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Statistics for electrons, solitons, and polarons in trans-polyacetylene
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The equations that govern the temperature variation, in thermal equilibrium, of electron popula-
tions in soliton (kink) and polaron levels and the conduction band are set up for trans-polyacetylene.
These are the electrical neutrality equation, the relations between chemical potentials of electrons,
holes, solitons, and polarons, and the relations between the chemical potentials and the concentra-
tions of the different excitations. It is pointed out that the lifetime predicted for a conduction elec-
tron against dropping into a polaron level, short though it is, is comparable to scattering times for
conduction electrons in some typical three-dimensional (3D) semiconductors; it therefore does not
preclude treatment of electrons in the conduction band of polyacetylene as quasiparticles. From the
relations derived for the concentrations of solitons and polarons it is deduced that in trans-(CH)„
polaron concentration is negligible compared with soliton concentration in thermal equilibrium
within the range of doping where both can exist, i.e., up to -5%o or 6%. The 300-K conduction-
electron concentration in trans-(CH)„with 5% doping is found to be —10' /cm . On theoretical
grounds, and according to x-ray and other types of evidence, dopant ions are, however, generally not
random in their distribution as was assumed in the calculation of the thermal-equilibrium level pop-
ulations. As a result a 5% dopant concentration, say, and correspondingly high electron concentra-
tion might be achieved in some local regions when the average doping is much less than 5%. With
much lower doping in the surrounding regions, however, a local high electron concentration would
not have much effect on dc conductivity. It could, however, contribute to high-frequency conduc-
tivity. Recent measurements of Genzel et a1. may show this contribution.

I. INTRODUCTION

The existence of solitons and polarons in a quasi-one-
dimensional (1D) semiconductor results in some signifi-
cant differences in the statistical mechanics from that for
typical three-dimensional semiconductors. In this paper
the statistics for a 1D semiconductor with a two-fold-
degenerate ground state, exemplified by trans-
polyacetylene [(CH),] will be examined. Consideration
will be limited to siunples with impurity concentration
low enough [(5% or 6% in the usual trans-{CH)„sam-
ple] so that essentially the full gap remains, although it
may contain many localized states. To simplify the dis-
cussion it will be assumed that (1) the impurities are ran-
domly distributed, and (2) the material is not so disor-
dered that it does not have reasonably well-defined
conduction- and valence-band edges. How well these two
conditions are satisfied in currently available polyace-
tylene samples will be considered in Sec. V. They should
hold literally in I.i-doped samples and probably no others.
Nevertheless, it will be seen that many of the results to be
derived are applicable even when these conditions are not
well satisfied.

In the development of the statistics the case of donor
impurities wi11 be the one considered, but the results clear-
ly apply to acceptor impurities with the obvious modifica-
tions. It is expected that an impurity commonly cited as a
donor transfers all or almost all of an electronic charge to
a polyacetylene chain. The theory to be presented will ap-

ply only to such impurities. In these cases, the electron
will go into a soliton level on the chain. ' For a 1D
semiconductor with doubly degenerate ground state the
soliton may be a kink, i.e., a domain wall that interpolates
between the two degenerate arrangements, or a polaron,
which may be thought of as made up of two kinks, one
charged and one neutral. At first sight it might appear
that for the 1D semiconductor one could take over the
statistics for the 3D case, simply replacing the donor level
for that case by the soliton level or appropriate polaron
level. That is not so, however, because the number of soli-
tons or polarons is not a constant, as is the number of
donors, but varies with temperature. Pairs of neutral or
oppositely charged solitons may recombine; a negative po-
laron that gives up an electron is unstable and decays,
etc. It is clear therefore that new statistics must be
developed for the 1D case. That has already been done
for the one-quarter-filled-band case with Coulomb repul-
sion U for a second electron on a site much greater than
the transfer integral t In this pap.er the statistics are
developed for the half-filled-band case with U&t, as is
appropriate for trans-{CH), . '

In the next section I set up the charge-neutrality condi-
tion for this case and consider its implications. This
equation can be used to find the Fermi energy p„provid-
ed the concentrations of electrons, holes, solitons, and po-
larons can be expressed in terms of p„. In Sec. III a step
is taken toward this goal by deriving the relations between
chemical potentials of electrons, holes, solitons, and pola-
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II. CHARGE-NEUTRALITY CONDITION

The basic equation relating the populations of the elec-
tronic levels in and above the valence band is the electrical
neutrality equation

p+Ng+ns+2np n+2ns(f(E)——)s+3np . (2.1)

