)X10"
cm

The theory is in qualitative accord with the facts, as far as
the low-frequency-spectrum suppression and the large fre-

quency enhancetnent due to plasmon emission anomaly
are concerned. Also, the optical quasigap for low fre-
quencies in the glass is explained. Suprisingly, the model
with F=F;=I gives better agreement with the experi-
ments than the more realistic model with F~ and F, as in

Eq. (4). The discrepancies between theory and experiment
are larger for smaller densities. The reason for this
behavior can be seen in Fig. 10 where M"(ai) is shown as
a function of frequency for various model approxima-
tions. With a finite extension of the wave function, the
relevant frequency scale for M(ai) becomes smaller and so
the peak structure in the conductivity increases. Perhaps
intersubband excitations are possible for such strongly dis-

turbed systems and one should take two bands into ac-
count for a more realistic description of the system. "

For a comparison of the theory with static and dynamic
measurements, see Fig. 18, where the data of Gold, Gotze,
Mazure, and Koch are given. The nonmonotonic varia-
tion of the dynamical conductivity with electron density
is well described by the theory.

V. CONCLUSION

In the present work we studied the transport properties
of an interacting electron system, which is strongly dis-
turbed by charged impurities. Within our framework
some earHer concepts are connected.

First, the idea for a self-consistent calculation of the
density and current relaxation gives a nonlinear n; depen-
dence of the transport properties (Fig. 3), a transition
from a metal to an insulator (Fig. 6), and a non-Drude
behavior of the dynamical conductivity (Fig. 17). Second,
the generalizing of this idea to interacting electrons is
reflected in long-time anomalies of the dynamical conduc-
tivity (Fig. 15) and a strong softening of the collective
plasmons and overdamping near the metal-insulator tran-
sition (Figs. 12, 13, and 14). Third, a realistic model with
finite extension of the wave functions perpendicular to the
surface' has been used for the theory. This model brings
out an improved density dependence of the dc conductivi-
ty (Fig. 1) and an increased metallic phase (Fig. 5). The
dynamical consequences are most drastically documented
in Fig. 10. Finite extension gives a strong suppression of
the relaxation kernels in the high-frequency range and this
should be measurable. Fourth, the influence of local-field
corrections ' on the static and dynamic conductivity has
been demonstrated (Fig. 10). Because local-field correc-
tions reduce the screening properties of the electron gas,
the insulator phase is increased (Fig. 5). Fifth, a clear ex-
planation of the decay mechanism of the current has been
given. The increase of the relaxation kernel for low fre-
quency is due to the decay of the current into plasmons
and to the breakdown of dynamical screening (Fig. 9).

The theory is able to explain some old (Figs. 1, 2, 3, and
7) and some new experimental results (Figs. 6, 17, and 18).
Furthermore, some quantitative predictions (Figs. 8, 12,
14, and 15) are made.
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