Here, p and n are concentrations of holes in the valence
band and electrons in the conduction band, respectively,
Xq the donor concentration, and f(E} the distribution
function of the electrons. The distribution is averaged
over the soliton levels in Eq. (2.1) to allow for their being
spread in energy. The right-hand side of Eq. (2.1)
represents the number of electrons found in the conduc-
tion band, in soliton levels and polaron levels. The pola-
ron term has the factor 3 because donor-doped trans-
(CH)„will have only negative polarons, which are each
occupied by three electrons; two electrons, taken from the
valence band, occupy a level at an energy coo below mid-
band and the third electron, from a donor, occupies a level
coo above midband. The soliton levels differ from pola-
rons in that they can exist unoccupied, or occupied by one
or two electrons; ' thus the number of electrons in a soli-
ton level of energy E is 2f(E}. The left-hand side of Eq.
(2.1) represents the number of electrons available for dis-
tribution among the various energy levels: from the

rons. The chemical potentials must then be related to the
concentrations. In deriving the chemical potential for the
solitons the question of the number of possible configura-
tions Ws of the solitons on a chain is discussed. For low
soliton concentrations two different expressions are ob-
tained for Ws, one based on the premise that soliton (S)
and anitsoliton (S) may be centered on any site, the other
on the premise that S and S must be centered on sites of
different parity. The chemical potential ps is obtained
for both cases because it is not clear which actually ap-
plies for trans-(CH), ps. is also obtained for high soliton
concentrations, where both premises lead to the same Ws.
The chemical potential pp for polarons is also obtained.
From the relations between ps and pp a relation is ob-
tained between soliton and polaron concentrations ns and
np, respectively. For trans-(CH}, this leads to the con-
clusion that np «ns independent of doping, provided, of
course that the doping is not so high as to preclude the ex-
istence of solitons and polarons. The various relations are
used in Sec. IV to estimate the conduction-electron con-
centration in trans-(CH)„with 5% doping. In Sec. V the
applicability to presently available samples, trans-(CH)
made by the Shirakawa process' and doped with various
donors or acceptors, is considered. As will be discussed in
that section, there are reasons for the impurity distribu-
tion to be nonrandom. I.i doping is the one case cited for
a random impurity distribution, while many other dop-
ants have been shown by x rays and other types of evi-
dence to be distributed nonrandomly. On such evidence a
sample with average impurity concentration as low as
1%, say, might have regions with -5% doping and,
therefore, large free-electron concentration. In Sec. V I
will consider the contribution of such regions to dc and ac
conductivity. Conclusions will be presented in Sec. VI.

valence band, two for each polaron formed, one for each
soliton formed, 2' and p that leave behind holes, plus Nq
from the donors.

Before discussing some consequences of Eq. (2.1), I note
that it has been argued that electrons cannot exist in the
conduction band of polyacetylene because they will rapid-
ly self-trap, i.e., drop into polaron states, due to the nature
of the electron-phonon coupling in this material. Of
course, in thermal equilibrium, if p,„ is close enough to
the band edge, there must be electrons in the conduction
band. For any actual semiconductor sample, 10 or 3D,
there are always empty states in the gap or in the valence
band for conduction electrons to fall into. The important
question is what is the lifetime of an electron in a
conduction-band state. If that lifetime is too short the
resultant level broadening will, of course, be too large for
the electrons to be treated as quasiparticles. Evidence that
it is not intrinsic to a Peierls-distorted seiniconductor that
the conduction-electron lifetime against polaron or soliton
formation be so short as to invalidate quasiparticle treat-
ment is provided by the semiconducting 1D molecular
crystals. In (NMP), (Phen)i TCNQ, to cite an example
that is a (CH)„analog, over a considerable T range the
log of the conductivity a is proportional to —(1/2kT)
times the (optically) measured gap, indicating that con-
duction electrons and holes are responsible for at least the
major part of tr ''" .Further, the mobility of these car-
riers is of the order of that expected for a TCNQ chain
due to phonon scattering of quasiparticles. ' Many other
examples of this kind in the 1D molecular crystals can be
cited. The electron-phonon coupling constant A, in the
TCNQ-based crystals is -0.35, 'i almost identical with
the value of 0.3S given for trans-(CH), . ' The significant
difference between these crystals and trans-(CH)„ is the
smaller energy gap. Indeed, conduction-electron lifetimes
in 3D semiconductors are strongly dependent on the size
of the gap, decreasing rapidly as the gap increases. For
the parameters of trans-(CH), a calculation of Su and
Schrieffer gives the lifetime due to polaron formation of
-10 ' sec for a single extra electron at the band edge. '

To decide whether this is too short to make quasiparticle
treatment valid, one may look to 3D semiconductors. It is
found that 10 ' sec is a typical lifetime for a conduction
electron in a 3D semiconductor, with shorter lifetimes
quite common. Calculating the average lifetime r (in
semiconductor terminology, "scattering time"} from the
measured mobility p and measured effective mass
m' (a=pm /e), one finds, for example, at 300 K, r
for holes in undoped CdS is 3)&10 ' sec, ' while r
for conduction electrons in GaAs, ' or InP, ' with
10' impurities/cm, is 4)& 10 ' sec. The level broaden-
ing in these cases is -200 K. Nevertheless, very careful
detailed calculations of mobility from the known scatter-
ing mechanisms, with the electrons or holes treated as
quasiparticles, give results in excellent agreement with ex-
periment for the three cases just cited. ' ' Thus a life-
time of 10 ' sec, or even somewhat less, for decay into
levels in the gap does not rule out quasiparticle treatment.
It should be noted also that in heavily doped (CH)» sam-
ples (Xq-5%), where the chains are already close to
filled with solitons and polarons, the lifetime for such de-
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III. CHEMICAL PQI RNTIALS OP THE EXCITATIONS

As the first step toward determining ns and np as
functions of p,„,the relations between the chemical poten-
tials of the solitons, polarons, and electrons will be deter-
mined. In doing this it is convenient to consider electrons,
holes, positive solitons (S+},negative solitons (S },neu-
tral solitons (So), positive polarons (P+), and negative
polarons (P ) as independent particles, each with its own
chemical potential. Because adding a hole to the system is
equivalent to subtracting an electron,

Pp = —Pa ~ (3.1)

To determine the other relations between the chemical po-
tentials we use the technique of reaction kinetics. 's From
the reaction of S+ and S to form 2SO's there re-
sults20, 21

cay is undoubtedly longer than 10 ' sec. That is signifi-
cant because, as will be seini, only in such heavily doped
samples or regions of samples would n be sizeable. Con-
duction electrons in trans-(CH) have, in fact, been treat-
ed as quasiparticles in the calculation of their lifetime for
acoustic- and optical-phonon scattering. That hfetime is
also found to be —10 ' sec at 300 K for thermal elec-
trons.

Equation (2.1) is a generalization of the equation used
to determine the Fexxui energy in 3D semiconductors. As
a preliminary to using it for that puiyose here, the next
section will be devoted to expressing the various quantities
in the equation in terms of p„. The remainder of this sec-
tion will be devoted to a useful deduction that can be
made from Eq. (2.1) for the low-temperature hmit. In
that limit the polaron terms in Eq. (2.1) are negligible and,
because P may be neglected in an n-type (CH) sample,
Eq. (2.1) yields

ng ——(Ng —n)/[2(f(E))g —1]~Kg n—as T +0, -(2.2)

because in the T-+0 limit the soliton levels should be
essentially filled. It is seen from this equation that, when
electrons go into the conduction band, solitons are lost. In
detail, on electron excitation into the conduction band the
neutral solitons left behind recombine in pairs. This loss
of solitons results from the requirement of minimum free
energy.

ties. In practice, there is no problem in doped samples be-
cause even moderate doping causes the residual spins, and
thus presumably the S 's created in the isomerization
process, to decrease greatly in number. If Eq. (3.2} is then
combined with the relation derived from S++n =S or
S +p =S, one obtains

I s+ (3.3)

In the case of polarons only P+ and P are stable.
Thus an electron added to a P+ or removed from P
causes disintegration into phonons. This leads to

Pp —= Pp+ =Pn (3.4)

p, ; =E~ kT—(lnW;), (3.5)

where E; is the creation energy and W; the number of
possible configurations. In connection with the calcula-
tion of Wi it is noted that the excitations themselves, or
the combination of an excitation and an ion to which it is
bound, are mobile. This must be true because doping
occurs through diffusion.

In the case of solitons W; (= Ws} must satisfy the re-
quirement that S and S alternate on the chain. If ls, the
length of a soliton or antisoliton in units of lattice sites,
were unity, this requirement could only be satisfied by
having S 's on even sites and S 's on odd sites, or vice ver-
sa. If all S 's and S 's were bound to ions, the requirement
that the ion be in an interchain position opposite the soli-
ton or antisoliton would mean that not all possible ion
configurations would be allowed; configurations in which
adjacent iona were opposite sites of the same parity would
not be permitted. The Ws that results in this case for
ng «N, the number of sites on the chain, isz

The significance of Eqs. (3.3) and (3.4) is that, because no
change in E results from introducing a neutral soliton at
thermal equilibrium, the change in F on introducing an
S or P is just that required to add an electron.

The chemical potential of a type of particle or excita-
tion is related to the concentration of particles of that
type. To obtain this relation I neglect the kinetic energy,
which should be small compared to the other energies in-
volved. The chemical potential for excitations of the ith
kind may then be taken as

s++Ps- 2P's (3.2)
1 (N/2)!

2"s—i (N/2 —ng/2)!(ns /2)!
p, is conveniently determined by using the fact that
when 2S 's recombine, phonons are produced. The
chemical potential for phonons is zero, ' because the
thermal-equilibrium number of phonons is determined by
minimizing the free energy Fwith respect to that number.
Thus p 0=0. This implies that neutral solitons, like
phonons, are thermally activated. It has born deduced,
however, from the fact that spins are found in trans-
(CH} isomerized from cis-(CH)„, although the original
cis-(CH) contained no spins 3 that the isomerization
process introduces some neutral solitons. These S 's do
not arise thermally and cannot recombine. It will there-
fore be considered that these S 's are outside these statis-

for ns «N and ls 1. (3.6)——
The expression in large parentheses is the number of ways
of putting ns/2 S's on even sites and ns/2 S's on odd
sites. The factor 1/2 selects the fraction of those
ways vrhich have S and S alternating. In the limit where
ns approaches X, the factor outside the large parentheses
approaches unity because, as the sites fill up, there are
progressively fewer chances for violating the SS sequence.
With this factor unity, W goes to unity when ns N, as-—
indeed it should. (Actually, W should go to 2 when
ns ——N, but for ns & N this makes little difference in ln W,
and none in ps. )
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2x KX
sech cos

sa
(3.7)

while the latter corresponds to
' 1/2

4s= sech
isa isa

"fTX
sin (3.8)

a being the lattice constant. In principle, one would ex-

pect the binding energy for the cosine configuration,
Eb(S), to be larger, corresponding to a lower energy. The
difference between Eb(S) and Eb(S} might not be large,
however, because the solitons extend over many lattice
sites. If Eb(S) Eb(S) «— kT, the requirement of alternat-

ing S and S could, unlike the case ls ——1, be satisfied for
any configuration of the ions, provided, of course, they
are not closer than isa. In that case the number of possi-
ble configurations for ns solitons plus antisolitons on a
chain with N sites, N &~nsls is

Wg ——(ls }
(N/1s)!

(N/1s —ns )!ns!

for ns «N/ls and Eb(S) Ett(S) «kT—. (3.9)

The factor in large parentheses is the number of configu-
rations that would be obtained if the chain were rigidly di-
vided into boxes ls sites long, starting at the first site, into

which S's and S's must be put. The factor (ls) allows
for the fact that each box could have ls discrete positions,
i.e., new configurations could be obtained by starting the
boxes at the second site, the third site, etc., through the
(1s—1)th site. When ns is not negligible compared to
Ns/ls, however, not all of these different configurations
can be realized, and in the limit ns~N/ls the factor
(ls) s should be replaced by unity. Again, this permits
Wz to go to unity in the limit ns =N/ls.

If the difference Eb(S) Eb(S) were lar—ge compared to
kT, the requirement that S and S alternate would necessi-
tate that, as in the ls ——1 case, S and S each peak opposite
the binding ion, and the sites opposite which the ions sit
alternate in parity. The number of configurations would
then be

(1s}' (N/21s}'
8'g ——

2"s—' (N/21s ns/2)!(ns/—2)!

i ns «N/1s and Eb(S} Eb(S} (3.10}

For Is&1 the situation is quite different in that it is
possible to create either an S or an S for either parity of
the central site, i.e., the site opposite the ion. In the SSH
model S has nonvanishing amplitude on sites of one pari-

ty, say even, while S has nonvanishing amplitude on sites
of the other parity. For the ion opposite a site of even

parity, for example, an S wave function is created by
choosing maximum amplitude on the site opposite the
ion, while an S wave function may be created by choosing
zero amplitude at that site and maxima at the two adja-
cent sites. s If the ion location is taken as x =0, the
former case corresponds, in the continuum version of the
SSH model, ' to a wave function

This expression reduces to (3.6) for 1s= l. In the limit
where ns approaches N/ls the factor outside the large
parentheses should be replaced by unity as discussed for
the two earlier cases.

To determine Eb(S) E—b(S) a more careful calculation
of the binding energy has been done, specifically for the
case of a Na+ ion, which can reasonably be represented as
a point charge. The distance of the ion from the chain is
2.97 A. The wave functions for S and S were taken as
(3.7) and (3.8) respectively. With E~!——7, Gi ——1.8, ob-
tained from recent measurements of the infrared refrac-
tive index on fully oriented, highly crystalline trans-
(CH)„ it was found that Eb(S) and Eb(S) are both 1.1
eV. Taking into account the incomplete screening close to
the ion, we obtained Eb(S)=1.4 eV, Eb(S)=1.3 eV.
The difference Eb(S) Eb(S) —is indeed larger than kT at
room temperature and below. However, the calculated
values of the binding energies are very much larger than
one would infer from optical-absorption data. The
absorption that releases an electron from an S or a
hole from an S+ in a pristine sample is centered at
-0.45 eV, 0 while in a Na-doped sample it is centered at
-0.7 eV.i' This would suggest that the binding energy is
-0.3 eV. One conclusion that could be drawn from these
considerations is that the wave function of a charged soli-
ton bound to an ion is not well approximated by Eqs. (3.7}
or (3.8), which represent wave functions for a neutral soli-
ton. Although many authors have suggested that this is
the case, a definitive model for a charged soliton bound to
an impurity ion has not yet emerged. Another possible
conclusion, as will be discussed later, is that nonrandom
arrangements of the ions mean that the interaction of a
number of ions and solitons must be taken into account
even at very low average doping. In any case, it is not
possible to say whether Wz or Wz is the correct form for
Wq, and further calculations will be done here for both.

With the expression (3.9) for Ws, and the use of
Stirlings approximation, Eq. (3.5} leads to the soliton
chemical potential

ps Es+kTln——[ns/(N nsls)] for —ns «N/ls . (3.11)

When ~s is taken as Wsn, Eq. (3.10), the soliton chemical
potential becomes

Psn=Es+kT ln[2ns/(N nsls)] fo«s «—N/1s (3 12)

One may use Eq. (3.11) or (3.12) to calculate ns", the
number of thermally generated neutral solitons, by equat-
ing pz or pz to zero. For case I, which yields the larger
number, — one finds

(3.13)

For E& ——2h/m, ' this equation leads to n~" smaller by 4
orders of magnitude than the background neutral solitons
before doping.

When a trans-(CH)„sample is donor-doped, essentially
all the solitons will be negatively charged and p~ may be
set equal to p„, according to Eq. (3.3). With this, for the
large-soliton-concentration limit, i.e., ns-N/ls, where, as
discussed earlier, Ws and Wsn are given by the factors in
large parentheses in Eqs. (3.9) and (3.10), Eq. (3.5) gives
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I II nsls
ps =ps =In =Es+kT ln

N —n, ls
for ns-N/ls .

According to Eq. (3.14), p„&Es for ns&N/21s. For
ls ——14,z p„&Es for a soliton concentration of 3.5% or
more. If ls ——10, the value obtained for a charged soliton
bound to an imPurity ion, z'3z'33 P„&Es for 5% doPing or
more.

Consider now the chemical potential for polarons. If
only palarons were present the number of possible config-
uration would be given by Eq. (3.9) with S replaced by P.
However, with both solitons and polarons present it is
necessary to correct Eq. (3.9) for the excluded volume due
ta solitons as well as that due to polarons. Also, because
Ep & Es, it is appropriate to use the form of Eq. (3.9) for
large soliton concentration. It is then found that

nplp
pp ——Ep+kT ln —nss —np p

(3.15)

For a donor-doped sample pp may be taken equal to p
and, according ta Eq. (3.4), pp =p,„. Because ps ——p„
also Eqs. (3.14) and (3.15) may be equated. After correc-
tion of the ln term in (3.14) for the excluded volume due
to polarons, this leads to the thermal equilibrium ratio of
soliton to polaron concentrations,

ns/np —(lp/ls)e— (3.16)

Thus the ratio of these populations is independent of dop-
ing unless Ep and Es are doping dependent. Calculations
neglecting overlap and Coulomb effo:ts, both of the im-
purity ion and of the electrons internal to each excitation,
give Es —2b, /rr, ' and —Ep ——2 /b/sr. Taking lp ——2xo
+2/lto, in the notation of Ref. 4, one obtains Ip 4ls.
With this and the values of Es and Ep obtained neglect-
ing overlap and Coulomb effects, one obtains
ns/n p ——4 X 10 at 300 K, and greater below. Considera-
tion of Coulomb effects leads to the conclusion that the
actual ratio must be even larger. From optical absorption
in doped samples it has been deduced that the energy to
create a charged sohton is -0.5 eV greater than that to
produce a neutral soliton. The difference is attributed
mainly to the localization of twa electrons, or two holes,
on the soliton. However, as indicated earlier, the oc-
currence of the peak of the charged soliton absorption at
midgap suggests that this increase in Ez is largely can-
celled by the lowering of the bound-electron-energy levels
in the attractive field of the impurity ion. Thus the aver-
age Es, when overlap effects are neglected, should still be
-25/n. Comparable information concerning Ep is not
available. With a negatively charged polaron containing
three electrons, however, the Coulomb correction should
be at least as large as for the sohton. This will also be
counteracted to some extent by the attraction of the im-
purity ion, but the binding to the impurity must be small-
er than for the soliton because the polaron length is
greater. As a result, even at small polaron concentrations
the average Ep is probably significantly larger than the
2 6/m obtained with Coulomb interactions neglected.

From these considerations, the ratio of soliton to polaron
population must be greater than the 4X 10 calculated ear-
lier neglecting Coulomb interactions. %hen overlap is
sufficient so that repulsive soliton-soliton and soliton-
polaron interactions become significant, both Ep and Es
should increase. The increase should begin at lower dop-
ing concentration for the polarons because of their greater
length. Thus the difference Ep Es—should, if anything,
increase due to overlap effects, increasing np/ns further.
This small proportion of polarons in thermal equilibrium
is consistent with the results of infrared absorption and
susceptibility measurements on trans-(CH)„up to 5%%uo or
6% doping. In what follows polarons will be neglected.

IV. FREE™ELECTRONCONCENTRATION
IN HIGHLY DOPED CRYSTALS

In this section the results of the preceding sections are
utilized to calculate p,„and n in crystals with 4—5 % dop-
ing. One additional relation is needed, that between p„
and n. In Sec. II it was pointed out that, despite a calcu-
lated lifetime for decay into polarons of -10 '3 sec, con-
duction electrons could be treated as quasiparticles. That
conclusion is even more valid at high doping because, as
seen earlier, the presence of 4—5 % solitons excludes most
of the volume of the chain for polaron production, in-
creasing the lifetime. The relation between n and p„ is
then the standard one for Maxwell-Boltzmann statistics,

n =2(2srmkT/lt )'~ e

where m is the effective mass of a conduction electron, in-
cluding a contribution from electron-phonon coupling. 's

Note that this result does not depend an doping being ran-
dom.

To obtain p„ for large doping I use Eq. (3.14). Because
of the large gap in trans-(CH), ns~ns is well approxi-
mated by X~, giving

Ne/N)ls

1 —(Ne/N)ls
(4.2)

For Ne/N =0.05 and ls ——10 the ln term vanishes snd
pn =Es For Ne/N =0 04 Eq. (4.2) gives pn =Es
—0.4kT. With Es-2h/n, which is 5160 K for b, =0.7
eV, it is clear that p„barely moves below Es over the en-
tire temperature range for such heavy doping. This con-
clusion must be true regardless of the detailed form af
Ws, brause when the solitons are close to filling a chain,
the number of possible arrangements is small.

Having p„, one may substitute in Eq. (4.1) to obtain n.
With Es 26/n, 5=0.7——eV, and m the free electron
mass, n for 5% doping is found to be 5 X 10'6/cm' at 300
K. At such large doping, however, soliton interactions
are expected to result in larger Es. For a 5 mo1% con-
centration of solitons on a lattice, Nakahara and Maki
calculated an increase in Es from 25/m to 706„danvery
little increase in the gap. This leads to n &10' /cm at
300 K. If the soliton concentration were as high as
6.67 mol%, n would still be close to 10' /cm3 because
the increase in Es is offset by the increase in the gap. It
should be noted that the magnetic susceptibility X for a
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Maxwell-Boltzmatm distribution of electrons with this
concentration in the entire sample is a little less than the
measured 7 for 5at. %%uoN adoping . 'Greate r X is found
for trans-(CH)„samples with 5% or less of other dopants.
Thus a free-electron concentration of 10' /cm is not in
contradiction with magnetic susceptibility measurements.
If such a free-electron concentration occurred in an or-
dered sample, with the mobility @=600cm /V sec calcu-
lated for phonon scattering, ' it would lead to a conduc-
tivity of the order of a hundred 0 ' cm

V. EXPERIMENTAL CONSEQUENCES

The foregoing development leaves two important ques-
tions: (1) To which, if any, of the currently available
trans (CH}-, does the theory apply? (2) If it does apply,
can any of the observed conductivity be attributed to
free-electron transport'? These questions are addressed in
this section.

As mentioned earlier, one of the assumptions underly-

ing the validity of most of the theoretical development is
that of randomness of the impurity distribution. Baugh-
man et al., however, have pointed out that strains due to
the large size of the dopants and mixing entropy favor
dopant aggregation. Randomness is predicted and ob-
served, so far, up to -5% concentration, only for (CH),
doped with Li whose small size allows it to fit between the
chains with little distortion. The small distortion should
also result in the second assumption, the existence of
reasonably well-defined band edges, being satisfied. Thus
the theory developed here should apply to Li-doped
trans (CH)„. U-nfortunately, there are few data for such
material. In one study, including samples with up to
3 at. %%uoLi, s it wa s foun d tha t th econductivit y aversus
doping percentage was identical with that for Na-doped
trans (CH), over-the same range. The values for the Na-
doped material were, however, lower by a factor 100 than
others reported in the literature. '

X-ray data indicate that the alkali metals other than Li
form tetragonal channel complexes in which columns of
alkali-metal ions are each surrounded by four polyace-
tylene chains. ' Particularly for doping by potassium,
whose van der Waals volume is very close to the volume
available in the tetragonal channel, extensive staging, i.e.,
the growth of ordered phases, has been found. 35

Baughman et al. conclude that there is evidence for the
existence of such ordered phases in some portion of the
sample over the attainable doping range, 0.5% to
—17%. Phases of the type (C„H„)~K,where n ranges
from 3 to 5 and m from 2 to 4, are consistent with the
x-ray data and energetic considerations. The higher
values of n and m are found at lower impurity concentra-
tions. Typical coherence lengths were 60—100 A perpen-
dicular to the chains and greater than 45 A along the
chain direction. Similar phases have been found to exist
for trans (CH)„doped -with Na, the lowest concentration
phase being (C,H5)iNa.

On the evidence of the very small magnetic susceptibili-
ty for Na doping up to close to 6%, ' the electrons are
mainly paired, which may be taken as evidence for soli-
tons. This is consistent with the existence within such

samples of a phase such as, for example, (C&H&}3Na, cor-
responding to 6.67 at. % Na. With three polyacetylene
chains per Na channel such a phase would allow sufficient
space for the electron from each ion to form an indepen-
dent soliton. For the average impurity concentration

y ~ 5 or 6%, this phase could exist only in part of the
sample, not necessarily in contiguous regions. %'ithin this
part of the sample overlap of the solitons is clearly much
greater than if the same soliton concentration were distri-
buted randomly throughout the sample. Overlap, it it
known, causes the soliton energy levels to spread. i9'

With such ordered phases, having actual Na concentration

y ~y, formed for y as low as 0.5%, the increased over-

lap could account for the observation that the optical ab-
sorption attributable to charged solitons extends over
most of the gap for these low dopings. At 0.7 at. % Na,
for example, the lowest doping for which optical-
absorption data are given, ' the absorption spreads from
0.6 eV, the lowest photon energy at which measurements
were taken, to —1.4 eV, close to the band edge. Theoreti-
cal calculations ' indicate that such a spread is charac-
teristic of -5—6% doping. Equally broad optical ab-

sorption associated with charged solitons is found for oth-
er dopants, e.g., 0.1 mol % AsF5, ' 0.8 mol % 1,~2 and 0.3
mol% C104. i X-ray studies give evidence for clustering
of these dopants also. In the case of iodine, x-ray and
other data point to the existence of first- and third-stage
phases, in which, respectively, one and three close-packed
planes of polyacetylene chains lie between each

dopant. ' Baughman et al. point out that the inter-
pretation of the iodine-doped (CH}, data is complicated
by the coexistence of phases with different doping levels. 2s

For AsF& there are x-ray data consistent with a first-stage
structure. 2s Intercalation of C104 ions to form order-
ed phases extending over about 40 A in the [100]direction
and 20 A in the [001] direction, is inferred from x-ray
data for trans (CH) doped-with an average C104 concen-
tration of -6 mo1%. Evidence for clustering of C10q
iona is found also at lower concentrations. It should be
remembered that broadening of the soliton absorption
lines requires only clustering of the dopant; ordered
phases are not necessary and may not occur to any great
extent for bulky anions such as AsF5

In the presence of inhomogeneous doping the portions
of the conducting path with lower doping and therefore
higher resistivity will dominate the measured cr. This
seems particularly clear for ¹doped samples where, al-
though X increases by orders of magnitude for 5—6%
doping, a continues its relatively slow increase without a
ripple. ' The inhomogeneity makes it difficult to ascer-
tain, from measurements of dc current versus voltage, the
origin of the increase in o with y—whether due to
enhanced hopping, larger free-carrier contribution, or
charged soliton conduction. However, in any case, the
free-carrier contribution to crz, is likely to be small. If
there exists an ordered region with y -5%, and thus size-
able n, adjacent to a region with smaller doping, a barrier
will be set up between the two regions, tending to keep the
electrons in the larger-y region.

The situation could well be different, however, for o„,
because electrons need not cross barriers. Conductivity
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measurements on I- and AsF&-doped trans-(CH)~ have re-
cently been extended to the millimeter range. Earlier
measurements of cr„on samples with & 1—2.5 at. % I
doping showed no frequency dependence up to 500
MHz. " Genzel et al. found that cr for smnples with 1.1
at. % I or AsFs doping decreased as co went from 10 to
—10 GHz, after which it increased with further increase
in co Because cr„must increase with co for hopping con-
duction, although the increase may not be large for
variable-range hopping, "Genzel et a/. proposed that the
decrease in cr with co arises from free-electron conduc-
tion. Above —10 GHz, this contribution to 0 has ap-
parently decreased to the extent that hopping again dom-
inates cr- Comparing their experimental results with
simple Drude theory, Genzel et al. found that at 300 K
n —10'/cm and p is between 4X10 and 1.5
X 10 cmi/Vsec. The p, values are considerably larger
than the 600 cm2/Vsec calculated for phonon scattering
of conduction electrons in trans-(CH)„. ' However, the
values deduced from o„must be considered very approxi-
mate, because, among other things, the authors 1fave not
taken into account the nonuniform dopant distribution,
and therefore o, expected in this dopant range.

VI. CONCLUSIONS

It has been argued that electrons cannot exist in the
conduction band of polyacetylene because electron-
phonon coupling will cause them to self-trap in a very
short time. The calculated lifetime for this self-trapping
is, however, of the order of the scattering time in typical
3D semiconductors for (CH), with httle doping, and
should be considerably longer for the several percent dop-
ing required for a sizeable conduction-electron population.
Thus it is reasonable to treat conduction electrons in
trans-(CH)„as quasiparticles.

The electrical neutrality condition, relating electron
populations in the conduction-band, soliton, and polaron
levels to the donor concentration, has been derived. From
this equation it was deduced that at low temperatures,
when electrons are excited into the conduction band, soli-
tons are lost. The chemical potentials of negatively
charged solitons and polarons were shown to equal p,„,the

Fermi energy, while those for positively charged solitons
and polamns equal —p„. In deriving the relations be-
tween the chemical potentials and concentrations of the
excitations, the question of the possible number of config-
urations IVY of solitons on a chain was discussed. There
are two possible forms for lYs at low soliton concentra-
tion, differing on whether the rquirement that S and S
alternate necessitates that S's be centered on sites of one
parity, S's on the other. Better knowledge of the wave
function of a bound soliton is necessary before one can de-
cide which of these two forms is correct. Fortunately, for
large soliton concentrations the two forms are essentially
the same. Using the relations between chemical potentials
and numbers of excitations, and the fact that ps ——p~-,
one finds that in thermal equilibrium for trans (CH)"-the
number of polarons is negligible compared to the number
of solitons, independent of dopant concentration, provided
it is low enough that solitons can exist. For crystals with
4 to 5% doping the various relations may be simplified,
leading to p„=Es, the creation energy of a soliton. With
this it is found that for 5—6% doping n=10's/cms.

Due to strain and entropy considerations, most actual
samples should have nonrandom dopant distributions,
contrary to what was assumed in deriving the thermal-
equilibrium relations. On the evidence of x-ray and elec-
trochemical studies, and the large spread in charged-
soliton "midgap" absorption at dopings as low as tenths
of a percent, it appears that for many types of dopant the
distribution is nonrandom even at such low concentra-
tions. High free-carrier concentration and resulting large
conductivity in a local region due to a local aggregation of
impurities is not expected to have much effect on dc con-
ductivity; it might, however, be seen in ac conductivity.
Millimeter wave cr measurements by Genzel et al. on
trans-(CH)„samples with 1% doping may have detected
this conductivity.
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